
Predictive Hebbian Association of Time-Delayed Inputs with
Actions in a Developmental Robot Platform

Martin F. Stoelen, Davide Marocco, Angelo Cangelosi, Fabio Bonsignorio and Carlos Balaguer

Abstract— The work described here explores a neural net-
work architecture that can be embedded directly in the real-
time sensorimotor coordination loop of a developmental robot
platform. We take inspiration from the way children are
able to learn while interacting with a teacher, in particular
the use of prediction of the teacher actions to improve own
learning. The architecture is based on two neural networks
that operate online, and in parallel, one for learning and one
for prediction. A Hebbian learning rule is used to associate
the high-dimensional afferent sensor input at different time-
delays with the current efferent motor commands correspond-
ing to the teacher demonstration. The predictions of future
motor commands are used to limit the growth of the neural
network weights, and to enable the robot to smoothly continue
movements the teacher has begun. Results on a simulated iCub
robot learning object interaction tasks are presented, including
an analysis of the sensitivity to changes in the task setup. We
also outline the first implementation on the real iCub platform.

I. INTRODUCTION

CHILDREN learn to manipulate objects through contin-
uous interaction with the environment and with human

teachers, effectively addressing the “degrees of freedom
problem” [1] in spite of initially having very limited motor
skills. Much of the learning occurs during interaction, which
means it can immediately be applied, and that the teacher
can adapt to the progress of the child. A robot operating
outside laboratory conditions similarly has to overcome the
“curse of dimensionality” when learning novel manipulation
tasks. That is, such tasks typically require the association
of motor commands with the high-dimensional sensor input
coming from the visual, auditory, tactile, and proprioceptive
modalities. It may be beneficial to take inspiration from
the way children develop to overcome these challenges. We
believe this requires, at least, the following robot capabilities:

1) Automatically extract task-relevant information from
the robot’s full high-dimensional sensory input.

Martin F. Stoelen and Carlos Balaguer are members of the Robotic-
sLab research group within the Department of Systems Engineering and
Automation, Universidad Carlos III de Madrid, Spain (email: {mstoelen,
balaguer}@ing.uc3m.es).

Fabio Bonsignorio is a member of the RoboticsLab as Santander
Chair of Excellence in Robotics at Universidad Carlos III de Madrid
and CEO/founder of Heron Robots of Genova, Italy (email: fbon-
sign@ing.uc3m.es or fabio.bonsignorio@heronrobots.com).

Davide Marocco and Angelo Cangelosi are with the Centre for Robotics
and Neural Systems, University of Plymouth, Plymouth, UK (email:
{davide.marocco, acangelosi}@plymouth.ac.uk).

This work was supported by the European Commission FP7 Project
ITALK (ICT-214668) within the Cognitive Systems and Robotics unit (FP7
ICT Challenge 2) and the RoboCity2030-II-CM project (S2009/DPI-1559),
funded by Programas de Actividades I+D en la Comunidad de Madrid and
cofunded by Structural Funds of the EU.

2) Predict future teacher actions from the observation of
the dynamics of the relevant sensory input.

3) Transition smoothly from teacher-guided action to own
action based on such predictions.

4) Integrate information from high-level labels with the
low-level prediction, when available.

5) Perform both learning and prediction online while the
human teacher is providing demonstrations.

Working towards such capabilities, we previously ex-
plored a Neural Network (NN) for associating online high-
dimensional robot actions and sensor input [2]. The present
paper extends this work, with two NNs operating in parallel,
one for associative learning and one for motor prediction. The
prediction is used for: a) limiting the growth of the synapse
weights, and b) smoothly transferring control from the human
teacher to the robot.

