
 
 

 

  

Abstract— This paper introduces a neural network approach 
to hoist deceleration control of industrial hoist mechanisms, 
with particular focus to crane applications. The necessity for 
investigation in this field arises from the increasing demands in 
terms of safety within in the industry. Should the industrial 
hoist feature too high deceleration this can lead to overstressing 
of the hoist mechanism and structure, further, damaging of the 
load due to large dynamical forces. Furthermore, too low 
deceleration can lead to incompliance with industrial standards 
and thus being a safety issue, due to potential loss of load in the 
worst case. Till this day various solutions and devices have been 
proposed to achieve controlled deceleration of the industrial 
hoist braking. However, there still lies a necessity for deeper 
study into this problem, to achieve quicker response towards the 
desired behavior of the hoist deceleration as well as improved 
adherence with the desired behavior. Thus, this paper analyses 
the potentials of hoist deceleration control by neural network 
architectures as such the linear, quadratic and cubic neural 
units with real-time recurrent learning and back-propagation 
through time approach when real measured data are used for 
experimental analysis. 

I. INTRODUCTION 
Till now hoist deceleration control is not such a widely 

studied area. Several theoretical studies have been published, 
which are focused primarily on mining hoist applications, as 
exampled in the recent works of [2] & [3]. Though featuring 
differences in their dynamics, due to vast hoisting distances 
and conditions, as compared with industrial crane 
applications. The principle structure of the studied hoist 
mechanisms are analogical, structured as 
single-input-single-output (SISO) systems, with the hoist 
motor speed or deceleration being the output of the system 
and frequency or voltage variation in the sense of AC 
induction hoist motors, as input. Though these reviewed 
studies feature promising results, they are rather more 
theoretically focused. Thus, a necessity into experimentation 
with real industrial hoist mechanisms are a key step for 
further research into this problem, along with the necessity 
for further optimization of control, to achieve quicker 
response towards the desired behavior of the hoist 
deceleration as well as improved adherence with the desired 
behavior. An earlier study from 2003 based on higher order 
neural units for adaptive identification and fast state feedback 
control, of unknown non-linear systems [4], shows that the 
use of higher order neural units in state feedback control, can 
achieve even faster response for unknown non-linear 
systems, like the hoist mechanism in [2].  Thus this paper 
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aims to provide a new study into the potentials of adaptive 
control via neural network architectures as such the linear, 
quadratic and cubic neural units with 
real-time-recurrent-learning (RTRL) and variation of 
back-propagation-through-time (BPTT). This investigation 
will be undertaken via application of the adaptive 
identification and control software application as presented in 
the work [5]. Investigation via means of an adaptive neural 
network based approach, arises from the already promising 
theoretical studies of higher-order neural units (HONUs), 
especially the quadratic neural unit for engineering problems 
[4][7][8]. These studies are focused on the use of supervised 
learning based approaches for polynomial structured neural 
units, also known as a class of HONUs, for adaptive 
identification and control of real engineering systems. We 
may recall from the work [6], successful implementation of a 
quadratic neural unit controller (neuro-controller), used for 
control of a bathyscaphe system located in the automatic 
control laboratories of FME at CTU. Where, here, such 
controller adhered more closely to the desired behavior of the 
system than the conventionally used PID controller. An 
extension on this result may also be recalled in the work [5]. 
Where, further study was made, via introduction of a new 
software application for adaptive identification and control, 
along with further testing on both a theoretical system and the 
previously mentioned bathyscaphe system. Given these 
results of real implementation, we thus aim to investigate via 
a similar approach the use of such adaptive linear, quadratic 
and cubic neural unit based architectures for control of the 
hoist deceleration problem. The results presented in this 
paper, are based on measured data from a smaller scale 
industrial hoist mechanism which is that of the Gude GSZ 
200. Due to the Gude GSZ 200/400 being a mechanically 
braked hoist, the only option for an electrical means of control 
of this hoist is via an extended single phase variable 
frequency drive. Thus, this investigated hoist mechanism is 
set up with variable frequency as its input, corresponding to a 
produced deceleration characteristic at the output. This study 
highlights that although the initial characteristic for a 
standard braking process may be quite undesirable, the 
investigated form of adaptive control is still able to achieve 
desirable control of the hoist deceleration as is later shown in 
Figure 5 & Figure 6 of this paper. 

