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3D Maps Representation using GNG

Vicente Morell Miguel Cazorla

Abstract— Current RGB-D sensors provide a big amount
of valuable information for mobile robotics tasks like 3D
map reconstruction, but the storage and processing of the
incremental data provided by the different sensors through time
quickly becomes unmanageable. In this work, we focus on 3D
maps representation and we propose the use of a Growing
Neural Gas (GNG) network as a 3D representation model of
the input data. GNG method is able to represent the input data
with a desired amount of neurons while preserving the topology
of the input space. Experiments show how GNG method yields
better input space adaptation than other state-of-the-art 3D
map representation methods.

I. INTRODUCTION

A 3D point is comprised of (X,Y,Z) representing the
spatial coordinates. When color information (R,G, B) is
available for each point, it is referred as RGB-D data. RGB-
D cameras provide those kind of data and nowadays they
are very popular due to their low value, like the Kinect
sensor. At each time, a RGB-D sensor could provide more
than 300,000 3D points. In mobile robotics, there is a
fundamental task that must be carried out: mapping [1].
Mapping is a task that builds a map from the observations
and movements of the robot. Each time the robot moves, an
observation is linked to that movement. Then, using different
methods, for example registration, the map can be built,
first transforming each observation with respect to common
coordinates frame. A map is useful to make subsequent tasks,
like localization, navigation, etcetera. When using RGB-D
data as observations, it is referred as RGB-D mapping and
RGB-D maps.

RGB-D maps amount of data is huge as the number of
poses is high. In a typical map with 10.000 poses, the
data could be more than 3 billions of 3D points which is
unaffordable for representation and for other tasks. Due to the
huge quantity of data, several methods have been proposed
to reduce the number of points in the map while preserving
the main features of this map, as it would be used in other
tasks.

Elevation maps were a commonly used structure in the
past [2], [3]. These elevation maps are represented using
a regular 2D cell grid where each cell value represent the
elevation or height of the surface of that space. This compact
model allows a simply representation of large areas but with
lower level of detail. Burgar et al. [4] present an extension
of the height maps in order to represent different surfaces at
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different heights. This Multi-Level Surface Map (MLS map)
allows the representation of vertical structures and different
surfaces in a 2D cell-based structure like the ones used in
the traditional height maps. This approach focuses on the
representation of planar surfaces to help mobile robotics
applications like robotics navigation.

Following this idea of 3D space representation, some
other structures are used like occupancy grids or Octrees.
Occupancy grids represent the entire space as a 3D cell grids.
The cell information could be a simply value of occupancy or
contain more complex information as the probability of oc-
cupancy. Several works in mobile robotics use this structure
as a base of their applications [5], [6], [7]. Another common
structure is the Octree [8]. The Octree is a tree structure in
which each internal node has eight children. Each node of
the tree is subdivided into eight new nodes until a certain
condition is reached. This structure allows representation
of both occupied and empty space in the area represented
by the Octree and allows some optimized operations like
closest point searching or occupancy checking. In [9], an
Octree based framework called OctoMap is presented. They
use a probabilistic occupancy estimation where areas of
the space are represented as occupied, empty or uncertain.
Another common used structure are the Voxel Grid (VG).
The VG down-sampling technique is based on the input
space sampling using a grid of 3D voxels. This technique
has been used traditionally in the area of computer graphics
to subdivide the input space and reduce the number of points
[8], [10].

Wang et al. [11] present a feature based 3D point cloud
simplification. They detect the points with more information
(big curvatures) and they subsample the rest of the points
using a uniform spherical sampling method. Therefore, they
preserve the key points and subsample the points with less
curvature information. This method is good to subsample
3D point clouds of object surfaces, but it will not work on
scene maps due to the spherical sampling, and that the feature
selection process is usually harder and problem dependent.

Another approaches use self-organizing maps in order to
reduce the input space. Viejo et al. [12] use a Growing Neural
Gas (GNGQG) algorithm to filter and the reduce single frontal
point clouds. In this paper, we propose to extend that work to
manage complete maps. The GNG will be able to adapt to the
complete map, reducing its size, keeping the input topology
and providing better adjustment than existing methods. To
validate our method, we show several experiments comparing
our method with state-of-the-art methods for reducing map
size.