II. RELATED WORK

One approach for representing learned robot skills is the
Dynamic Movement Primitives (DMP) paradigm [3]. Here
each primitive can be seen as an attractor landscape to a
predefined goal, and the approach thus provides a stable
trajectory from any point in state-space. However, collisions
and uncertain sensor data must be handled explicitly. See for
example [4], where additional sensor data was used to adapt
online a previously learned DMP. Locally Weighted Learn-
ing (LWL) is another related paradigm [5]. Online multi-
map regression approaches have been applied to learning a
Finite State Machine (FSM) of subtasks and their policies
[6]. Common to these approaches is the need to explicitly
model each movement or primitive. Approaches where sets
of movements can be modelled and coordinated implicitly
exists, typically based on Recurrent Neural Networks (RNN).
For example work on a hierarchical Reservoir Computing
(RC) network for imitation learning [7], or RNNs that use
parametric biases for representing behaviour patterns [8].
This also includes Multiple Time-scales Recurrent Neural
Networks (MTRNN) [9].

There is also work on recognising the intent of a hu-
man user, for example online intent prediction on assistive
wheelchairs [10]. Other work has focused on online recogni-
tion of manipulator actions, through a modified formulation
of DMPs [11]. However, each action was encoded using
an explicit model and the learning was performed offline.
Online learning is likely beneficial for autonomous robots
in general, and particularly during interaction with a human
teacher. Incremental imitation learning approaches do exist,
for example using a Gaussian Mixture Regression (GMR)

2014 International Joint Conference on Neural Networks (IJCNN)
July 6-11, 2014, Beijing, China

978-1-4799-1484-5/14/$31.00 ©2014 IEEE 700

Fig. 1. The two neural networks. For clarity of presentation only the synapses for one neuron in each past layer are shown. Dashed synapses indicate
learning (without propagation), solid arrow synapses indicate propagation of activity. Grey solid boxes represent layers, while the grey dashed boxes indicate
the border of each neural network. Thick solid arrows represent input from the outside. Example Gaussian activation curves shown in green.

to represent each task [12]. Here the learning is performed
after each demonstration, and on sensor data that has first
been through a dimensionality reduction. Learning in parallel
with a demonstration has been suggested as a potential
application for Liquid State Machines (LSM) with online
linear regression [13]. There is also related work on life-long
learning in autonomous robots, for example learning about a
large set of policies in parallel [14].

III. NEURAL NETWORKS AND EMBEDDING IN ROBOT

A. Introduction

The two NNs and their interrelationships can be seen in
Fig. 1. Each NN has multiple layers receiving the same
afferent input, and each layer has a specific time-delay.
The layers therefore represent the afferent input at different
moments, from the present time t to T time steps into the past
(denoted t−T). The afferent input includes sensor data from
S sensors. Each sensor is represented by a set of neurons,
here written as ~s. The jth neuron for the afferent sensor
input is denoted as aj . High-level hypotheses about the task
can also be provided, with the set of neurons representing
one hypothesis written as ~h. See Section III-F for more
details. The jth neuron for the afferent hypothesis input
is denoted as ahypj . Each neuron in each set is assigned
a specific sensor/hypothesis value, and the sets of neurons
are therefore discretizations of the sensor/hypothesis inputs.
Both NNs have one layer with neurons representing the
efferent commands. For the work described here the arm
joint velocities were assumed as commands, with the set of
neurons representing each joint velocity being denoted as ~̇θ.
The ith neuron for the efferent commands is denoted as ei.

B. Operating Modes

The NNs have two operating modes, learning and actua-
tion. During learning, the teacher moves the robot through
the task, while the learning NN learns the associations
between the time-delayed afferent input and the efferent
input representing the motor commands. The prediction NN
simultaneously generates motor predictions. The activations

generated by the prediction NN is used in the learning,
and the prediction NN receives updates on the NN weights
periodically. During actuation, only the prediction NN is
active. It generates the motor commands to the robot based
on the time-delayed afferent input received.

C. Afferent Input
The set of neurons representing the discretization of a

sensor/hypothesis is activated according to a normalised
Gaussian curve. The mean of the Gaussian curve, µ, is at
the actual sensor/hypothesis value. See Eq. (1), where χ
is the value represented by the neuron and σ the standard
deviation of the Gaussian curve used. The σ used here was
proportional to the separation in represented value of the
neurons, σ = r/2p for a value range r and set-size p. See
also the Gaussian activation curves visualized in Fig. 1.

v = f(χ, µ, σ) = exp

(
− (χ− µ)2

2σ2

)
,

where v is aj , a
hyp
j or ei.