II. PRELIMINARIES 

A. Industrial Problem Description 
Within the industry, industrial hoist mechanisms must 

comply with a prescribed minimum and maximum braking 
torque. This braking torque is directly influenced by the 
inertias of the hoist mechanism and more importantly their 
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deceleration characteristic. Thus, the braking torque is in fact 
the torque or rotational force required to suspend the load of 
the hoist in the air, should the braking mechanism be 
disregarded i.e.; the torque necessary to substitute for the 
braking mechanism, in order to keep the hoist load 
suspended. 

The true braking torque of the industrial hoist mechanism, 
is given via the following relation, where here we see its 
direct relation to the hoist deceleration, as follows; 
 . .

. . .( ).eq eq
T mech rot linB J J+ ζ = + ε∑ ∑ , (1) 

Here BT [N.m] denotes the real braking torque, where 

.mechζ represents the total mechanical torque such to add to 
the braking torque of the whole hoist mechanism and ε, 
representing the angular acceleration [rad/s2]. Furthermore, 

.
.

eq
rotJ∑ & .

.
eq
linJ∑ correspond to the equivalent rotational and 

linear moving inertias, respectively. 
 According to industrial crane hoist standards, as such that 

of the AS1418.1 -2002 Clause 7.12.8 [1]. Braking systems 
shall comply with a minimum braking torque of 1.6 times the 
rated capacity in a static condition and arrest a minimum of 
1.2 times the rated hoist capacity, from the maximum 
lowering speed, in a dynamical sense. Should the hoist 
mechanism suspend less than 1.6 times the rated capacity of 
the hoist mechanism, the load would be at serious risk of 
being lost by the brake pads, due to insufficient grasping at 
the brake lining. This condition also corresponds to too low 
deceleration of the hoist mechanism.  Furthermore, should the 
hoist mechanism also feature too high braking torque, this 
would correspond to too high deceleration of the hoist 
mechanism. The consequence of which, leads to 
overstressing of the hoist mechanism and structure, 
furthermore the risk of damage at the load. Thus it is also a 
key consideration in determining the desired performance of 
the hoist mechanism, to ensure that braking torque values are 
with the permissible limits of the mechanism. 

Till this day various solutions and devices have been 
proposed to achieve controlled deceleration of the industrial 
hoist braking. Such methods till this date include the 
conventional PID controller, where the set point deceleration 
and actual deceleration of the hoist are used as the input value 
of the control system. Or further a fuzzy logic based 
controller, with a rule based system defined for given limits of 
the deceleration as input and necessary force for output to 
manipulate the deceleration. A more recent method may be 
reviewed in the work [2], where a theoretical study into a 
fuzzy neural network based controller was proposed to 
achieve improved behavior of the hoist deceleration. The 
results of this study were compared to the conventional PID 
controller and fuzzy controller, with tests on the hoist as an 
identified model, showing better behavior via the proposed 
fuzzy-neural adaptive approach. However till now, hoist 
deceleration control has not been such a widely studied area. 
With certain solutions to this problem, in terms of produced 
devices, being in some cases uneconomical especially, for use 
on smaller sized hoist applications, or not being the most 
optimal solution. Similarly with the above mentioned 
controllers investigated in the industry, here too is a necessity 

for further study to either further optimize the proposed 
methods of control for more adequate functionality and also 
investigation into other alternative computational methods 
for control. 

B. Applied Neural Architectures and Algorithms 
Higher-order nonlinear neural units (HONU) have been 

shown as promising polynomial neural architectures for 
adaptive identification and control on engineering systems 
[4][6] [8]. 

