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Abstract— Among renewable generators, photovoltaics (PV) is 
showing an increasing suitability and a lowering cost. However, 
integration of renewable energy sources possesses many 
challenges, as the intermittency of these non-conventional sources 
often requires generation forecast, planning and optimal 
management. There exists scope to improve present PV yield 
forecasting models and methods. For example, the popular 
dynamic neural network modelling method suffers from the lack 
of a selection mechanism for an optimal network structure. This 
paper develops an enhanced network for short-term forecasting 
of PV power yield, termed a ‘focused time-delay neural network’ 
(FTDNN). The problem of optimizing the FTDNN structure is 
reduced to optimizing the number of delay steps and the number 
of neurons in the hidden layer alone and this problem is 
conveniently solved through heuristics. Two such algorithms, a 
genetic algorithm and particle swarm optimization (PSO) have 
been tested and both prove efficient and can improve the 
forecasting accuracy of the dynamic network. Given the success 
of the PSO in solving this discontinuous structural optimization 
problem, it is expected that PSO offers potential in optimizing 
both the structure and parameters of a forecasting model. 

I. INTRODUCTION  
Photovoltaic (PV) energy is now positioned amongst the top 

three new power generation means installed in Europe, as 
shown in Figure 1, and is expected to remain so [1]. Power 
from PV sources provides a number of benefits over other 
renewable energy sources (RES). It can be supplied locally to 
loads, reducing the cost of transmission lines and associated 
power losses. Furthermore, advances in technology and large 
scale manufacturing have led to the decline in PV cost at a 
steady rate [2]. Despite a high capital setup cost, the operation 
and maintenance costs of PV are almost zero [3]. 

However, like other RES, PV sources pose a number of 
integration challenges such as the impact on voltage profile 
[4], impact on operational costs of the grid [5], regulation and 
load-following requirements [6], and other issues investigated 
in numerous research papers [7, 8]. Knowing in advance an 
expected yield from PV sources will aid in tackling these 
challenges, which includes proper planning of available 
generation sources and providing insight into impact of PVs 
on the power network. However, the forecasting task requires 

non-primitive techniques, as power yield from PVs is 
intermittent in nature.  The intermittent and non-linear 
characteristics of PV data is due to an interplay of various 
factors such as the variability in sunrise and the amount of 
sunshine, sudden changes in atmospheric conditions, cloud 
movements and dust [9]. The PV power data can thus be 
viewed as consisting of two parts: the deterministic and the 
stochastic parts [23]. The former represents the mathematical 
equations of irradiance that depend on location, sun’s position, 
and equations of PV cells, whilst the latter represents the 
sudden atmospheric changes such as dust, clouds, and wind 
blow.     

Various mathematical models that catch physics of PVs are 
possible but are inaccurate or impractical for large systems 
[10]. Data-driven models based on statistics or artificial-
intelligence are gaining popularity, as they provide the 
advantage of simplicity and usability.   Owing to the capability 
to handle nonlinearity and time-series data and absence of 
requirement for transformation to stationary data [15], 
Dynamic Neural Networks (DNNs) have been studied for PV 
forecasting, such as the ‘Focused Time-Delay Neural 
Networks’ (FTDNN) and the ‘Distributed Time-Delay Neural 
Networks’ (DTDNN) [12]. Advantages and disadvantages of 
existing models are briefly reviewed in section II.  

This paper focuses on FTDNNs without exogenous inputs to 
cover very short-term forecasting and to improve the existing 
methods for forecasting PV data. Section 3 presents a 
framework of the FTDNN. This is followed by the 
development of a methodology to optimize the structure and 
parameters of the FTDNN in Section 4. Results and 
validations are presented in Section 5 and Conclusions are 
drawn in Section 6. 
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Fig. 1. Net generation capacity (in GW) added in the EU 27 from 2000 to 
2012 [1]. 