(1)

D. Efferent Input/Output
In the NN used for learning, the motor commands per-

formed by the teacher is received as efferent input. The same
normalised Gaussian activation curve as for the afferent input
is used, see Eq. (1). In the NN used for prediction the neural
activation in the afferent input layers is propagated to the
efferent output, where the robot’s own motor prediction and
output is generated. Here the ith neuron is denoted as epredi .
As can be seen in Eq. (2), the activation of each of the n
neurons in the efferent output layer (epredi), is simply the sum
of the m products of the activation of a given afferent input
neuron (aj or ahypj) with its respective synapse weight (wi,j).
The value represented by the neuron with the maximum
activation is taken as the respective joint velocity command.

epredi =
m∑
j=1

wi,ju,

where u is aj or a
hyp
j .

(2)

701

Fig. 2. Overall architecture and embedding in the sensorimotor coordination
loop. Large green circular arrow indicates the robot actuation loop, small
circular arrows indicate the two possible teacher actuation loops: a) teaching
a physical or simulated robot through a user interface generating Cartesian
velocities (e.g. a joystick), and b) performing kinesthetic teaching on a
physical robot (physically moving the robot). J indicates the Jacobian.

E. Predictive Hebbian Association

In the NN for learning no activation is propagated and a
prediction-based learning rule is applied across all synapses.
See Eq. (3). The change of a given synapse weight each itera-
tion (∆wi,j) is proportional to the activation of the respective
afferent input neuron (aj or ahypj) and the difference in actual
and predicted activation of the efferent command neuron.
The rule is a derivative of the Hebbian [15] learning of our
previous work [2], but uses the predictions made in parallel
to attempt to limit the synapse weights. Similar Hebbian
learning rules that correlate an error term with presynaptic
activity have been explored in NN architectures with direct
biological interpretations [16], [17].

∆wi,j = ηy
(
ei − epredi

)
,

where y is aj or a
hyp
j .

(3)

F. High-Level Hypothesis Labels

High-level input can be provided to the NNs through the
hypothesis labels. An example could be a specific text label
describing the task, like “pick up cup”, that the teacher gives
to the robot during learning. Each hypothesis input is a
binary value (e.g. the existence, or not, of a given label),
but the representation is spread over a set of neurons. A
pattern generator is used to give a time-variable pattern to
the neural activation. A sinusoidal pattern was selected for
the implementation presented here, as seen in Eq. (4). Here
τ is the desired period of the pattern (here 60 seconds). In
the learning NN the activation of a hypothesis will thus
continuously activate different neurons, the activation of
which are associated with the current motor commands. The

activation of a hypothesis during robot actuation can then be
used to impose a given trajectory of motor commands.

µhyp = λcos(2πt/τ), where :

λ =

{
1 with hypothesis,
0 otherwise.

(4)

G. Embedding in a Developmental Robot Platform

The overall architecture for embedding the NN in the real-
time control loop of a developmental robot an be seen in
Fig. 2. The YARP [18] communication protocol was used.
An actuation manager directly controls the joint velocities of
the left arm of the iCub humanoid robot (~̇qcommand), based
on either teacher input (~̇qteacher) or the predictions of the NN
(~̇qNN). A separate NN performs the learning simultaneously,
and updates the weights used for prediction periodically.
Both NNs receive input from the same set of sensors, from
the present time and from given times in the past. This is
achieved through a delay queue. The gaze of the iCub is
made to follow the left hand independently. Examples of
learned NN weights can be seen in Fig. 9 for joint encoders,
and Fig. 15 for visual sensors.

IV. SIMULATED ROBOT EXPERIMENT

A. Introduction

Fig. 3. The “object-pushing” task.

