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Abstract— Inspection of power line infrastructures must be
periodically conducted by electric companies in order to ensure
reliable electric power distribution. Research efforts are focused
on automating the power line inspection process by looking
for strategies that satisfy the different requirements of the
inspection: simultaneously detect transmission towers, check for
defects, and analyze security distances. Following this direction,
this paper proposes a supervised learning approach for solving
the tower detection and classification problem, where HOG
(Histograms of Oriented Gradients) features are used to train
two MLP (multi-layer perceptron) neural networks. The first
classifier is used for background-foreground segmentation, and
the second multi-class MLP is used for classifying within 4
different types of electric towers. A thorough evaluation of the
tower detection and classification approach has been carried
out on image data from real inspections tasks with different
types of towers and backgrounds. In the different evaluations,
highly encouraging results were obtained. This shows that a
learning-based approach is a promising technique for power
line inspection.

I. INTRODUCTION

Electric power companies invest significantly on the in-
spection and preemptive maintenance of the power line
infrastructure. The most common strategy is to perform aerial
inspection of the power line corridor, at regular intervals. The
traditional (and the most common) approach to inspection
uses a manned helicopter, equipped with multiple sensors -
e.g. differential global positioning system (DGPS), coupled
with inertial measurement unit (IMU); light and radar sensor,
Lidar; visual, infrared and ultra-violet cameras etc. - mounted
on gyroscope stabilized gimbals, and an expert crew, for
recording and documenting the relevant data captured from
these sensors. This data, which is recorded over thousands
of kilometers, is later manually examined to detect potential
faults and damage on different power line components (such
as, cables, towers, insulators etc.). This process is not only
extremely time consuming, but also very expensive and prone
to human error. Moreover, the manned flights, which are
carried out very close to the live power cables, are highly
dangerous to the crew. With these problems in mind, power
industry is actively seeking solutions to automate different
aspects of the power line inspection.

In the last two decades, multiple complementary research
directions have been investigated for automating the task of
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Fig. 1. Three main types of aerial inspection platforms: Manned helicopter
[8]; Expliner, a rolling on wire (ROW) robot [5]; and Unmanned Aerial
Vehicles (UAVs) [9].

visual inspection (see Fig. 1). One key direction has been
on developing unmanned robotic vehicles for autonomously
inspecting the power line corridor [1]. Two prominent lines
of research have emerged:

• Unmanned Aerial Vehicles (UAV) [2], [3], [4]; and
• Rolling on Wire (ROW) robots, also known as climbing

robots [5], [6].
More recently, some authors have also proposed a hybrid
climbing-flying robot which combines the advantages of
UAVs and ROW robots into a single platform [7].

In addition to the type of robotic platform, another key
research direction has been on applying existing or suitably
modified computer vision algorithms for automating the
inspection process.

Power line inspection is usually divided into two steps:
data collection and fault identification. In autonomous data
collection, computer vision approaches have been investi-
gated primarily on UAVs and remotely piloted vehicles, for
visual control [3], tracking of power lines [10] or electric
towers [11], [12], and obstacle detection [13]. The second
step involves the detection of faults in the power line infras-
tructure [14]. This is usually carried out at a base station
once the data has been collected. Automated inspection, in
this step, is directed towards detection and localization of
electric wires [4], towers [15], insulators [14], conductors,
wire-clamps etc., in the captured video data.

In the recent years, research community has primarily
focused on power line detection. For this task, a common
preprocessing strategy is to detect line segment candidates in
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an image, and find the segments which form part of the power
lines [4], [12]. Line detection is primarily useful for detecting
faults such as sagging and proximity to the vegetation or
man-made structures.