II. SOLAR PV POWER FORECASTING 
There exist various forecasting models proposed for PV 

systems [10, 12, 17-28]. The simplest ones are naïve or 
persistence models where next value of power is assumed to 
be same as the previous step. Such models are usually taken as 
reference models in forecasting studies [16, 17]. Persistence 
can be written as follows:  ݔො௧ା ൌ ௧ݔ  (1) 

where ݔො௧ା is the predicted value of the variable x for the 
next k steps and  ݔ௧ is the current value at temporal instant t.  
Another version of the persistence model (called Diurnal-
persistence model) can be written as follows [17]: ݔො௧ା ൌ ௧ାݔ െ ܿ (2) 

The constant c = 24 or 48 and this implies that the value of 
the predicted variable k steps ahead is equal to its value at the 
same time point of the previous day (24 hours back) or two 
days before (48 hours back) respectively.  

Another common method is the ‘clear-box’ model based on 
physical principles, such as the double diode model [18], the 
simplified single diode model (SSDM), and further SSDMs in 
a descending order of complexity. A higher complexity can 
provide better accuracy on the expense of increased 
computational burden and unsuitability for real-time 
applications [19]. An SSDM that gives a good compromise 
between simplicity and accuracy [20] is shown in Figure 2. 
 

 
 
 
 
 
 
 
 
 

Fig. 2. PV cell/array Single Diode Simplified model 

 
The following equations describe the relation between the 

current and voltage output of the PV cell/array: 
 

ܫ  ൌ ܫ െ ௗܫ െ ାோೞூோ  (3) 

ௗܫ  ൌ ሺ݁൬ೇశೃೞ.ೌೇܫ ൰ െ 1ሻ (4) 

where I is the output current of the cell in amperes, V is the 
solar cell voltage in volts,  Iph is the photocurrent in amperes, 
Id is the Shockley diode equation, Io is the reverse saturation or 
leakage current of the diode, Vt = kT/q is the thermal voltage of 
the array, q is the electron charge (1.60217646 × 10-19 C), k is 
the Boltzmann constant (1.3806503 × 10-23 J/K), T is the 
temperature of the cell in kelvin, and  a is the ideality factor 
constant. More details of these equations can be found in [19, 
20]. To calculate power yield, values for I and V are usually 
computed using numerical methods [18, 20]. The 
mathematical approach is usually tedious especially when 
applied to large or widely spread PV systems [10]. 

Another way to model solar data is to use statistical 
methods. Regression models can be used where power value is 
expressed as a regression of previous power values, irradiance, 
and temperature [21]. Statistical approaches adopt classical 
time-series forecasting methods that assume data to be 
stationary. Therefore, different approaches are used to 
confront the non-stationarity of solar data such as differencing 
the original data [22] and normalizing against clear sky model 
[17]. Auto-regressive (AR), AR with exogenous input (ARX), 
and AR with integrated moving average (ARIMA) [17, 23] are 
some of the famous statistical models used in solar PV 
forecasting.  As the parameters in these models usually do not 
represent a physical phenomenon or quantity, such models are 
often referred to as ‘back-box’ models or functional 
approximates. 

The artificial neural network (NN) is another example of 
these models and is gaining popularity in PV forecasting 
owing to their modularity in handling non-linear models. 
There are various structures of NN, but they can be 
categorized into two static and dynamic types. Static NNs 
have been used to predict PV power [24] and irradiance [25] 
trained by standard back-propagation or heuristic algorithms 
[26].  

Dynamic NNs has the ability to accommodate time-series 
data [14] and are therefore studied for PV forecasting in this 
paper. Nonlinear Autoregressive Neural Network with 
External input (NARX) [10], Recurrent NN (Elman type 
model) [27], and Distributed time delay NN [28] are some of 
the dynamic NNs investigated for PV forecasting applications.  