The rest of this work is organized as follows. First, we
introduce and describe in Section II the proposed GNG
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application and the Octree and Voxel Grid methods that we
will use in the experimentation. Next, in Section III, the
validation of our method is carried out comparing it with
two previous methods. Finally, conclusions and future works
are drawn.

II. 3D REPRESENTATION METHODS

One way of selecting points of interest in 3D point clouds
is to use a topographic mapping where a low dimensional
map is fitted to the high dimensional manifold of the model,
whilst preserving the topographic structure of the data. In
this section we review some typical methods to represent and
compress 3D data. First we propose the use of a Growing
Neural Gas algorithm to reduce and represent 3D point cloud
maps. Then we briefly describe two commonly used data
structures in order to compare our proposal application.

A. GNG Method

A common way to achieve a multi-dimensional reduction
is by using self-organising neural networks where input
patterns are projected onto a network of neural units such
that similar patterns are projected onto units adjacent in
the network and vice versa. As a result of this mapping,
a representation of the input patterns is achieved that in
post-processing stages allows one to exploit the similarity
relations of the input patterns. However, most common
approaches are not able to provide good neighborhood and
topology preservation if the logical structure of the input
pattern is not known a priori. In fact, the most common
approaches specify in advance the number of neurons in the
network and a graph that represents topological relationships
between them, for example, a two-dimensional grid, and
seek the best match to the given input pattern manifold.
When this is not the case the networks fail to provide good
topology preserving as for example in the case of Kohonen’s
algorithm [13]. The approach presented in this paper is
based on self-organising networks trained using the Growing
Neural Gas learning method [14], an incremental training
algorithm. The links between the neurons in the network
are established through competitive hebbian learning [15].
As a result the algorithm can be used in cases where the
topological structure of the input pattern is not known a priori
and yields topology preserving maps of feature manifold
[16].

In GNG, nodes in the network compete for determining
the set of nodes with the highest similarity to the input
distribution. In our case the input distribution is a finite
set of 3D points extracted from different types of sensors.
The highest similarity reflects which node together with
its topological neighbors is the closest to the input sample
point which is the signal generated by the network. The n-
dimensional input signals are randomly generated from a
finite input distribution.

The nodes move towards the input distribution by adapting
their position to the input geometry. During the learning
process local error measures are gathered to determine where
to insert new nodes. New nodes are inserted near the node

with the highest accumulated error. At each adaptation step a
connection between the winner and its topological neighbors
is created as dictated by the competitive Hebbian learning
method. This is continued until an ending condition is
fulfilled, as for example evaluation of the optimal network
topology, a predefined networks size or a deadline.

Next, we describe the growing neural gas algorithm and
the ending condition as used in this work. The network is
specified as:

e A set N of nodes (neurons). Each neuron ¢ € N has
its associated reference vector w, € R%. The reference
vectors can be regarded as positions in the input space
of their corresponding neurons.

o A set of edges (connections) between pairs of neurons.
These connections are not weighted and their purpose
is to define the topological structure. An edge aging
scheme is used to remove connections that are invalid
due to the motion of the neuron during the adaptation
process.

The GNG learning algorithm to map the network to the

input manifold is as follows:

1) Start with two neurons a and b at random positions w,

and wyp in RY.

2) Generate at random an input pattern & according to the

data distribution P (&) of each input pattern.

3) Find the nearest neuron (winner neuron) s; and the

second nearest So.

4) Increase the age of all the edges emanating from s;.

5) Add the squared distance between the input signal and

the winner neuron to a counter error of s; such as:

Nerror(sy) = ||ws, — EH2 (1)

6) Move the winner neuron s; and its topological neigh-
bors (neurons connected to s1) towards & by a learning
step €, and €,, respectively, of the total distance:

Awsl = ew(f - wsl) (2
Awsn = €w (5 - wsn) (3)

for all direct neighbors n of s;.

7) If s; and s, are connected by an edge, set the age of
this edge to 0. If it does not exist, create it.

8) Remove the edges larger than a,,q, . If this results
in isolated neurons (without emanating edges), remove
them as well.

9) Every certain number A of input patterns generated,
insert a new neuron as follows:

e Determine the neuron ¢ with the maximum accu-
mulated error.

o Insert a new neuron r between ¢ and its further
neighbor f:

wy = 0.5(wy +wy) 4)

o Insert new edges connecting the neuron r with
neurons ¢ and f, removing the old edge between
q and f.