Some researchers have also focused on the detection and
segmentation of electric towers in the images [11], [12],
[16], [15]. Similar to the power line detection approaches,
preprocessing stage for tower detection generally involves
locating the line segments in the image. Several authors
apply either further filters or predefined rules/heuristics to
remove the noisy line segments; and then apply different
segmentation approaches to extract the complete tower from
the image: e.g. a template matching approach is used in [11];
graph-cut based segmentation is used in [16]; a rule-based,
as well as watershed segmentation is used in [12]. On the
other hand in [15], instead of lines, corners were considered
the key identifying features of a tower. They used a modified
corner detector to detect and track the tower tops.

Although different approaches to tower detection and
segmentation have reported promising results, most of the
results have been reported on just one type of tower, and
several simplifying assumptions were made (mostly with
respect to the color, shape and appearance of the tower).
However, the electric towers are extremely diverse in shape,
appearance and size, as well as they differ in color and the
material used for construction (wood, ceramic, steel etc.).
Fig. 2 displays 4 common types of towers. Most the state of
the art results cannot be generalized to different tower types.

To achieve the goal of complete autonomy, researchers
must aim towards developing more general approaches which
are able to detect more than one type of tower. Our paper is
an effort in this direction. In this paper, a supervised learning
approach for solving the tower detection and classification
problem is proposed.

Two main contributions are presented in this paper. First,
we consider tower detection as a supervised learning prob-
lem. To our knowledge, supervised learning for electric tower
detection has not been previously reported in literature. We
propose a solution using a 2-class neural network classifier
for tower-background classification. Moreover, we also raise
the problem of classification of different types of electric
towers, which has not been addressed previously in literature.
We approach this problem using a 4-class neural network for
classifying 4 types of electric towers, which is our second
key contribution.

A complete solution is proposed for combining tower
detection and classification, by integrating the tower type
classifier with the tower detection workflow. A sliding-
window approach [17] is used to first locate the tower
in a given image. In this approach, the tower-background
classifier is applied to the subregions/windows inside the
image to detect the presence of the tower in that region.
Once the tower has been located, the tower type classifier is
used to identify the type of tower.

In contrast to most of the recent approaches (see [15]
for an exception), which make assumptions regarding the

Fig. 2. Power line inspection. This is a complex problem for computer
vision: varying lighting conditions, background changes, power line infras-
tructure is very complex and heterogeneous (different shapes and sizes),
among other problems.

global shape and appearance of the tower, local features are
explored in this paper. In particular, a state of the art feature
descriptor, Histograms of Oriented Gradients (HOG)[18], is
used to train the mentioned MLP (multi-layer perceptron)
neural networks for tower detection and classification.

The rest of the paper is organized as follows: Section II
states the problem addressed in this paper and describes sev-
eral challenges which need to be addressed. Our approach to
tower detection and classification is presented in Section III.
The results are reported and discussed in Section IV; and the
final section concludes the paper, as well as points towards
future research directions.

II. PROBLEM STATEMENT

For many years, ground patrols and also helicopter patrols
have been in charge of the inspection of power line infrastruc-
tures. Currently, different projects are looking for automating
either the acquisition process or the analysis process, or both,
with the main objective of being able to detect and diagnose
different faults of the power line infrastructure by using new
sensors or by using new inspection platforms (e.g. ROW
robots [5], [6]; UAVs [2], [10], [4]).

In all these new possible approaches, computer vision
plays an important role for automatically moving the camera
in order to maintain the electric tower inside the field of
view of the camera, and for identifying and categorizing the
different faults in the power line infrastructure.

Nonetheless, although computer vision is a key technique
for automating the power line inspection process, it is in fact
a very challenging task for this purpose. Power line infras-
tructures are heterogeneous and complex, for example, as can
be seen in Fig. 2, electric towers come in a wide variety of
shapes and sizes, and the location of their components also
varies depending on the type of tower (e.g. the position of
the insulators changes).
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Background changes is another problem that the visual
system has to deal with. As can be seen in Fig. 2, depending
on the terrain, different visual features can be used to seg-
ment the electric tower from the background, or to segment
the wires. However, because of the high variability of the
terrain and the variety of electric towers, it is difficult to find a
unique feature (e.g. the color of the towers is not unique) that
can work in all the possible scenarios. Illumination changes
also play an important role. For example, Fig. 2 shows that
in some of the images the contrast between the lines and the
background is low and not sufficient to segment the wires.