Linear predictors, i.e., linear neural units (LNUs) are 
considered to be the first–order neural units. The 
second–order neural unit is called the quadratic neural unit 
(QNU) and the third–order one can be called the cubic 
neural unit (CNU). The general long–vector form of such 
higher-order neural units, is thus expressed as follows 

 ( )k py + = ⋅colw x� , (2) 

where ( )k py +�  is the predicted value at prediction horizon 

of p samples, w denotes the row vector of all neural weights, 
and colx stands for the column vector of polynomial terms 
including the neural inputs and feedbacks. Particularly for 
LNUs, the predictor’s output is calculated as  

   ( )
0

; for LNU
n

k p i i
i

y w x+
=

= = ⋅ =∑ colw x x x� , (3) 

where n is the length of signal history at predictor’s input so 

 ( ) ( 1) ( 1)01 Tk k k nx y y y− − += =⎡ ⎤⎣ ⎦x … , (4) 

where x0=1 allows for neural bias in case of LNU and it also 
allows LNU be subset of HONUs in case of higher orders.  
Then, QNU can be expressed as follows 

 ( ) , ,
0

n n
k p i j i j

i j i
y w x+

= =
= = ⋅∑ ∑ colw x� , (5) 

where the all quadratic polynomial terms are in colx as 

 { }0 ,; i n j i ni jx x = =⎡ ⎤= ⋅⎣ ⎦colx … … , (6) 

and the weight vector becomes as follows 

 { }0 ,, ; i n j i ni jw = =⎡ ⎤= ⎣ ⎦w … … . (7) 

Similarly the long vectors can be extended for CNU and 
higher orders, while the simple vector notation of HONU  (2) 
can be maintained. The long-vector representation of HONU 
 (2) also clearly highlights the fact that HONUs are 
non-linear mappings that are linear in parameters. This has 
important connotations to the learning of HONUs as their 
optimization is a linear problem and thus there are no local 
minima for a given training data.  

In the sense of adaptive identification of dynamical 
systems, these neural architectures as such LNU, QNU & 
CNU may be updated incrementally via the gradient descent 
rule, as follows 

 
( )(k +1) ( ) ( ) y kk e kμ ∂= +

∂
w w

w
. (8) 

Equation (8), depicts the gradient descent rule, for 
incrementally updating the LNU and HONUs neural 
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weights, respectively.  Where µ represents the learning rate 
of the GD algorithm, e(k) (k representing the number of the 
sample) represents the current error between the real and 
calculated output of the model and the final term 
corresponds to the partial derivatives of the neural unit 
output, with respect to the individual neural weights. For this 
scope of this paper, these updates will be performed on 
dynamic neural models and thus these above forms denote a 
real-time-recurrent-learning (RTRL) learning method. 
However, in certain engineering applications, it is more 
suitable to train these neural weights rather than over 
sample-by-sample, in the form of batch training and thus, an 
extension of the gradient decent rule with the famous 
Levenberg-Marquardt equation may be used as follows 

 11( )T T

μ
−Δ = +w J J I J e . (9) 

Here J represents the Jacobian matrix of derivatives for the 
neural unit. This may be the complete partial derivatives of 
the neural model with respect to each neural weights, or in 
practical applications it seems useful to simply introduce this 
Jacobian matrix as the input vector or matrix itself, being x 
and colx for LNU and HONUs respectively. Thus, the neural 
weight update itself may be given in following way 
w=w+Δw. 

Often in such adaptive neural units, it is apparent that a 
modification of the normalized learning rate may be used to 
solve issues of instability of learning. In practice it is possible 
to employ the simplified normalized learning as follows; 

 
(k) (k) 1x x T

μη =
+

. (10) 

III. ADAPTIVE CONTROL APPROACH 
In this paper, an offline tuning approach is investigated to 

propose the potentials of the presented neural network based 
architectures for hoist deceleration control. Following 
adaptive identification of the hoist mechanism, a neural 
network based controller (neuro-controller) may then be 
extended as a state feedback configuration.  

