
 
 

 

  

Abstract— This paper presents a novel procedure to classify 
materials with different defects, such as holes or cracks, from 
mixtures of independent component analyzers. The data 
correspond to the ultrasonic echo recorded after an impact by 
several sensors on the surface of the material. These signals are 
modelled by independent component analysis mixture models 
(ICAMM) for every kind of defect. After the ICAMM model is 
estimated for every defect, these are merged according to a 
distance measure that is obtained from the Kullback-Leibler 
divergence. The hierarchy obtained from the impact-echo data 
and the learning process allow different kinds of defective 
materials to be grouped consistently. 

I. INTRODUCTION 
N the impact-echo technique, a material is excited by a 

hammer impact, which produces a response that is sensed 
by a mono or multi-sensor system that is located on the 
surface of the material. In this paper, we consider a multi-
channel configuration with sensors located at different sides 
of a parallelepiped-shaped material. This configuration 
allows the microstructure material response to be measured 
from different planes in order to obtain a more complete 
examination of the underlying wave propagation 
phenomenon.  

The impact-echo signals contain backscattering from 
grain microstructure as well as information about flaws in 
the inspected material [1]. The physical phenomenon of 
impact-echo corresponds to wave propagation in solids. 
When a disturbance is applied suddenly at a point on the 
surface of a solid, the disturbance propagates through the 
solid as three different types of waves: P-wave (normal 
stress), S-wave (shear stress), and R-wave (surface or 
Rayleigh) [2]. After a transient period in which the first 
waves arrive, wave propagation becomes stationary in 
resonant modes that vary depending on the defects inside the 
material. 

Independent Component Analysis (ICA) decomposes the 
mixed observations in a linear transformation of statistically 
independent variables, estimating the mixing matrix and the 
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independent sources up to a permutation, sign and amplitude 
indeterminacy. ICA not only decorrelates the sensor 
observations as principal component analysis PCA does, but 
it also reduces the higher-order statistical dependencies 
among them.  

There are relatively few applications of ICA in the field of 
non-destructive testing (NDT); see, e.g., [3] or [4]. The main 
difficulties of the application of ICA to vibration signals 
were analysed in [5]. They include: scaling and labelling 
indeterminacies of the sources; the dynamic nature of the 
mechanical systems, which requires a convolutive mixture 
of sources to be described; the physical relevance of the 
source meaning; determining the exact number of sources a 
priori; the problem of handling signals that are distributed in 
time and space; and the requirement of the system 
invertibility. 

We present here a new application that consists on the 
agglomerative clustering of defective materials attending to 
their similarities. A general procedure to identify defects 
using an ICA mixture model ICAMM can be found in [6]. 
The ICAMM extends the linear ICA method by learning 
multiple ICA models and weighting them probabilistically 
[7][8], as many other mixture models do, e.g., the famous 
Gaussian Mixture Model that assumes each generator is a 
Gaussian density. 

 ICAMM allows independent components with data 
densities with nonlinearities and non-Gaussian distributions 
to be modelled. We will use a version that includes non-
parametric density estimation, semi-supervision learning, 
use of any ICA algorithm in parameter updating, and 
correction of the posterior probability after training due to 
residual dependencies in the data [9]. 

Clustering techniques have been extensively studied in 
many different fields for a long time. They can be organized 
in different ways according to several theoretical criteria. 
However, a rough widely accepted classification of these 
techniques is: hierarchical and partitional clustering; see for 
instance [10][11]. Both clustering categories provide a 
division of the data objects. The hierarchical approach also 
yields a hierarchical structure from a sequence of partitions 
performed from singleton clusters to a cluster including all 
data objects (agglomerative or bottom-up strategy) or vice 
versa (divisive or top-down strategy). This structure consists 
of a binary tree (dendrogram) whose leaves are the data 
objects and whose internal nodes represent nested clusters of 
various sizes. The whole node of the dendrogram represents 
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ICA model-based hierarchies have also been explored. 
For instance, in [30], a method for capturing nonlinear 
dependencies in natural images for image segmentation and 
denoising is presented. It makes use of lower level linear 
ICA representation and a subsequent mixture of Laplacian 
distributions for learning the nonlinear dependencies. 

