
 
 

 

     

Abstract—This paper presents recently introduced concept of 
Learning Entropy (LE) for time series and recalls the practical 
form of its evaluation in real time. Then, a technique that 
estimates the increased risk of prediction inaccuracy of adaptive 
predictors in real time using LE is introduced. On simulation 
examples using artificial signal and real respiratory time series, 
it is shown that LE can be used to evaluate the actual validity of 
the adaptive predicting model of time series in real time. The 
introduced technique is discussed as a potential approach to the 
improvement of accuracy of lung tumor tracking radiation 
therapy. 

I. INTRODUCTION 

daptive techniques of time series prediction can 
be successfully applied to respiratory time series 
prediction [1], in particular, to the prediction of 
the lung tumor motion to compensate a time 

delay inherent in a control system that re-positions radiation 
beam for target tracking  radiation therapy (TRT) [2][3]. 
Therefore, adaptive predictive techniques, including also 
other ones than neural-network approaches (e.g. [4][5]), can 
be used for improving accuracy of TRT, because the dosage 
of the radiation beam can be synchronized with abdomen 
motion according to the real time prediction of the lung 
tumor respiratory position. Thus, the radiation beam shall 
more precisely aim to the tumor position and the radiation to 
surrounding healthy tissue would be minimized. Even in a 
supine position of a patient, his or her respiration time series 
are naturally nonstationary due to the complex physiological 
dynamics and because of unpredictable varying 
perturbations. 
  This naturally makes the difference between theoretical 
models and real data, e.g., such as between chaotic 
Mackey-Glass equation [6] (that can be adaptively well 
precisely predicted even without retraining [3][17]) and real 
respiratory time series (whose prediction error converges 
just temporarily and real–time retraining is necessary 
[1]–[5]). Thus, the prediction of real respiratory time series 
can not be very precise for a sufficiently long and continuous 
interval of time. One natural option for improving the 
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accuracy of TRT can be to radiate the tumor only during the 
intervals when the predictive model is expected to be 
accurate, i.e., when the model is temporarily well re-trained 
and input data are not recognized as unusual. If a new 
measured sample of data is acquired and recognized as 
novel, i.e. the sample of data is incoherent to the temporary 
dynamics, then the temporarily retrained model naturally 
loses its credit for accuracy and the radiation beam shall be 
switched off to minimize the risk of radiating the healthy 
tissue. Thus novelty detection methods can be involved in 
respiratory time series prediction for TRT. 
  In order to review recent works on novelty detection in 
computational intelligence area, we shall first distinguish 
between statistical approaches [7] and neural–network 
approaches [10].  Regarding the statistical novelty detection 
approaches in time series, Sample Entropy of Pincus [8] and 
its extensions [9] have to be mentioned here. In this paper, 
we focus on the utilization of learning–system novelty 
detection approaches that clearly include neural networks in 
general [11]. Learning–systems based novelty detection can 
include fault detection approaches [12][13], nonstationary 
changes [14], recently encode-decode detection approach 
[15], or concept drifts detection utilizing the incremental 
learning techniques [16]. On the one hand, it was shown that 
neural networks can learn the contemporary governing laws 
of respiratory motion [1][3][5]. On the other hand, it is well 
known that neural networks can learn governing laws of 
nonlinear dynamical systems. Then, because the lung tumor 
motion series are nonstationary yet nonlinear and bounded 
by a governing law, the neural networks are a promising tool 
for novelty detection in respiratory time series via learning 
systems approach. Contrary to statistical approaches, neural 
networks can provide us with cognitive understanding to 
otherwise statistically complex behavior if the one can be 
adaptively learned and that can be used to improve novelty 
detection in complex time series. Recently, the Learning 
Entropy (LE) was introduced as a novel, cognitive, and non-
-probabilistic novelty detection approach for incrementally 
learning systems [17].  
  In this paper, we review a class of polynomial neural 
architectures as adaptive predictors and their use for time 
series prediction. Then, we recall the practical calculation of 
LE and we propose a method of using LE for real-time 
estimation of the prediction accuracy. We discuss that as a 
possible approach to improvement of TRT, where also the 
radiation beam intensity can be synchronized with estimated 
prediction accuracy, i.e. with LE.   
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II. APPLIED METHODS 
In the following, bold symbols stand for vector and matrices, 
y stands for real time series, y� denotes neural output, and 

discrete time index k is used when necessary; constant 
sampling is considered. Meaning of other notations is 
explained at their first appearance. 