 
Figure 1: Adaptive Identification with supervised learning of neural networks 
(w.x=LNU, rowX.colW =QNU/CNU)  

Thus, Figure 1 depicts the adaptive identification scheme 
via supervised learning of the LNU and HONUs (as such 
QNU & CNU) neural units. Here, u represents the control 
variable of the hoist (i.e.; frequency, voltage or current 
supply to the hoist motor or external braking system). The 

output yreal, corresponds to the hoist deceleration over time, 
and y, being the output of the neural unit, with the difference 
being the error, e. An extension of the neural unit as a 
model, with neuro-controller is depicted in Figure 2. Here, 
Figure 2 introduces a vector  that comprises of a 
combination of outputs from the neural unit as a model and 
the difference between the desired behavior (in our case 
desired speed or deceleration of the hoist) and the output of 
the neural model. v.  or collectively, the variable q, thus 
serves as a manipulator for the newly fed samples of the 
neural unit as an identified model. Here the GD algorithms 
are employed in the following manner to achieve 
sample-by-sample adaptation of the neural weights for the 
controller, as follows 

 
Figure 2: Adaptive control loop for experimental study of a neural network 
controller (w.x=LNU, rowX.colW=QNU/CNU) (modification of Figure 2 
[5]) 

 1
( ). ( ).i i

i

y kv v ereg k
v

μ+
∂= +

∂
. (11) 

Where iv , are adaptable neural weights of the neural unit as a  

controller and ereg(k) is the error between the desired value of 
the real system (in this case the hoist, where the desired value 
will be denoted as d) and the real system output value at 
sample k (in this case the identified neural model output). The 
final term denotes the partial derivative of the output of the 
neural unit as a model, with respect to the individual adaptive 
neural weights of the neural unit as a controller. An extension 
of this weight update scheme for BPTT training would result 
in the following form v=v+Δv, where the change of neural 
weights for each batch would be analogical to equation (9). 

IV. EXPERIMENTAL ANALYSIS  

A. Neural Network Model of Hoist Mechanism Deceleration 
Control 

Following experimental analysis for a full loading 
condition, at lowering of the Gude GSZ 200/400, hoist 
mechanism. It was shown that for the first 48 measured 
samples of braking on the hoist deceleration characteristic, 
too high deceleration was present at the load, for this hoist 
mechanism. The following onset of samples, were thus 
within the permissible region of deceleration as dictated by 
the industrial standards [1], featuring less than 2 m/s2 

deceleration at the load, whilst still being above its 
permissible minimum for both static and dynamic braking 
torque. Thus, this paper considers control of the hoist 
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deceleration only for the first 48 samples, of the investigated 
hoist deceleration characteristic. For this component, control 
via the QNU and CNU architecture neuro-controllers, are 
investigated. With the remaining portion of the deceleration 
characteristic delivered with the standard mechanical 
braking mechanism. Figure 3, depicts the adaptive 
identification of the investigated hoist data, with the DLNU 
with RTRL training. From this figure we may note that the 
adaptive model (green line) follows the hoist real data (blue) 
almost exactly. The central plot depicts the decreasing sum 
of square errors throughout the learning process. Its steady 
decay implies stable learning however this is more so 
evident in the weights, plotted on the lower graph. This 
graph depicts the learning of each individual adaptive weight 
in the neural model, here we may note the gradual increase 
of each weight for the linear neural model until its stable 
value is shown, this stable value corresponds to the trained 
coefficients of the polynomial model as seen in equation (3), 
represented by vector w. Figure 4, depicts the adaptive 
identification of the hoist data with DQNU trained via the 
BPTT learning algorithm. What we may notice is that the 
identification is even more precise to the real behavior of the 
hoist data and with faster learning, achieved over just a few 
epochs or runs of the learning algorithm. The BPTT 
algorithm is advantageous in learning data affected by noise, 
as such here where a minor disturbance is present.  The 
model thus focuses on the main governing law as opposed to 
learning this behavior. Following these results of adaptive 
identification, it was found that the DQNU with BPTT 
training featured the best performance in identification of the 
investigation hoist deceleration data.  