The experiment was
performed in the iCub
simulator [19]. The task
setup consisted of a small
planar table in front of
the robot, and a small
red cube (40x40x40 mm).
See Fig. 3 for the table
used, Fig. 4 for the gen-
eral setup. The goal of
each trial was to push the
red cube to one of the two possible target locations on the
far side of the table, shown in green. The robot was to learn
to take over control from the teacher after a preset time into
a demonstration (2 or 4 seconds) and complete the task. The
main performance measure was the percentage of successful
attempts. The hand of the robot started in the same initial
position for each trial, while the red cube was initialized
according to a random set of positions within a predefined
area. Two different square areas were used for the random
distribution, with the size (denoted as d) being 40 or 20 mm.
In Fig. 3 dashed black lines indicate the borders for the center
of the cube, and the grey areas the outer edges.

B. Method

1) Teacher Interaction: The teacher used a 6 Degree Of
Freedom (DOF) 3DConnexion SpaceNavigator input device
to control the Cartesian velocities of the left hand (~̇xteacher
in Fig. 2). The iKinGazeCtrl gaze controller [20] was used
to make the robot track the position of the left hand of the
robot with the eyes and head. The teacher was provided with

702

a graphical representation of the average Root Mean Square
Error (RMSE) over the 6 predicted joint velocities, see Fig.
4. This provided a tool for the teacher to assess how well the
robot was able to predict the current movement performed.

Fig. 4. View given to teacher during testing. Timer in top-right corner,
visualisation of average RMSE over joint velocities in bottom-right corner.

2) Sensor Input: Sensor data delayed by 0, 1.5 and 3
seconds was fed to the NNs. The sensors used were: a) The
6 joint encoders of the left arm, b) the 2 joint encoders of
the neck, and c) 54 vision sensors (18 red, 18 green, and
18 blue pixel counters, see Fig. 16). See Table I for the
assumed resolution (the number of neurons used), min and
max values. Each hypothesis was represented by 35 neurons.

TABLE I
SPECIFICATIONS OF SENSORS USED IN EXPERIMENT.

Resol. Min. Max. Units

Arm

Shoulder pitch 35 -100 15

degrees

Shoulder roll 35 -5 166
Elbow 35 10 111
Wrist pronosupination 35 -95 95
Wrist pitch 35 -95 5
Wrist yaw 35 -25 45

Neck
Pitch 35 -65 -20

degrees
Yaw 35 -5 40

Vision
24 small pixel counters 20 120 1600

pixels
30 large pixel counters 20 400 3200

3) Robot Actuators: The actuators used were 6 of the
left arm motors (joint velocities commanded), see Table II.
Shoulder yaw was kept at 7 degrees. The robot actuation was
stopped when the average maximum neural activation across
the 6 joint velocities fell below 0.1. The system was tested
on an 8-core Dell i7-2600 @ 3.4 GHz. Both the learning and
prediction were split over separate NN modules, by running
two instances with half the joint velocities for each. The
learning achieved 10-15 Hz and the prediction 30-35 Hz.

4) Experiment Procedure: The main experiment condi-
tions can be seen in Table III. A total of about 10 hours of
testing was performed, with one of the authors as the teacher.
For training sessions, the teacher could switch between own
and robot actuation with a button. 40 training attempts

TABLE II
SPECIFICATIONS OF ACTUATORS USED IN EXPERIMENT (IN DEG/S).

Resolution Min. Max.

Arm velocity

Shoulder pitch 45 -15 15
Shoulder roll 45 -15 15
Elbow 45 -15 15
Wrist pronosupination 33 -15 15
Wrist pitch 33 -15 15
Wrist yaw 33 -20 20

were performed. The robot only learned during periods of
teacher actuation, and only from successful attempts. For
testing sessions the teacher started actuating, and the robot
automatically took over after a preset time had passed (2 or 4
seconds). 40 attempts were used for measuring performance
for each experiment condition. A separate hypothesis for
each target location was given on conditions 3, 4, 7 and 8.