We will use a hierarchical clustering of agglomerative 
type based on the assumption that distribution in each class 
of defect comes from an ICA model; i.e., the feature vector 
that defines our observations can be model as a linear 
combination of independent sources, where each defects has 
its own mixing matrix and sources. After the ICAMM model 
is estimated, a hierarchical procedure to merge them is used 
to identify similar defects. 

This approach can be related to tree-dependent component 
analysis (TCA), which finds "clusters" of components such 
that the components are dependent within a cluster and 
independent between clusters [31]. Topographic independent 
component analysis (TICA) is another method that considers 
the residual dependence after ICA. This method defines a 
distance between two components using higher-order 
correlations, and it is used to create a topographic 
representation [29]. 

II. ICAMM STATEMENT OF THE PROBLEM 
 
In impact-echo testing (see Fig. 2), the wave path 

propagation is divided into two parts: impact to point flaws 
(represented by f points in the figure) and point flaws to 
sensors. It is assumed that the set of point flaws builds 
defective areas with different geometries, such as cracks 
(small parallelepipeds), holes (cylinders), and multiple 
defects (combination of cracks and holes).  

Depending on the kind of defective area, the spectrum 
measured by the sensors changes, which allows the kind of 
defect condition of the material to be discerned. It is 
demonstrated in [6] that the spectrum of different kinds of 
defective materials can fit into different ICA mixture 
models. 

 

 
Fig. 2.  Impact-echo procedure for a material with two flaw points f. The 

impact is due to the hammer and the sensors S register the echoes. 
 
In ICA mixture modelling, it is assumed that feature 

(observation) vectors kx  corresponding to a given class kC
( 1 )k K= … are the result of applying a linear transformation 
defined by matrix kA  to a (source) vector ks , whose 
elements are independent random variables, plus a bias 
vector kb , i.e., 

 
      1, ,k k k k k K= + = …x A s b       (1) 

 
This indicates that, in principle, a different ICA model 

should be required for every specific defect (defective zone 
with particular geometry), every specific deployment of the 
sensors, and every specific impact location. Thus, we can 
formulate the problem of classification of materials with 
different quality conditions, which are inspected by impact-
echo in the ICAMM framework. 

Although we could use the spectrum of the recorded 
signals in the estimation of the ICA model, in this paper we 
will follow a different approach. Instead of working with the 
raw data coming from the sensors, we obtain a feature vector 
that represents important time and frequency characteristics 
of the signals. In this way, we reduce the dimensions of the 
data vector since we do not have to work with the spectrum 
of the signals but with some signature of it. 

Before feature extraction, the signals of the 
accelerometers were normalized using the maximum of the 
impact signal amplitude. The features extracted from the 
impact-echo signals are the following: 
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• Signal power P: 
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• Principal frequency attenuation 
maxfβ : 
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• Total signal attenuation β : 
( )( ) tenvelope x t Ae β−=  

• Initial value of the attenuation curve 0P : 

( )0 10logP A=  
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where ( )x t  is the recorded signal; {}⋅F  and {}1− ⋅F  are the 
Fourier and the inverse Fourier transforms, respectively; and 

( )maxBPF f ± Δ  is a narrow band pass filter centred in maxf . 

Combining these values, we obtain the feature vector kx
where k indicates the unknown class of the vector. At this 
point, we have to estimate the ICAMM parameters (1), i.e., 
the set of mixing matrices kA , sources ks  and bias terms 

kb for every kind of defect 1, ,k K= … . 
Assuming independent feature vectors in the training set, 

we may write the log-likelihood of the observations in the 
form: 
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==
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1
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where Ψ  is a compact notation for all the unknown 
parameters 1−= kk AW , 

kb  for all the classes. We summarize 
the ICAMM algorithm that can be found in [9] which is 
based on a non-parametric source pdf estimation, 
supervised-unsupervised learning, and possibility of 
selecting a particular ICA algorithm: 
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5 Go back to step 1, with the new values

( ) ( )1,1 ++ ii kk bW  and 1+→ ii  
until convergence 

III. HIERARCHICAL ICA  MIXTURES 
Once the ICAMM models have been obtained for every 

kind of defect, we can start the agglomerative clustering of 
them [32]. 