A. Lung Tumor Motion Prediction by HONU 
Higher-order nonlinear neural units (HONU) [19] has 

been shown as promising  polynomial neural architectures to 
predict chaotic time series [17] and real signals including 
respiratory time series [3]. Linear predictors, i.e., linear 
neural units (LNUs) are considered to be the first–order 
neural units. The second–order neural unit is called the 
quadratic neural unit (QNU) and the third–order one can be 
called the cubic neural unit (CNU). The general long–vector 
form of higher-order neural units [3][19] can be expressed as 
follows 
 ( )k py + = ⋅colw x� , (1) 
where ( )k py +�  is the predicted value of lung-tumor position 

at prediction horizon of p samples, w denotes the row vector 
of all neural weights, and colx stands for the column vector 
of polynomial terms including the neural inputs and 
feedbacks. Particularly for LNUs, the predictor’s output is 
calculated as  

   ( )
0

; for LNU
n

k p i i
i

y w x+
=

= = ⋅ =∑ colw x x x� , (2) 

where n is the length of signal history at predictor’s input so 

 ( ) ( 1) ( 1)01 Tk k k nx y y y− − += =⎡ ⎤⎣ ⎦x … , (3) 

where x0=1 allows for neural bias in case of LNU and it also 
allows LNU be subset of HONUs in case of higher orders.  
Then, QNU can be expressed as follows 

 ( ) ,
0

n n
k p i j i j

i j i
y w x x+

= =
= ⋅ ⋅ = ⋅∑ ∑ colw x� , (4) 

where the all quadratic polynomial terms are in colx as 

 { }0 ,; i n j i ni jx x = =⎡ ⎤= ⋅⎣ ⎦colx … … , (5) 

and the weight vector becomes as follows 

 { }0 ,, ; i n j i ni jw = =⎡ ⎤= ⎣ ⎦w … … . (6) 

Similarly the long vectors can be extended for CNU and 
higher orders, while the simple vector notation of HONU (1) 
can be maintained. The long-vector representation of HONU 
(1) also clearly highlights the fact that HONUs are nonlinear 
mappings but linear in parameters. This has important 
connotations to the learning of HONUs as their optimization 
is a linear problem and thus there are no local minima for a 
given training data [19]. Furthemore, HONUs in form (1) 
can directly adopt learning improvement techniques that are 
applicable to linear filters as the normalized gradient descent 
(GD) [20] and other improvements [21]–[23] can also be 
adopted and studied for HONU. Using the above long-vector 
(flattened) representation of QNU, the classical GD learning 
rule for weight updates in the next computational step is as 
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+
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∂
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w

 where e y y= − � ,  (7) 

and for QNU with normalized learning rate μ  it yields  

 ( 1) ( )
1

Tk k peμ
+ + ⋅= ⋅

+
Δw colx

colx
, (8) 

where the analogy to the normalized gradient descent of 
linear adaptive filters as in [21] is apparent. 

B. Learning Entropy 
The LE, in particular the Approximated Individual Sample 

Learning Entropy (AISLE) [17], is a multiscale measure [18] 
that is based on the cognitive capabilities of incrementally 
learning systems where the weight updates are incrementally 
updated as follows 

 ( 1) ( ) ( )k k k+ Δ= +w w w . (9) 

The neural weight increments Δw  are the key quantities for 
evaluating LE. In particular, evaluation of LE for every newly 
measured sample at sample number k, where weight 
increments Δw were evaluated by normalized gradient 
descent, has been shown in [17]. However, the LE is not 
limited to GD, but it can be principally calculated for any 
learning rule where the weight updates follow the equation 
(9). Regardless of the particular algorithm of calculating Δw , 
the LE is evaluated as quantification of unusual behavior of 
weight updates Δw . Then, the Individual Sample Learning 
Entropy (ISLE) is calculated as follows. At every update 
sample k in (9), each single-weight update ,i jwΔ is checked 
for unusually large magnitude as 