 
Figure 3: Adaptive Identification of Hoist Mechanism Deceleration at Load, 
with DLNU and RTRL Training, ny=9 (No of previous samples of neural 
model output), nu=5(No. of previous samples of real process input), mu 
(learning rate)=0.2, epochs (runs of algorithm)=100 

A neuro-controller is thus extended for control of the 
hoist deceleration characteristic, with the neural unit as an 
identified model being of that presented in Figure 4. Figure 5 
& Figure 6, show the extension of a neuro-controller in state 
feedback as applied to the hoist deceleration data, with the 
black line depicting the desired behavior, the blue being the 
real system and the magenta line being the neuro-controller 
output. Figure 5 & Figure 6, thus depicts the application of 

the QNU & CNU neuro-controller with BPTT training 
methods respectfully. As we may notice, the QNU controller 
achieved adequate control, following closely to the desired 
behavior after several initial samples at application. 
However, at the initial moment of braking, the CNU delivers 
a closer value to the desired behavior than the QNU. Where 
the QNU features a peak of almost 3 m/s2, corresponding to 
the initial moment of application during the braking phase. 

 
Figure 4: Adaptive Identification of Hoist Mechanism Deceleration at Load, 
with DQNU and BPTT Training, ny=9 (No of previous samples of neural 
model output), nu=5 (No. of previous samples of real process input), mu 
(learning rate)=0.2, epochs (runs of algorithm)=20 

 
Figure 5: Adaptive Control of Hoist Mechanism Deceleration at Load, with 
QNU BPTT Training, nqy=9 (No of previous samples of neural model 
output), nqe=0 (No. of previous samples of difference between desired and 
output of the neural model), mu (learning rate)=1, epochs (runs of 
algorithm)=30 (Trained with DQNU BPTT as per Figure 4) 

However, the CNU featured 2.6 m/s2, which is more 
desirable. Following this initial value at braking, all other 
points in both the QNU and CNU featured close values to the 
desired behavior of the hoist deceleration. Thus, from these 
results in Figure 5 & Figure 6, we may see the potentials that 
the investigated neural architectures have in controlling the 
hoist deceleration to achieve close response to the desired 
deceleration value. Another key consideration is that for the 
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above tested case, a large variation is present from the real 
deceleration of the hoist and the desired behavior. In spite 
this, the neuro-controller is still able to quickly respond to the 
desired behavior of the system within the first few samples, 
and maintain a steady desirable output value even when a 
change in the dynamics of the system, or large disturbance 
may occur.  

 
Figure 6: Adaptive Control of Hoist Mechanism Deceleration at Load, with 
CNU BPTT Training, nqy=9 (No of previous samples of neural model 
output), nqe=0 (No. of previous samples of difference between desired and 
output of the neural model), mu (learning rate)=1, epochs (runs of 
algorithm)=35 (Trained with DQNU BPTT as per Figure 4) 

B. Analysis of Braking Torque Following Control 
Following the above investigation of the neuro-controller 

as applied to the investigated hoist deceleration data (Figure 5 
& Figure 6), further analysis into the resulting braking torque 
of the hoist mechanism is considered in Figure 7 & Figure 8. 
Figure 7, depicts the static braking torque analysis before and 
after the application of the neuro-controller (CNU with 
BPTT) to the hoist mechanism deceleration data. Here the 
original static braking torque value (blue), calculated from the 
averaged deceleration over the first 53 samples of data (for 
the purpose of concluding an overall braking torque value of 
the hoist mechanism)  is 3.8 N.m, which is too high, 
corresponding to too high rate of deceleration of the hoist 
mechanism in its initial stages of braking. During the initial 
stages of control, the neuro-controller (magenta) featured a 
few samples of deviation from the desired behavior of the 
hoist mechanism and correspondingly the braking torque 
values too, represent this component of the behavior. 