The conditional probability density of an observation 
vector x  for cluster , 1,2,..., 1h

kC k K h= − +  in layer 

1, 2,...,h K=  is ( )/ h
kp Cx . At the first level, 1h = , it is 

modelled by the K  ICA mixtures obtained in the previous 
section, i.e., ( )1/ kp Cx  is: 
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At each consecutive level, two clusters are merged 
according to some minimum distance measure until only one 
cluster is reached at level h K= .For the distance measure, 
we use the symmetric Kullback-Leibler divergence between 
the ICA mixtures, which is defined for the clusters ,u v  by: 
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For layer 1h= , from (4) we can obtain the following:  
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For brevity we write ( ) ( )1/

u up p Cx x x= ) and omit the 

superscript 1h = . For simplicity, we impose the 
independence hypothesis and we suppose that both clusters 
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have the same number of sources M : 
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where ,  1, ,

ius i M= …  and ,  1, ,
jvs j M= …   are the i - 

and j -th elements of the source vectors 
ius  and vs  for the 

corresponding clusters uC  and vC . 1
iuA−  and 1

jvA−  are the the 

i - and j -th rows of the demixing matrices 1
uA−  and 1

vA−  
for the corresponding clusters uC  and vC . 

IV. MERGING ICA CLUSTERS WITH KERNEL-BASED SOURCE 
DENSITIES 

The pdf of the sources is approximated by a non-
parametric kernel-based density for both clusters: 
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where ( )

ius n  and ( )
jvs n   are the sources 

ius  and 
jvs  at 

time n . Again for simplicity, we have assumed the same 
kernel function with the parameters ,a Δ for all the sources 
and the same number of samples N  for each one. Note that 
this corresponds to a mixture of Gaussian models where the 
number of Gaussians is maximum (one for every 
observation) and the parameters are equal. Reducing the pdf 
of the sources to a standard mixture of Gaussians with a 
different number of components and priors for each source 
does not help in computing the Kullback-Leibler distance 
because there is no analytical solution for it. Therefore, we 
prefer to maintain the non-parametric approximation of the 
pdf in order to model more complex distributions than a 
mixture of a small finite number of Gaussians, such as three 
or four. 

The symmetric Kullback-Leibler distance between the 
clusters ,u v  can be expressed as: 
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where ( )H x  is the entropy, which is defined as 

( ) ( )logH E pxx x= − ⎡ ⎤⎣ ⎦ , and the other terms are the cross-

entropies ( ) ( )log , log
v u u v

E p E px x x xx x⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ . 

The entropy for the cluster u  can be calculated through 
the entropy of the sources of that cluster taking into account 
the linear transformation of the random variables and their 
independence (6): 
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The entropy of the sources cannot be analytically 

calculated. Instead, we can obtain a sample estimate of 

( )ˆ
iuH s  using the training data. Denote the i -th source 

obtained for the cluster u  by ( ) ( ) ( ){ }1 , 2 , ,
i i iu u u is s s Q… , 

where iQ  is the number of observations. The entropy can be 
approximated as follows: 
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The entropy of ( )vH x  is obtained analogously to (10). 
Other possible approximations are available, for example to 
use synthetic data produced from the distributions of the 
sources instead of the data used to learn the parameters of 
the ICA mixture model. 

Once the entropy is computed, we have to obtain the 
cross-entropy terms. 
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Considering the relationships 

,u u u v v vx A s b x A s b= + = + and thus 

( )1
v v u u u vs A A s b b−= + − , we obtain for the first cross-

entropy in (11): 

( ) ( ) ( )

2( )1
2

1 1log log
det

v vi i

u v u

s s n
M N

i n

v

ae
p p d p d

−⎛ ⎞
− ⎜ ⎟⎜ ⎟Δ⎝ ⎠

= ==
∏∑

∫ ∫x x sx x x s s
A

, 

 (12) 
 

with 
iv

s  being the i -th element of the vector vs , i.e.,

( )1
iv v u u v i

s A A s b b−⎡ ⎤= + −⎣ ⎦ . 