Another important factor that must be taken into consid-
eration when automating the power line inspection, is the
quality of the images, which changes depending on the kind
of inspection that is conducted and on the vehicle used for
inspection. As can be seen in Fig. 3, when an intensive
inspection is conducted (Fig. 3, images on the right) details
are perceived much better, and therefore it would be more
feasible for a computer vision algorithm to detect faults on
those images. Nevertheless, this kind of inspection requires
the helicopter to go slow and also to stop in every tower,
which implies a considerable increase of the inspection price.
In general, for accurate inspections, the quality of the images
should be good, but this is currently difficult to ensure,
especially at low prices.

Conversely, if a faster inspection (non-intensive inspec-
tion) is conducted (see Fig. 3, image on the left), the quality
of the images will degrade (blurred images) and only external
problems could be analyzed (e.g. the structure of the tower).
This is also a problem that could be found when exploring
a UAV-based approach. With UAVs, constant vibrations and
payload restrictions make the acquisition of high quality im-
ages a very difficult task, and therefore, making the process
of detecting faults in those images extremely difficult.

Other problems such as constant viewpoint changes (e.g.
especially when cameras are manually moved) and scale
changes of the electric tower and its components add ad-
ditional complexity to the idea of applying computer vision
to solve this problem, in which, depending on the adopted
strategy, could require a system that automatically defines
which is the best frame to be used for detecting faults.

Currently, there is no solution that satisfies the different
requirements of automated power line inspection: simultane-
ously detect electric towers, detect and analyze faults, and
also analyze security distances to the power line infrastruc-
ture. Power line inspection is still an open area of research,
where in terms of cost-benefits, it is important for electric
companies not only to have a system that can deal with the
different requirements of the inspections, but also to have a
system that can do it at high speeds.

In this paper, we explore the electric tower detection and
classification problem applying a machine learning approach,
using low quality images. We believe this is a key step
to develop more complex tasks such as fault detection and
analysis.

Fig. 3. Visual inspection. The image quality changes depending on the
kind of inspection. Intensive inspections allow high quality images (images
on the right), whereas a fast inspection (non-intensive) make it difficult to
conduct a detailed analysis of the components of the electric tower (image
on the left).

III. TOWER DETECTION AND CLASSIFICATION
STRATEGY

The objective of the proposed strategy is to determine
the position of the electric tower and the type of tower,
in single images. Due to the difficulty of the task (e.g.
wide variety of backgrounds), a learning-based approach
is used. The strategy is based on two stages. In the first
stage (tower detection stage), a neural network classifier is
trained for tower-background classification, and in the second
stage (tower classification stage), a 4-class neural network
classifier is trained for identifying the type of tower. In both
stages, HOG features [18] are used to train two MLP neural
networks. Once the two MLP classifiers have been trained,
they are applied for tower detection and classification for
power line inspection. In the following paragraphs the system
architecture is described.

A. System Architecture

The proposed strategy for power line inspection is based
on the interaction between a tower detection and a tower
classification stage as shown in Fig. 4. As input the system
receives a color image; and the output of the system, if it
finds a tower, corresponds to the position of the tower and
the type of tower contained in the image.

Fig. 4(a) describes the workflow of the tower detection
stage. In order to apply the trained tower detection classi-
fier to the input image, the color image is converted into
grayscale, and a sliding-window approach is used to scan
the image. As shown in Fig. 4(a), a small window SW of
a predefined size is slid over the image. In our strategy two
different window sizes are used (SW1:160×290 pixels, and
SW2:130×260 pixels). The size of these windows has been
defined based on the average size of the tower images used
for training the classifiers. Each window SW, provided by
the sliding window algorithm is resized to 64 × 128 pixels,
and then from this image HOG features are extracted. The
resulting HOG feature vector (of size 3780) is passed as
input to the MLP classifier trained for tower detection, where
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the window SW will be classified as Tower or Background,
using the following criteria:

Class =

{
1 , if (a1 ≥ 0.98 & a2 ≤ 0.001)

2 , otherwise

where a1 and a2 are the activation values of the output
layer neurons for Class 1 (Tower) and Class 2 (Background),
respectively.