 

III. FOCUSED TIME-DELAY NEURAL NETWORK 
Time-delays in dynamic NNs can either be ‘distributed’ in 

different layers or ‘focused’ in the input layer only as 
illustrated in Figure 3 with one input variable. This structure 
has been found to be more suitable for PV forecasting 

Iph Id 
Rp 

Rs I 

V 

+ 

- 

2821



applications [12]. The network shows m delayed inputs fed to 
the input layer, where Z-di is a unit delay operator that yields 
u(t-di) when it operates on a given input u(t), and the 
connections between m inputs and p1 neurons in the input 
layer are given weights that are lumped to a matrix W1 called 
the input weight matrix. Similar matrices exist between hidden 
layers and between final layer and output layer. Furthermore, 
the output of each neuron is offset by a value called bias that is 
lumped into a vector bn for a given nth layer. The activation 
function chosen for input and hidden layers is the tansigmoid 
function. The output activation function fo(.) is usually a 
purelin function which is a linear summation of the outputs of 
the output layer neurons.  

An example of applications of an FTDNN can be found in 
[29] and in the previous work [12]. Comparing with distributed 
or other NNs, the advantage of the FTDNN is lightweight, does 
not require more inputs to work, offers a simple structure of 
one hidden layer only, and is sufficiently generic to adapt to 
changes in input data quickly. 
 

 
Fig. 3. Focused Time-Delay NN configuration 

  

IV. NETWORK AND PARAMETER TRAINING METHODS 
In this work, the PV power is taken as a time-series data. 

The forecasting is handled by an FTDNN where future values 
are predicted based only on historical data. The advantage of 
the FTDNN proposed in our previous work [12] is that 
optimizing the structure is reduced to optimizing the number of 
delays and the number of neurons in the hidden layer. In any 
NN applications, choosing the number of neurons will be 
necessary for maximizing performance. 

Here, the FTDNN is optimized by a heuristic algorithm. 
Once the structure is set, calculating the weights and biases can 
be performed easily using a back-propagation (BP) algorithm 
as they are efficient in handling a large size weights [11]. The 
Levenberg-Marquardt (LM) version of BP [13] is used here as 
it was shown faster in the previous work [12]. Within the 
optimization loop, the FTDNN is trained using LM and the 
root-mean square error (RMSE) of testing is used as an 
objective function. The overall structure of the method is 
shown in Figure 4.  

 

 
 

Fig. 4. Flow chart for optimizing structure of FTDNN 
 
In this work, the solution space for the number of neurons is 

set between n = 2 and 20 neurons for the hidden layer. The 
number of hidden layers is fixed to one as such structure for 
MLP is adequate to approximate any given function, as stated 
by the universal approximation theorem [14].  The delays, di, 
are searched in a solution space between 1 and 30 
corresponding to 1 and 30 steps back values respectively; 
maximum number of delays, m, is set at 10. The search for the 
best values of delays and neurons is done using Particle Swarm 
Optimization (PSO) and a Genetic Algorithm (GA) as they are 
powerful heuristic search methods without the need for the 
evaluation of derivatives.  

Genetic Algorithms are powerful domain independent search 
technique, which have been successfully applied to various 
areas of power system [30]. A set of potential solutions, 
described as a population of individuals, are encoded as 
chromosomes. A new set of solutions, called offsprings, are 
created in a new generation (iteration) by crossing some of the 
strings of the current generation. This process is called 
crossover, which is repeated at every generation. Further, new 
characteristics are introduced to add diversity, by altering some 
of the strings of the offsprings randomly in mutation. The new 
offsprings replace some or all previous generation population 
depending on the reinsertion rate chosen by the user.  

Particle Swarm Optimization [31] is inspired by social 
behaviour of bird flocking or fish schooling. It can be applied 
as follows: 
Step 1: Initialize a population (array) of particles with random 
positions and velocities v on d dimension in the problem 
space. The particles are generated by randomly selecting a 
value with uniform probability over the dth optimized search 

space [ ], maxmin
dd xx .  