TABLE III
MAIN CONDITIONS FOR EXPERIMENT.

d=40 mm d=20 mm

No hypothesis
4 sec. Condition 1 Condition 5
2 sec. Condition 2 Condition 6

With hypothesis
4 sec. Condition 3 Condition 7
2 sec. Condition 4 Condition 8

C. Main Results

1) Percentage of Successfully Completed Attempts: The
percentage of successfully completed attempts for the main
experiment conditions can be seen in Fig. 5. There was a
high success rate for most conditions, but the performance
dropped sharply when both a high dispersion of the initial
locations of the cube (d=40 mm) and a short amount of
time before beginning actuation (2 seconds) were used.
Providing hypotheses on the given target locations improved
performance by 29.2% for this situation, and had a positive
effect in general.

(a) d=40 mm. (b) d=20 mm.

Fig. 5. Percentage of successfully completed attempts for the main
experiment conditions. With or without hypothesis about task to perform,
and beginning actuation after 4 or 2 seconds. All results with 40 attempts
for training. Condition number indicated on each column.

2) Trajectories Followed: The differences in the joint
space trajectories followed for the two tasks are shown in
Fig. 6. It can be seen that the trajectories for the two tasks
are quite similar in shoulder roll, while for other joints they
differ partially (e.g. shoulder pitch and elbow) or completely
(wrist pitch). The different start locations of the red cube

703

also required quite different trajectories in some joints (e.g.
wrist yaw for the top target). In Fig. 7 the corresponding
neck angles are shown. The trajectories can mainly be
distinguished in the neck pitch joint.

Fig. 6. Arm joint angle trajectories for actuation from 4 seconds (no
hypothesis given and d=40 mm; condition 1), for all successful attempts.
Both bottom target (solid red lines) and top target (dashed cyan lines). Grey
vertical line indicates start of robot actuation.

Fig. 7. Neck pitch and yaw angle trajectories for condition 1 (see Fig. 6).

Fig. 8 shows the Cartesian trajectories of the hand in the
horizontal plane. It can be seen that many of the trajectories
for the two targets cross, making the task of distinguishing
one from the other more difficult. The large dispersion of
final positions follows from one of the characteristics of the
tasks performed, the ability to push the cube with any part
of the hand/wrist/fingers.

3) Development of Neural Network Weights: Limiting
the synapse weights in Hebbian learning is often addressed
through Oja’s rule [21] or similar approaches for “forget-
ting”. For a NN that is directly embedded in the real-
time loop of a robot agent, the weights will already be
somewhat limited. That is, the robot will only be interacting
with the world for a given period of time and at a given
rate (10-20 Hz here). However, some neural mechanism
for normalizing the weights is still desirable. The error in
the prediction is here used, which means the NN mainly
“forgets” (and learns) when the efferent prediction is far from
the efferent command. That is, both learning and “forgetting”
depend on the performance in the current context. As can
be seen in Fig. 11(a) the NN weights increased sharply

(a) d=40 mm.

(b) d=20 mm.

Fig. 8. Cartesian trajectories of the hand in the x− y plane (top view) for
learning (solid green lines) and actuation (dashed blue lines) trials.

(a) Original 40 training attempts. (b) Additional 40 training attempts.

Fig. 11. Development of the mean of the NN weights for no hypothesis
given and d=40 mm (conditions 1 and 2). Over the original 40 attempts and
after 40 additional attempts. Mean shown individually for 3 delays used.

(a) With d=20 mm. (b) With hypothesis given.

Fig. 12. Effect on the development of the mean of the NN weights when: a)
d=20 mm (conditions 5 and 6), and b) when hypothesis is given (conditions
3 and 4). Mean shown individually for 3 delays used.

704

Fig. 9. Example learned neural network weights from arm and neck encoders to elbow joint velocity, at delay of 0 seconds.

Fig. 10. Example learned neural network weights from arm and neck encoders to elbow joint velocity, at delay of 3 seconds.

at first, but had a gradual reduction in slope towards the
end of the 40 training attempts. There was little overall
increase in the mean weights when running an additional
40 training attempts after the experiment, as can be seen in
Fig. 11(b). However, there was a sudden increase after about
750 seconds that likely stems from variability in the teacher
demonstrations. Similar effects were also seen in the other
conditions. Overall it seems the training used was sufficient
to stabilise the weights for the tasks performed. Fig. 12(a)
shows that a less variable initial distribution of positions
(d=20 mm) made the tasks easier to learn, with the mean
weights quickly reaching a high level. Fig. 12(b) shows the
development with d=40 mm and hypothesis given.