However, in spite this, the calculated values of static 
braking torque are far more desirable, considering the average 
deceleration produced by the neuro-controller, after settling. 
Figure 8, depicts the calculated dynamic braking torque for 
the investigated hoist mechanism before and after application 
of the neuro-controller. Here a reflection in the values of the 
braking torque characteristic can be seen, with respect to the 
controlled deceleration values. 

 

 
Figure 7: Static Braking Torque Analysis - Adaptively Tuned 
Neuro-Controller (CNU with BPTT) with Hoist Mechanism data (magenta), 
and Original Hoist Mechanism Data (blue)  

 
Figure 8: Dynamic Braking Torque Analysis - Adaptively Tuned 
Neuro-Controller (CNU with BPTT) with Hoist Mechanism data (magenta), 
and Original Hoist Mechanism Data (blue) 

During the initial stages of control, the neuro-controller 
featured a few samples of deviation from the desired behavior 
of the hoist mechanism and correspondingly the braking 
torque values too, represent this component of the behavior. 
However, in spite this, the calculated values of dynamical 
braking torque are far more desirable, considering the average 
deceleration produced by the neuro-controller, after settling. 
With its final value being 2.2 N.m and thus deviating from the 
minimum prescribed value by 1.23 N.m which is desirable. 

V. DISCUSSION 
Following experimental analysis of the proposed neural 

architectures (i.e. QNU and CNU) for hoist deceleration 
control, the produced results showed that although quite large 
deviation in the output data of the hoist mechanism with 
respect to its desired behavior was shown, the adaptive 
identification via a neural network based model, particularly 
the DQNU with BPTT, proved to model the behavior of the 
hoist deceleration characteristic data quite well. We may also 
note the excellent speed of convergence of the 
neuro-controller, as seen in Figure 5 & Figure 6 where the 
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QNU and CNU with BPTT achieved fast convergence in its 
sum of square errors.  Following this an extension of the 
neuro-controller, via QNU and CNU with BPTT, quite 
desirably followed the behavior of the desired hoist 
mechanism output during simulation. As seen in Figure 5 & 
Figure 6, there was a small deviation in its initial values, from 
the desired value, it is thus an important future direction to 
test behavior of such proposed neural network setup 
(particularly the QNU & CNU with BPTT training as a 
neuro-controller) on the real hoist mechanism, as may be 
recalled in work [6], the results of the neuro-controller after 
real application indeed proved to be of better performance as 
compared with its simulation. Following experimentation of 
such control on the real system, one may also identify any 
potential for further optimization. Another consideration is 
that with larger hoist applications as such considered in works 
[2] & [3], the overall deceleration time is several folds higher, 
in the order of several seconds, as compared to the tested hoist 
mechanism. Thus, testing regarding the capability of 
actuation for control with the real application is the next stage 
of research, following these promising results. Furthermore, 
should such a hoist mechanism setup already feature an initial 
means of control (i.e; conventional PID or fuzzy control), the 
proposed neural network control also features potentials for 
further optimization and thus, arises even further motivation 
for research on other hoist mechanisms in the field of this 
study. 

VI. CONCLUSIONS 
From this application study, we may see the potentials that 

especially the QNU and CNU with BPTT training has in 
providing desirable behaving control to the hoist mechanism 
data. With the BPTT training  method, being able to identify 
the process data with better performance, particularly with the 
noised regions within the data being ignored and the model 
focusing only on the main governing law of the hoist 
mechanism output data. Following this QNU with BPTT 
identification, it was shown that with only several runs of the 
neuro-controller algorithm, the neuro-controller was tuned to 
provide desirable control of the hoist mechanism, following 
closely to the desired behavior almost exactly with exception 
of the first several samples at the beginning of the controller’s 
application. A future goal following these results is 
implementation of this proposed neural network setup for real 
time control of an industrial hoist mechanism. As may be 
recalled in the work [6], the real application of the tuned 
neuro-controller provided better performance than that of its 
simulation, following proper setup of the adaptive control 
algorithm. With real application on an industrial hoist 
mechanism, further optimization on the real system may also 
be necessary and thus also leading to a further point in 
research.  
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