Step 2: For each particle x, evaluate the desired optimization 
fitness function, J, in d variables. 
Step 3: Compare particles fitness evaluation with xpbest, which 
is the particle with best local fitness value. If the current value 
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is better than that of xpbest, then set xpbest equal to the current 
value and xpbest locations equal to the current locations in d-
dimensional space.  
Step 4: Compare fitness evaluation with population overall 
previous best. If current value is better than xgbest, the global 
best fitness value then reset xgbest to the current particle’s array 
index and value. 
Step 5: Update the velocity v as follows: 
 

 

       
(6) 

where, k is the number of iteration, i is the number of the 
particles that goes from 1 to n, d is the dimension of the 
variables, and rand1,2 is a uniformly distributed random 

number in (0, 1),  are acceleration constants and are set, 
as recommended by investigators [31], equal to 2. The weight 
w is often decreased linearly from about 0.9 to 0.4 during the 
search process.  
Step 6: Update position of the particles, 

 
(7)   

Step 7: Loop to 2, until a criterion is met, usually a good 
fitness value or a maximum number of iterations (generations) 
m is reached. 

There are several feasibility issues that need to be addressed 
when using heuristic algorithms to select suitable values for 
delays and the number of neurons. Heuristic algorithms can 
find solutions with repeated entries in the solution vector; 
which is not feasible in such an application. For example,  
GA/PSO may find a solution such as D = [1 2 2 4 5..] where 
the second ‘2’ is a repetition. This means that “y(t-1), y(t-2), 
y(t-2), y(t-4), ..” are delayed inputs fed to the network. In order 
to circumvent this, repeated values are removed from the 
solutions in each iteration of the search. Hence, the afore-
mentioned solution vector will be truncated to D = [1 2 4 5..].  
Another point in “automating” the structure of FTDNN through 
heuristics is that the knowledge of the problem helps in 
choosing suitable range for solution space; values close to 
current time usually carry the useful information to predict next 
values and an excessive number of neurons should be avoided 
as unnecessary complexity could lead to over-fitting. 

V. RESULTS AND VALIDATION 
The proposed FTDNN and its training method are tested on 

PV data collected from 1.76kW array installed at King Fahd 
University of Petroleum and Minerals, Dhahran, Saudi Arabia 
[12]. As presented in Figure 4, FTDNN is trained using on one 
data set (2-6 February 2010, 5 days) and tested on a different 
data set (7-10 February 2011, 4 days) for validation. The data 
was measured at a ten minutes interval where 144 data points 
were collected over a 24 hour period.  The Root Mean Square 
Error (RMSE) for a one step ahead prediction is used as the 
fitness/objective function value for a given structure in the 
loop shown in Figure 4.  

 

 
The RMSE is calculated as follows: 

 

ܧܵܯܴ  ൌ ට∑ ሺೌିሻమససభ మ
 

(8)

where Pi
a is the ith actual output power, Pi

p is the ith predicted 
power by network, and n is number of data points. For further 
verification and also for comparison of methodology, the 
structure of the FTDNN is optimized using both a GA and 
PSO. The parameters of the algorithms are given in Table I.  

The two algorithms produced very similar networks at the 
end of iterations, although the PSO recommends more hidden 
neurons.  The PSO offers outperformance in terms of reaching 
a better RMSE, J, and a higher convergence speed as compared 
in Figure 5. The ratios of population updates or objective 
function evaluations in a given generation of a GA and PSO are 
90% (due to the combined effect of crossover and reinsertion) 
and 100%, respectively, Figure 7. We observed for PSO, a 
larger downward stepwise reduction in the RMSE at the 
beginning of the search, Figure 5, which lasted for 
approximately 50 generations (~generation 15 to 65) while in 
the case of the GA, less such “stagnation” was observed. 
Similar observation is noticed when comparing the fall of 
objective function value with progress in function evaluations, 
Figure 6; the stagnation of PSO lasted for about 1000 function 
evaluations although with an initial rapid fall. This observation 
provides an interesting confirmation that using the current set 
of parameters, the GA was better at exploring the search in a 
more global manner, while PSO had a more local focus. The 
PSO was able to find better solutions in fewer iterations and 
function evaluations. This could be due to that the structural 
optimization problem is less multi-modal and due to the 
difference in the genotype creation and retention mechanisms 
between the two algorithms. 