4) Final Neural Network Weights: An example of the final
NN weights learned can be seen in Fig. 9, for a delay of 0
seconds. For most sensors there are multimodal distributions
of weights to the possible motor actions, suggesting non-
trivial relationships between sensing and actuation. Fig. 10
show four matching results for a delay of 3 seconds. It
can be seen that the weights at the two delays have some
observable differences, even though only 3 seconds separate
the two sets of weights. The NN architecture presented can
take advantage of such additional information by basing the
actuation on the recent past, not only the current sensor input.

D. Sensitivity Analysis
The effect of three changes to the sensorimotor dynamics

were explored. All three changes were applied to experiment

condition 1 (actuation from 4 seconds, no hypothesis given
and d=40mm).

Fig. 13. “Two-button” task.

1) Learning an Additional
Task: The first effect explored
was the addition of a different
task, touching one of two static
spheres, hereby denoted as the
“two-button” task. See Fig. 13.
One of the spheres were green,
the other red, with the order
assigned randomly. The goal of
the task was to push with the
palm against the green sphere.
The NN weights obtained during training on condition 1
was first loaded. The NNs were then trained on 40 attempts
on the “two-button” task, and was tested to confirm 100%
successful execution after 4 and 2 seconds. The robot was
then tested on the original task, and was able to complete
82.1% of the attempts. This compared to the 92.5% before
learning the additional task, a reduction of 11.2%.

2) Random Visual Effect: Condition 1 was rerun with a
random visual effect, a red sphere placed in a randomised
location within a 400 mm square on the floor. See Fig. 14
for three examples. The visual impact was approximately
the same as the smaller red cube on the table, but occurred
mainly in the top half of the robot’s retina. The robot was
trained with 40 attempts as before. During testing the same

705

success rate as without the random effect was achieved, that
is 92.5%. The corresponding NN weights for the areas of
the retina affected by the random sphere were also lower
and more even that those affected by the red cube, see the
example in Fig. 15. The sensors with the highest respective
weights are shown, sensors 3 and 7 (see Fig. 16(a)).

(a) (b) (c)

Fig. 14. Including a red sphere in a random location in front of the robot.

(a) Sensor 3. (b) Sensor 7.

Fig. 15. Example neural network weights from red pixel counters 3 and
7 to shoulder roll velocity. See Fig. 16(a) for a visualization of the sensors
concerned.

3) Using Vision Sensing Only: Condition 1 was rerun with
only vision input, with 40 attempts for training as before. See
Fig. 16 for example visualisations of the visual information
received, and Fig. 17 for the corresponding situations. The
robot was able to complete 90% of the tasks after 4 seconds
without hypothesis given (condition 1). The reduction in
sensors led to faster execution of the NNs, up to 13-16 Hz
for the learning and 37-40 Hz for the prediction.

E. Discussion

The tasks used here are quite simple and do not require
great precision. However, they have a high degree of overlap
and are performed in a small part of the workspace. Tasks
involving a greater sensor data diversity may prove easier
to learn, at least when the additional data is correlated to
the task. Humans are also good at taking advantage of the
richness of the context to drive action. Remembering the pin
code for a bank card is often much easier in the right context,
i.e. with your fingers on the cash machine keypad. In fact,
both motor memory formation and decay has been found to
be strongly context dependent [22].

The learning could also have been “hard-coded” to im-
prove performance. First, a separate set of NN weights could
have been used for each target, or even for each approximate
start location. That is, each movement “class” could have
been modelled and then represented in code by a symbol,
and only activated when certain predefined conditions were
satisfied. Second, estimating the 3D pose of the specific
cube of interest with more elaborate vision algorithms is

(a) Red pixel counts.

(b) Green pixel counts.

(c) Blue pixel counts.

Fig. 16. Visualizations of visual input at three times for one attempt.

(a) 0.0 seconds. (b) 5.0 seconds. (c) 10.1 seconds.