 ∑∑
= =

Δ=
n

i

n

j
jiwfN

0 0
, ),()( αα  (10) 

where N is the count of unusually large magnitudes of 
weight updates for a given detection sensitivity α , and the 
condition of exceeding contemporary update magnitude is 
evaluated as follows     

 ( )
⎩
⎨
⎧ Δ⋅>Δ=Δ

otherwise,0
,1),( ,,

,
jiji

ji
wwwf αα  (11) 

where the contemporary average of  weight-update absolute 

values ,i jwΔ  is calculated over a pragmatically chosen 

number of recent samples and a modification for 
quasi-periodical signals has been proposed in [17] as well.  
Also, N corresponds to the count of markers of the 
Adaptation Plot (AP) in [17]. Because the proper parameter 
of sensitivity detection α can not be automatically 
identified, then the multi-scale approach is adopted as N is 
evaluated over the whole range of its values. Then, EA 

denotes AISLE and it is finally evaluated at every weight 
update as 

 { }( ) 1 2
1 ( ) ; , , ,kA i n

w i
E N

n n αα
α α α α α= =

⋅ ∑ … , (12) 

where EA is thus normalized measure 0 , 1AE ∈ , nw is the 

number of all weights in w, and nα is the number of detection 
sensitivities.  In the end, the AISLE evaluated via (10)-(12) is 
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considered to be the first-order LE because conditions (10), 
resp. (11), are calculated with the first difference of neural 
weights while the higher orders of LE would be evaluated 
using higher-order weight differences (such as weight 
acceleration etc., please see [17] for more details). 

III. LE AND HIGHER RISK OF PREDICTION ERROR 
This section introduces a technique that estimates the 

chance if individually predicted samples can be predicted 
accurately and thus if the radiation beam shall be maintained 
or temporarily suppressed in real time. Second order HONU 
(QNU) is here studied as the real-time adaptive predictor of 
lung tumor motion time series. Particularly the QNU shows 
promising results for lung tumor motion time series 
prediction [3] and it is also very suitable for LE because 
HONUs are linear in parameters [19]. The in-parameter 
linearity frees HONUs from the local minima issue for a 
given training data set [19], so the incremental learning 
updates are not affected due to local-minima-perturbed error 
surface (as in case of multilayer perceptron neural networks, 
e.g.); thus, the GD weight updates of a predictor can reflect 
novelty in each sample of measured data, which is the core 
idea of LE (though not limited to GD learning in principle 
[17]). Because the novelty detection in each sample of data 
by LE is evaluated by the prediction learning algorithm 
itself, it is principally suitable to estimate the risk of low 
accuracy of the predictor with every new measured sample 
of data. 

 
Fig. 1: The novel possible improvement of TRT consists in using the LE to 
estimate the risk of prediction inaccuracy in real time and thus in adapting 
also the intensity of the radiation beam (usually only repositioning is 
considered for synchronization with the prediction ( )k py +� ). 

The use of the LE for the possible enhancement of the 
radiation therapy is principally sketched through Fig. 1 and 
rules (13) or (14), where we propose two possible criteria for 
estimating the prediction accuracy and thus possibly for 
improving the accuracy of TRT. The first criterion is the 
Actual Individual Sample Criterion (AISC) (13) for 
estimating the increased risk of inaccurate prediction in 
real-time and it is given as follows 

 

( )

novel data, risk of less accurate prediction 

not novel data, not increased risk

:

:

kA Aif E E

else

>
⇒

⇒

�

 (13) 

where k denotes the reference time index of the last 

measured sample, AE�  is the LE bias deciding the unusual 

learning effort of the adaptive model to the last measured 
sample of data; thus, AISC indicates the higher risk of 
possible prediction inaccuracy of a future lung tumor 
position.   
Second, we introduce the Actual Input Vector Criterion 
(AIVC) (14) as follows 

 

{ }( 1: )

novel data, risk of less accurate prediction

not novel data, not increased risk

: max

:

k n kA Aif E E

else

− + >
⇒

⇒

�

 (14) 

where n is the length of input vector x in (3), i.e., n is here 
the number of recently measured samples used to predict 
next value. The criterion (14) requires all of these recent 
values be usual (i.e. of low LE), so the model knows input 
data and the risk of increased prediction error is not detected. 
This section introduced a new real-time technique that 
employs the novelty detection using LE for estimating the 
risk of inaccurate prediction with QNU and with normalized 
GD adaptation via the single–sample based criteria (AISC) 
(13)  or via the vector–based criteria (AIVC) (14). 