1483



10) Decrease the error variables of neurons ¢ and f mul-
tiplying them with a consistent «. Initialize the error
variable of r with the new value of the error variable
of ¢ and f.

11) Decrease all error variables by multiplying them by a
constant 7.

12) If the stopping criterion is not yet achieved (in our case
the stopping criterion is the number of neurons), go to
step 2.

Using a Growing Neural Gas model to represent 3D data
has some advantages over the traditionally used methods like
Voxel Grid or Octrees. For example, we specify the number
of neurons (representative points of the map), while other
methods like the Voxel Grid or Octree get different number
of occupied cells depending on the distribution and resolution
of the cells (voxels on Voxel Grid and leafs on Octree based
methods)

B. Octree based method

Most 3D point clouds mapping algorithms usually use
the spatial organization of the points to encode them in a
structure like an Octree in order to reduce the amount of
information. An Octree is a tree data structure in which their
internal nodes have exactly eight children. Octrees make
a partition of the three dimensional space by recursively
subdividing it into eight octants. It starts from a user specified
volume space or it computes the bounding box of the input
set. Then, each node or cell is subdivided into 8 children
nodes until a certain condition is reached. These conditions
vary depending on the problem or the Octree implementation.
A commonly used condition is to stop producing new chil-
dren nodes when the volume or size of the corresponding cell
node reach the desired precision. One of the main features
of the octree representation is that nodes without input space
points are not subdivided and therefore those leaf nodes
represent a empty volume of the space and this feature can
be useful for some mobile applications as robot navigation.
There exist different approaches to select the representative
point of the occupied nodes. A simple one is to get the center
of the node cell but usually the mean or centroid of the
cell inner points offers better results despite it has a higher
computational and memory cost.

C. Voxel Grid method

The VG down-sampling technique is based on the input
space sampling using a grid of 3D voxels. VG algorithm
defines a voxel grid in the 3D space and for each voxel a
point is chosen as the representative of all points that lie on
that voxel. It is necessary to define the size of the voxels
as this size establishes the resolution of the filtered point
cloud and therefore the number of points that form the new
point cloud. The representative of each cell could be by using
one of the approaches described in the previous section.
Thus, a subset of the input space is obtained that roughly
represents the underlying surface. The VG method, as the
Octree based methods, presents the same problems than other
sub-sampling techniques: it is not possible to define the final

number of points which represents the surface; geometric
information loss due to the reduction of the points inside a
voxel; and sensitivity to noisy input spaces.

D. Comparative

In this subsection we briefly describe the main differences
of the below described methods. The GNG representation
provides a set of neurons and their neighbors. This represen-
tatives and their connections can be used in some algorithms
like 3D mesh reconstruction or feature extraction. Both Voxel
Grid and Octree methods should provide similar results due
to their final representation of the points. In this point cloud
reduction application, the Octree gets their representatives of
the leaf nodes and if we use the same resolution as the Voxel
Grid method we get a similar division of the space in cubes
or cells of the same dimension. The Voxel Grid method is
the most simple and fast reduction method, but it does not
have any of the advantages of the Octree structure or GNG
model like neighbor searching.

Figure 1 shows a 2D description of the representative
selection points of the described methods. We observe as
the GNG method assign more neurons on high density input
values like in the bottom left area than the Voxel Grid and
Octree methods. We also observe how the GNG is able to
reduce some noisy values like the point near the center in
contrast with the representative used in the VG and Octree
methods.

III. EXPERIMENTATION

In this section we are going to test the quality of adaptation
of the three described methods. We first describe the data
used in the experiments and then we analyze the results of
the tested methods, quantitatively and qualitatively.

A. Experimentation setup

To test the implemented scene mapping systems on room
map scenarios, we used the TUM RGB-D dataset [17]. This
dataset provides RGB-D data and ground-truth data with
the goal of evaluating visual odometry and visual SLAM
systems. The dataset contains the color and depth images of
a Microsoft Kinect sensor along the ground-truth trajectory
of the sensor. It provides images at full frame rate (30 Hz)
and sensor resolution (640x480). The ground-truth trajectory
was obtained from a high-accuracy motion-capture system
with eight high-speed tracking cameras (100 Hz).

This dataset contains 39 sequences recorded in two dif-
ferent scenarios. The fr/ datasets are recorded in a typical
office environment and the fr2 datasets are recorded in a large
industrial hall. Figure 2 shows a ground-truth reconstruction
map of the “fr]1 360 scene.