Fig. 17. Actual situations corresponding with Fig. 16.

certainly feasible, but would require a second mechanism
for estimating from the context when the 3D pose of the red
cube is of interest, and when not. Reducing the need for such
gate-selection mechanisms [9] may help circumvent deeper
issues like the symbol grounding problem (see [23]).

The current two-NN architecture could be replaced with
one NN. This would require neurons in the efferent layer ca-
pable of: 1) receiving propagated activation from the afferent
layers, 2) activating based on the summed activation received
and generating a prediction, 3) being sensitive also to a
given value of the actual efferent command, 4) comparing
the “predicted” activation and the “actual”, and 5) modifying
the incoming synapse weights based on this comparison.

V. IMPLEMENTATION ON PHYSICAL ROBOT

Two simple tests of the ability to learn and actuate on the
physical iCub robot were performed. Kinesthetic teaching
was used, where the teacher directly moved the joints of the
robot. See teacher actuation loop b) in Fig. 2. For the first
test, the task was to move a red cup from one of two points
on a table to one of two targets to the right. See Fig. 18. The
input to the NN was the 7 left arm encoders and the yaw
neck encoder. The head tracked the red cup using a colour
segmentation algorithm, see [24]. A different hypothesis was
given to each of the four possible tasks and used during
actuation. Only one kinesthetic demonstration was given for
each task. For the second test, no hypothesis was given, and

706

(a) (b) (c) (d) (e) (f) (g)

Fig. 18. First learning on the real iCub platform. a) to c): complete user demonstration; d) and e): user starting task; f) and g): robot completing task.

(a) (b) (c) (d) (e) (f) (g)

Fig. 19. Demonstrating simple sensorimotor coordination. a) to c): complete user demonstration; d) user starting task; e) to g): robot following cup.

the robot was shown one task, moving the cup from one
point to another. The teacher started the test, then grabbed
the cup and slowly moved it to the final point. As can be
seen in Fig. 19, the robot followed the cup with the hand,
showing a simple (task-limited) sensorimotor coordination.

VI. CONCLUSIONS

We have presented a NN architecture that associates time-
delayed sensor input with motor commands in a develop-
mental robot platform. The two NNs operate at 10-20 Hz
while embedded in the real-time sensorimotor coordination
loop. The input from 62 sensors is used directly, without
first being reduced to a predefined low-dimensional “state”.
Actuating a 6 DOF kinematic chain, the NNs are able to learn
some simple object interaction tasks, even with noisy effects
in the object location and the visual scene. The predictive
Hebbian associative rule effectively limits the NN weights
based on the error in the predictions made. In addition, the
NNs showed promise in predicting the intent of the teacher
during movements, and to smoothly complete tasks begun
by the teacher. We believe this is an important capability
when approaching how children learn and interact. Future
work should explore the neural network storage capacity,
especially the role of the typically non-uniform and highly
“embodied” sensor space (i.e. dependent on the motor sys-
tem) of a humanoid robot like the iCub.

REFERENCES

[1] Bernstein, N., “The Coordination and Regulation of Movements.” New
York: Pergamon Press, 1967.

[2] M.F. Stoelen et al., “Online Learning of Sensorimotor Interactions us-
ing a Neural Network with Time-Delayed Inputs,” IEEE Conference on
Development and Learning and Epigenetic Robotics (ICDL-EpiRob),
San Diego, USA, 2012.

[3] A.J. Ijspeert, J. Nakanishi and S. Schaal, Learning Attractor Land-
scapes for Learning Motor Primitives, Advances in Neural Information
Processing Systems, pp. 1547-1554, 2003.

[4] P. Pastor et al., “Online movement adaptation based on previous sensor
experiences,” in Proceedings of IEEE/RSJ International Conference on
Intelligent Robots and Systems, 2011, pp. 365-371.

[5] S. Schaal and C.G. Atkeson, Constructive incremental learning from
only local information, Neural Computation, vol. 10, pp. 2047-2084,
1998.