Using (12), by applying the independence of the sources 
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for the cluster u , we obtain: 
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Again, there is no analytical solution to (13), so we have 

to use numerical alternatives to approximate the cross-
entropy. Following the same idea as above with the entropy, 
we can use the data corresponding to every source for cluster 
u  in order to approximate the expectation of (13). 
Assuming that we have or can generate iQ  observations 

according to distribution ( ) , 1, ,
uis ip s i M= … , we can 

estimate 
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With ( ) ( )1 1, , ,

iv i v u i v u vi
s Bs c B A A c A b b− −= + = = −

( ) ( ) [ ] [ ]1 1, , , 1, , , 1,
T

M Ms k s l k Q l Qs = ∈ ∈⎡ ⎤⎣ ⎦… … . Of course, 

the other term in (11) is obtained in a similar way, 
considering that now the expectations are obtained by 
averaging the pdf of the sources of the other cluster. 

Taking into account all the terms in (5), the symmetrical 
Kullback-Leibler distance between clusters ,u v  can be 
computed numerically from the samples following the 
corresponding distribution ( ) ( ) ( ){ }1 , 2 , , ,

i i iu u us s s Q…  

1,..., ,i M=  ( ) ( ) ( ){ }1 , 2 , , ,
j j jv v vs s s Q…  1,...,j M=  (we 

assume that the number of samples per source is the same 
for all of them).  

The computations can also be easily extended to the case 
where the number of sources in every class is not the same. 
In the case that the distributions are approximated by just a 
single Gaussian (keeping in mind that the ICA problem 
reduces to the PCA problem since there is an 
indetermination defined by an orthogonal matrix that is not 
identifiable) and the distance is obtained analytically for the 
first level of the hierarchy, the distance between two 
multivariate normal distributions of dimension M ,

( ) ( ) ( ) ( ), , ,u u u v v vp N p Nx μ Σ x μ Σ= =  would be 
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where  ( )tr A  is the trace of matrix A . 
Once the distances are obtained for all the clusters, the 

two clusters with minimum distance are merged at a certain 
level. This is repeated in each step of the hierarchy until one 
cluster at the level h K=  is reached. To merge a cluster at 
level h , we can calculate the distances from the distances of 
level 1h − . Suppose that from level 1h −  to h  the clusters 

1 1,h h
u vC C− −  are merged in cluster h

wC . Then, the density for 
the merged cluster at level h  is: 
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where ( ) ( )1 1

1 1,h h
h u h vp C p C− −

− −  are the priors or 

proportions of the clusters ,u v  at level 1h − . The rest of 
the terms are the same in the mixture model at level h  as at 
level 1h − . The only difference from one level to the next 
one in the hierarchy is that there is one cluster less and the 
prior for the new cluster is the sum of the priors of its 
components and the density the weighted average of the 
densities that are merged to form it. Therefore, the 
estimation of the distance at level h  can be done easily 
starting from the distances at level 1h −  and so on until 
level 1h = . Consequently, we can calculate the distances at 
level h  from a cluster h

zC  to a merged cluster h
wC  that was 

obtained by the agglomeration of clusters 1 1,h h
u vC C− −  at level 

1h −  as the distance to its components weighted by the 
mixing proportions: 
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(17) 

 
As at level 1, we can obtain the decision rule to assign a 

new data to a cluster in the hierarchy at level h  by applying 
Bayes’ theorem: 
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V. RESULTS: NON DESTRUCTIVE TESTING (NDT) 
The hierarchical clustering algorithm was applied to the 

field of quality control of materials. The objective was to 
automatically obtain an appropriate hierarchical 
classification of parallelepiped-shaped material evaluated in 
real experiments using the impact-echo technique [34].  

The materials were pieces of aluminium alloy series 2000 
of 0.07x0.05x0.22 m. (width, height, and length, 
respectively). Up to three defects per piece were drilled in 
different locations of each piece. The defects passed through 
the pieces and consisted of holes in the shape of cylinders 10 
mm. Ø and cracks in the shape of parallelepipeds of 5x20 
mm. cross-section.  

The material was excited by an impact and its response 
was measured by a multichannel system of sensors 
(accelerometers). Fig.3 shows the setup of the impact-echo 
experiments, which includes sensor configuration, impact 
localization, supports of the piece, and coordinate axes. 