Table I shows the number of points of the input maps used
in the experimentation. We can observe that the number of
input points ranges from one million of the “frl xyz” to 6
million of the“fr1 desk”.
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Fig. 1. Two dimensional samples of the three tested methods.
Dataset Number of Input Points
frl xyz 1049739
frl desk 1952544
frl 360 2357039
frl desk2 2751402
fr2 xyz 3492032
fr2 desk 5841800
TABLE I

NUMBER OF POINTS OF EACH GROUND-TRUTH MAP DATASET.

B. Quality adaptation experiment

As we previously mentioned we are going to compare
the proposed GNG adaptation against two common used
data structures in the state-of-the-art, Octree and Voxel Grid.
The implementation of both methods are included in the

Fig. 2.

Example of the “frl 360” ground-truth point cloud map.

Point Cloud Library ' (PCL). The Octree implementation
uses the center of the leaf nodes as representative points.
However, the Voxel Grid implementation uses the centroid of
the points of each non-empty voxel. Both implementations
use a resolution parameter that represents the size of the
voxel in the VG method and the side of the leaf cell of the
Octree implementation. The GNG results are obtained using
10000\ input patterns.

We extensively tested the implemented methods using
different numbers of representatives. As the three tested
methods are reducing the amount of real noisy point cloud
maps, it is needed to know the real distance from the selected
representatives to the original input space. This measure
specifies how close the representations are from the original
model. In order to have a quantitative measure of the input
space adaptation of the generated map, we computed the
Mean Error (ME) of the reduced map against sampled points
(input space).

1 .
MEZWZE%IEHP—QH Q)
peV

where V' is the input space, p is a point that belongs to the
input space, ¢ is the representative point with the minimum
distance to the input space sample. Euclidean distances to
closest points are averaged over the entire input space.
Figure 3 shows the RMS errors of the three methods
on the six different tested maps. We observe that the three
methods have the same behavior on the different datasets.
The Octree method gets the worse results probably because
the selection of its cell-node center as representative. The
Voxel Grid gets lower errors than Octree due to the use
of the centroid of the inner points instead the use of the
center of the voxel or cell. It is important to point out again
that the representative selection used in this comparative is
given by the implementations but both Octree and Voxel Grid

"The Point Cloud Library (or PCL) is a large scale, open project [18] for
2D/3D image and point cloud processing.
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Fig. 3.

methods can use both representative selection strategy. GNG
adaption shows the best results on all datasets. It is noticeable
that the GNG gets lower errors on the different number of
representatives but as the number of representatives increases
the three different methods converge to the same error.

C. Qualitative Results

In this subsection we analyze qualitatively the results of
the three different methods. Figure 4 shows the original map
and the three representations of the tested method of the “frl
360 scene. Part a shows the point cloud that we are trying
to represent and reduce. Parts b and ¢ are respectively the
Octree and Voxel Grid representation, and part d is the GNG
representation of the scene. The Octree representation using
the centers of the leaf nodes gets a strongly structured point
representation. This representation obtains a more uniform
distribution of the representatives, but the error adaption is
worse, as we saw in Figure 1 and the Mean Error graphs.
The Voxel grid representation gets similar results than the
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Octree where the points are uniformly distributed like the
points of the floor but it gets better results on the border
points than the Octree method. Both VG and Octree place
representatives in isolated and noisy points. However, the
GNG neurons are uniformly distributed over the input space
and it reduces the impact of the noisy points and undefined
borders on the reduced representation. We also observe the
inherent triangulation of the space that the GNG algorithms
gets of the neighborhood of the neurons.

IV. CONCLUSIONS

RGB-D 3D maps are useful for robotics tasks, like robot
navigation. But this kind of maps contains a huge amount
of data, which must be reduced to process properly the map.
In this paper, we have presented a method to represent and
reduce 3D maps. Our method is based on a GNG neural
network that has been adapted to the 3D input space. The
experiments carried out show the validity of our method, as it
provides better adaptation than two of the most used methods
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(d)

Fig. 4. a) Original point cloud map. b) Octree reduction. ¢) Voxel Grid
reduction. d) GNG representation.

for this tasks: Voxel Grid and Octree.

As future work, we propose to extend our method in
order to provide a useful map for robot navigation. We
also plan to provide the GNG a way to revert the reduction
or compression of the points, storing information from the

neurons neighborhood (color, point distribution, etc.).
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