[6] D.H. Grollman and O.C. Jenkins, “Incremental Learning of Subtasks
from Unsegmented Demonstration,” in Proc. IEEE/RSJ International
Conference on Intelligent Robots and Systems, 2010, pp. 261-266.

[7] T. Waegeman et al., “Modular reservoir computing networks for im-
itation learning of multiple robot behaviors”, in Proceedings of IEEE
Inter. Symp. on Comput. Intelligence in Robotics and Automation,
2009, pp. 27-32.

[8] J. Tani and M. Ito, Self-Organization of Behavioral Primitives as
Multiple Attractor Dynamics: A Robot Experiment, IEEE Transactions
on Systems, Man, and Cybernetics - Part A: Systems and Humans, vol.
3, no. 4, pp. 481-488, 2003.

[9] Y. Yamashita and J. Tani, Emergence of functional hierarchy in a mul-
tiple timescale neural network model: a humanoid robot experiment,
PLoS Computational Biology, vol. 4, no. 11, 2008.

[10] E. Demeester et al., User-adapted plan recognition and user-adapted
shared control: A bayesian approach to semi-autonomous wheelchair
driving, Journal of Autonomous Robots, vol. 24, pp. 193-211, 2008.

[11] B. Akgun, D. Tunaoglu and E. Sahin, “Action Recognition Through an
Action Generation Mechanism”, in Proceedings of Tenth International
Conference on Epigenetic Robotics, Orenas, Sweden, 2010.

[12] S. Calinon and A. Billard, What is the teacher’s role in robot
programming by demonstration? Toward benchmarks for improved
learning, Interaction Studies, vol. 8, no. 3, pp. 441-464, 2007.

[13] H. Burgsteiner, Imitation learning with spiking neural networks and
real-world devices, Engineering Applications of Artificial Intelligence,
vol. 19, no. 7, pp. 741-752, 2006.

[14] A. White, J. Modayil and R.S. Sutton, “Scaling Life-long Off-policy
Learning,” IEEE Conference on Development and Learning and Epi-
genetic Robotics (ICDL-EpiRob), San Diego, USA, 2012.

[15] D.O. Hebb, The Organization of Behavior: A Neuropsychological
Theory, Wiley, New York, USA; 1949.

[16] P. R. Montague, P. Dayan and T.J. Sejnowski, A framework for mes-
encephalic dopamine systems based on predictive Hebbian learning,
The Journal of neuroscience, vol. 76, no. 5, pp. 1936-1947, 1996.

[17] D. MacNeil and C. Eliasmith, Fine-tuning and the stability of recurrent
neural networks, PloS one, vol. 6, no. 9, e22885, 2011.

[18] G. Metta, P. Fitzpatrick and L. Natale, YARP: yet another robot
platform, Int. J. Adv. Robot. Sys., vol. 3, pp. 43-48, 2006.

[19] V. Tikhanoff et al., “An Open-Source Simulator for Cognitive Robotics
Research: the Prototype of the iCub Humanoid Robot Simulator,” in
Proceedings of IEEE Workshop on Performance Metrics for Intelligent
Systems Workshop (PerMIS’08), eds R. Madhavan and E. R. Messina
(Washington, DC), 2008.

[20] U. Pattacini, Modular Cartesian Controllers for Humanoid Robots:
Design and Implementation on the iCub, Ph.D. dissertation, RBCS,
Istituto Italiano di Tecnologia, Genova, 2010.

[21] E. Oja, A simplified neuron model as a principal component analyzer,
Journal of Mathematical Biology, 15:267-2735, 1982.

[22] J.N. Ingram, J.R. Flanagan and D.M. Wolpert, Context-Dependent
Decay of Motor Memories during Skill Acquisition, Current Biology,
http://dx.doi.org/10.1016/j.cub.2013.04.079, 2013.

[23] S. Harnad, The Symbol Grounding Problem, Physica D: Nonlinear
Phenomena, 42:335-346, 1990.

[24] A.F. Morse et al., Epigenetic Robotics Architecture (ERA), IEEE
Transactions on Autonomous Mental Development, vol. 2, no. 4, pp.
325-339, 2010.

707