IV. EXPERIMENTAL ANALYSIS 
 This section demonstrates the introduced real-time 

method of prediction–accuracy estimation on artificial data 
and then on real respiratory time series, in particular, on a 
lung-tumor motion time series. 

A. Artificial Signal with Perturbations 
As on the artificial signal, we demonstrate the method on 

a perturbed sinus (AC voltage like) time series that is given 
as follows 
 ( ) sin(2 )ty A f tπ φ= ⋅ ⋅ ⋅ + ,  (15) 
with initial amplitude A=230 [V], initial frequency f=60 Hz, 
and initial zero phase shift φ = 0. Sampling is chosen as 17 

samples per period, i.e. t k tΔ← ⋅ where
1

17
t

f
Δ =

⋅
. The 

perturbations to the signal (15) are introduced either as three 
large perturbations or as three small perturbations as 
follows: 
• at k = 101, amplitude offset of +230 [V] or +10 [V], 
• for  k > 150, frequency change to 55 [Hz] or 59.5 [Hz], 
• for k > 200, phase shift +1 [Rad] or +0.1 [Rad]. 
The adaptive predictor used for this signal is QNU that is 
incrementally adapted by normalized GD (as derived via 
(1)–(9)) starting from random initial weights without 
pre-training. 

time [samples] kk-n+1 k-1 k+p

( )ky ( )k py +�( 1)ky −
, [mm]y y�

the radiation beam gets 
synchronized with predicted value

lung tumor motion 
time series
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Fig. 2: Application of AISC criteria with 4th Order Learning Entropy during real-time prediction of sinusoidal signal (15) with three large perturbation 
perturbations at k=101,150,200; prediction is suppressed to 0 at samples when novelty of data is detected by increased LE (AISC not applied to first 60 
samples, μ=1, n=6, 510AE −=� ,  perturbed sinus is in a blue color ). 
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Fig. 3: Application of AISC criteria with 1st Order Learning Entropy during real-time prediction of sinusoidal signal (15) with three large perturbations at 
k=101,150,200; prediction is suppressed to 0 at samples when novelty of data is detected by increased LE (AISC not applied to first 60 samples, μ=1, 
n=6, 510AE −=� ,  perturbed sinus is in a blue color). 

Fig. 2 represents the results of the introduced method of 
estimating the accuracy of adaptive real-time prediction with 
incremental learning (1)–(9). The first axes show artificial 
time series (15) with three large perturbations as described 
above. The occurrences of perturbations result in unusually 
large prediction error (2nd axes from top) and in drastic 
increase of 4th Order LE (3rd axes from top). The bottom axes 
in Fig. 2 then shows the superposition of the predicted 
values on the original perturbed signal, where the predicted 
values are set to zero if the AISC (13) holds for them, i.e., 
when the previous sample has increased LE. We can clearly 
see that the prediction is temporarily suppressed right after 
perturbations and prediction becomes allowed when LE 
decrease soon again. Thus the AISC estimates risk of 
imprecise predictions in a real time and most of 
risky-prediction samples can be excluded from use so it 

leads to the lower mean absolute error (MAE=21.7) of 
prediction processed with AISC (bottom axes in Fig. 2) than 
if all predicted data were used (top axes in Fig. 2, 
MAE=26.1).  Fig. 3 then demonstrates the effect of using a 
lower Order of Learning Entropy as the estimation of 
increased risk of inaccuracy by AISC or AIVC becomes 
more intermittent for lower OLE; for the filtering effect of 
higher OLEs on sensitive novelty detection, please see [17]. 
On the other hand, there is MAE=15.41 of the prediction 
that comply to criterion AISC in Fig. 3 that is in fact lower 
than MAE achieved with 4th OLE yet the prediction validity 
is more intermittent, and also the number of effective 
samples, i.e., predicted samples that comply AISC is lower 
for Fig. 3. Understanding to these aspects need further 
research and exceeds the scope of this paper. 
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Fig. 4: Application of AISC criteria with 4th Order Learning Entropy during real-time prediction of sinusoidal signal (15) with three small perturbations at 
k=101,150,200; prediction is suppressed to 0 at samples when novelty of data is detected by increased LE (AISC not applied to first 60 samples, μ=1, 
n=6, 0.02AE =� , perturbed sinus is in a blue color) . 