This suggests that PSO’s search capability can be further 
enhanced by borrowing GA diversification techniques: cross-
over and mutation to overcome the observed “stagnation”. On 
the other hand, GA’s local search can be improved by using 
concepts of particles or swarms tracking and updating their best 
local and global best fitness values. A hybrid algorithm with 
these features can be investigated in future work. 
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TABLE I 
COMPARISON BETWEEN PSO AND A GA: PARAMETERS AND OPTIMIZATION 

RESULTS 
 

GA PSO 
Number of populations = 20 Number of particles= 20 
Cross-over probability = 1 ߮ଵ,ଶ=2 
Mutation rate = 0.001 Weight w: max = 0.9 min =0.4 
Selection: Stochastic selection Maximum iterations = 100 
Maximum iterations = 100 
Reinsertion rate =0.9 

 

Optimization: Optimization: 
Jmin = 0.0030kW 
Time=274mins. 

Jmin = 0.0025kW 
Time= 312 mins. 

FTDNN optimum structure FTDNN optimum structure 
Number of neurons (hidden layer) = 
15 

Number of neurons (hidden layer) 
= 20 

Delays = [1     2     4     5     6    12   
17    18    25    27] 

Delays = [1     3     4     5     6     8   
9    13    16    19] 
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The proposed method is then compared with intuitive 
persistence models of equations (1) and (2) that are usually 
used as benchmarks in industry and solar forecast studies [16, 
17]. Furthermore, comparison is also made with the results of 
previous work [12], where the structure was chosen by trial and 
error with D = [1 2 3 4 5 6 7 8] and number of neurons in the 
hidden layer being 10. Table II summarizes the test results of 
different forecasting models where RMSEs are compared and 
improvement over intuitive model of equation (1) is indicated. 
Figure 7 compares the best models of Table II while Figure 8 
compares the forecasts using PSO-FTDNN and previous work 
FTDNN where structure was chosen by trial and error; the two 
plots are separated for ease of visualization. The results 
presented show an advantage of using the FTDNN in 
forecasting power yield over existing models. It also shows that 
the structure of FTDNN influences the accuracy of forecasts 
and can be optimized. Such tests need further repeated runs and 
average results can be compared as both heuristic and quasi-
newton based algorithms start with random initializations. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

VI. CONCLUSION 
This paper has presented an enhanced artificial network for 

short-term forecasting of PV power yield. The difficulty of 
choosing an appropriate network structure has been tackled 
through a heuristic algorithm that improves the forecasting 
accuracy. Both PSO and a GA have been tested in this 
structure-optimization process and both have proven efficient 
with comparable results.  Future work includes using the PSO 
algorithm alone for both structural and parametric optimization, 

TABLE II 
COMPARISON BETWEEN GA/PSO-FTDNN, FTDNN, AND PERSISTENCE 

MODELS 
Model GA-

FTDNN 
PSO-
FTDNN 

FTDNN Persist. 1 
(eq. 1) 

Persist. 2 
(eq. 2) 

RMSE, kW (% 
improvement 
over Persist. 1) 

0.003 
(+53%) 

0.0025 
(+61 %) 

0.0044 
(+31%) 

0.0064 0.0264 

 

 
Fig. 5. Progress of structural optimization using PSO and GA: Iterations 
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Fig. 6. Progress of structural optimization using PSO and GA: Function evaluations 
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Fig. 7. Comparison between PSO-FTDNN, Persistence model 1, and actual data of 8 February 
2011 PV; step ahead forecasts.
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Fig. 8. Comparison between PSO-FTDNN, FTDNN, and actual data of 8 February 2011 PV; 

step ahead forecasts. 
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as it is more efficient in numerical optimization than a GA and 
is able to tackle structure optimization which BP is unable to.  
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