 

 
Fig.3. Impact-echo experiment for hierarchical classification 
 

 The example in Fig.3 contains two defects: one hole in 
the Y axis and one crack in the XY plane. 

The experiments were performed using the following 
equipment:  

(i) Instrumented impact hammer 084A14 PCB 
(ii) 7 accelerometers (a1-a7) 353B17 PCB 
(iii) ICP signal conditioner F482A18 
(iv) Data acquisition module 6067E 
(v) Notebook. The acquisition parameters were: sampling 

frequency=100,000 kHz, and observation time=50 ms.  
The total number of experiments was 1200 executions of 

the impact-echo test from 60 specimens. The materials were 
from 5 categories. The first four categories corresponded to 
one-defect materials: one hole oriented in the X axis, one 
hole oriented in the Y axis, one crack oriented in the XY 
plane, and one crack oriented in the XZ plane. The fifth 
category corresponded to multiple defects. 

Before feature extraction, the signals of the 7 
accelerometers were normalized using the maximum of the 
impact signal amplitude. The feature vector has 7 
dimensions: principal frequency; principal frequency 
amplitude and attenuation; centroid frequency; signal power; 

initial value of the attenuation curve and signal attenuation.  
The dimensionality of the feature space was reduced from 

49 features to 10 components by PCA for an explained 
variance greater than 92%. 

The results of the hierarchical classification for the 
impact-echo application, using 0.3 as the supervision ratio in 
the ICAMM algorithm are shown in Fig.4. The accuracy of 
the classification for this case was the following (the values 
are in percentage):  

(i) The bottom level— multiple defects, one hole in the X 
axis, one hole in the Y axis, one crack in the XY plane, and 
one crack in the ZY plane (100, 82.86, 71.74, 67.42, 65.83, 
respectively) 

(ii) The intermediate level— multiple defects, holes, 
cracks (100, 88.37, 72.11, respectively) 

(iii) The penultimate level— multiple defects, one defect 
(100, 88.34, respectively). 

Considering the great complexity of the problem, the 
classification accuracy is high. Thus, the procedure was able 
to automatically learn the defect patterns of the materials and 
build a meaningful hierarchical structure (dendrogram) that 
allows the pieces were allocated in the right place of the 
classification tree. 

 

 
 
Fig.4. Hierarchy obtained for the impact-echo experiments. Meaningful 
groupings of the materials are found 
 

The hierarchy obtained in Fig.4 can be interpreted in the 
following way. At the highest level of the hierarchy, the 
pieces are divided into two classes that represent the material 
condition: multiple defects and one defect. The intermediate 
levels of the hierarchy separate the specimens into three 
classes corresponding to the kind of defect in the materials: 
multiple defects, holes, and cracks. Finally, the lowest level 
of the hierarchy splits the materials into five classes that are 
related to the kind and orientation of the defects: multiple 
defects, one hole in the X axis, one hole in the Y axis, one 
crack in the XY plane, and one crack in the ZY plane. 
Therefore, the hierarchical levels would represent abstract 
conceptualizations about the condition of the material, i.e., 
general material condition, kind of defect, and defect 
orientation. This result is relevant taking into account the 
great difficulty of finding significant hierarchical patterns in 
this type of application. 
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VI. CONCLUSION 
An application in material quality control using impact-

echo testing has been presented. It is based on a method for 
agglomerative hierarchical clustering assuming an 
underlying ICA mixture model. The algorithm uses the 
ICAMM parameters estimated at the bottom of the hierarchy 
to create higher levels by grouping clusters. It is based on 
the symmetric Kullback-Leibler divergence between the 
clusters using the ICA parameters assuming non-parametric 
kernel-based source densities. Different structures of 
classification can be derived at the different levels of the 
bottom-up merging. 

The results of application to NDT using impact-echo 
testing demonstrated that meaningful classification trees 
were obtained. From a feature space of temporal and 
frequency parameters extracted from the impact-echo signals 
at the lowest hierarchical level, defective materials were 
grouped consistently at higher levels. The groupings showed 
significant separation between materials with holes and 
cracks, and between materials with one defect and multiple 
defects. This kind of classification is very useful in certain 
industries (e.g., marble factories) where the knowledge 
about the kind of defect is critical in optimizing the 
manufacturing process of block cutting. 
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