B.  Lung Tumor Motion Time Series 
The lung-tumor motion time series that is used in this 

analysis was acquired at Hokkaido University Hospital at 30 
Hz sampling. QNU with normalized GD is again used as an 
adaptive predictor, this time it is with pre-training in 10 
epochs on initial 60 samples. The prediction horizon is 1/3 
second (time series was re-sampled to 3 samples per 
second).  
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Fig. 5: The novel possible improvement of TRT consists in using the LE to 
estimate the risk of prediction inaccuracy in real time and thus in adapting 
also the intensity of the radiation beam (usually only repositioning is 
considered for synchronization with the prediction ( )k py +� ). 

Fig. 5 demonstrates the use of the introduced method on the 
real data with 4th OLE. For all 350 samples of time series (+ 
60 initial samples for pre-training), for 2nd Order of LE e.g., 
and for 0.15AE =� , the prediction accuracy improvements 

achieved for lung-tumor motion time series are shown in 
Table 1. 

TABLE 1: PREDICTION ACCURACY IMPROVEMENT WITH USE OF LE  

prediction accuracy 
estimation rule

MAE
 [mm]

RMSE
 [mm]

# of used 
samples

none (all data) 0.894 1.215 350
AISC 0.726 0.996 177
AIVC 0.735 0.941 176   

V. DISCUSSION 
During tracking radiation therapy of lung tumors, it is 

usually assumed that the radiation beam can be synchronized 
with real time predicted position to avoid the irradiation of 
healthy tissue. However, the accuracy of the prediction 
varies in time, so we have developed and introduced the 
fundaments of the technique that estimates the increased risk 
of inaccurate prediction. The TRT can be then adaptively 
controlled as the beam repositioning can be synchronized 
with the predicted tumor position plus the beam intensity can 
be perhaps instantly suppressed or timely synchronized with 
the novelty of input data and the beam can be retrieved when 
the novelty, i.e., LE decrease back again as soon as the 
learning system learns new governing law and the input data 
are not novel to the learning system. The radiation of the 
tumor might then become intermittent; however, it can be 
better synchronized with tumor motion that has lowered the 
risk of prediction inaccuracy. To verify the true accuracy of 

 [mm] 

 [mm] 

3128



 
 

 

the model of course, we have to wait for a prediction interval 
to check if the model had predicted accurately. Notice, the 
actual prediction error e(k) itself is not necessary related to 
novelty detection by Learning Entropy [17] and e(k) can still 
be considered as another indicator of novelty in data. Thus, 
both the LE and the prediction error together could estimate 
the chance for higher prediction accuracy and thus for 
intermittent, yet more accurate and timely beam focus during 
online lung tumor radiation. Employment of LE together 
with the prediction error in criteria AISC (13) and AIVC 
(14) would exceed the scope of this paper and would deserve 
more extensive investigation. Also, AIVC represents a 
stricter criterion than AISC and we are going to focus the 
more detailed research on these criteria in a close future. 
Importantly, the major weakness of the proposed method is 

the determination of the proper values of bias AE� , which is 

the typical single-scale weakness of the proposed approach. 
Currently, a proper selection of the bias can be resolved by 
an automated heuristic approach in a sliding window.  

VI. CONCLUSIONS 
Learning Entropy for novelty detection in time series was 

proposed as a method of real-time estimation of actual risk 
of increased prediction inaccuracy for incrementally learning 
predictive models. The approach detects a possible risk that 
newly predicted samples with the adaptive predictor might 
be inaccurate and LE is capable to detect novelty in data 
even if contemporary prediction error is of usual magnitude 
(for LE vs prediction error please see [17]). The 
experimental part demonstrated that the proposed theoretical 
method has potentials to increase the accuracy of the TRT if 
also the radiation beam intensity could be synchronized with 
the estimated prediction accuracy by the proposed criteria 
using also LE.  
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