The position in the image of all windows SW that have
been classified as Class 1 (Tower) are then saved (see Fig.
4(a), red boxes, image on the right). Finally, when the sliding
window algorithm has finished scanning the image, the result
from the detection stage is obtained as the bounding box that
covers all windows SW that were saved. This ROI (region of
interest) shown in Fig. 4(a) (green box, image on the right),
corresponds to the final result from the detection stage.

The result of the tower detection stage is used as input
to the tower classification stage, as described in Fig. 4(b).
This ROI is resized to 64 × 128 pixels, and then, HOG
features are extracted. The resulting HOG feature vector (of
size 3780) is passed as input to a 4-class MLP trained for
tower classification, which will be in charge of defining to
which class the ROI belongs to: Type 1, Type 2, Type3, or
Type 4 (see Fig. 4(b)).

B. HOG descriptor

Histograms of Oriented Gradients (HOG) are used in this
paper as features to describe the shape of electric towers,
and its application for power line inspection is explored. The
general idea of the use of the HOG descriptor is that the local
appearance and shape of an object can often be described by
the distribution of intensity gradients or edge directions, as
it is mentioned in [18].

The first stage of the algorithm consists in calculating
the gradient along two directions in order to obtain the
magnitude and direction of the gradient at every pixel. This
is conducted applying the 1-D [-1,0,1] and [−1, 0, 1]T masks
to the 64×128 resized image. Then, the image is divided into
small regions of 8×8 pixels size, called “cells”. For each cell,
a local 1-D histogram of gradients is calculated over all the
pixels in the cell. This histogram consists in 9 orientation
bins, evenly spaced over 0 − 180 ◦ (“unsigned” gradient).
Then, as it is mentioned in [18], in order to reduce aliasing,
votes are interpolated bilinearly between the neighboring bin
centres, and the gradient magnitudes of the pixels in the cell
are used to vote into the histogram.

The next step of the algorithm consists in normalizing
the oriented histograms in order to get invariance to illu-
mination changes and foreground-background contrast. This
is conducted using blocks of 2 × 2 cells. The blocks are
overlapped 50% so that each cell histogram contributes with
several components to the final feature vector, each of them
normalized with respect to a different block of cells. The final
HOG feature vector is obtained by collecting all the values
from the normalized blocks. With this procedure, a HOG

descriptor of size 3780 is obtained, which will be used for
tower detection and classification for power line inspection.

C. MLP classifiers

Two feed-forward backpropagation neural networks are
used for the tower detection and the tower classification
stages shown in Fig. 4. Both neural networks use a sigmoid
activation function and the algorithm used for training these
networks is the Resilient Backpropagation algorithm [19].
One of the advantage of this algorithm is its low compu-
tational cost, which allows to quickly train and evaluate
different neural network configurations.

The configuration of the neural network used in the tower
detection stage is a 3-layers MLP with 10 neurons on the
hidden layer and 2 neurons on the output layer, and for the
tower classification stage, a 3-layers MLP with 40 neurons
on the hidden layer and 4 neurons on the output layer, is
used.

IV. EXPERIMENTS AND RESULTS

This section begins by describing the data used for training
and evaluating the MLPs and the complete system (the
complete tower detection and classification pipeline). The
methodology to train and evaluate the two classifiers is also
presented. After an independent performance evaluation of
the MLPs , the evaluation of the complete system is assessed.

A. Experimental Set-up

Currently there are no publicly available datasets of power
line inspection. Proprietary aerial inspection data was made
available by an electric power company. The data consists
of 11 videos captured during multiple manned aerial in-
spections. 6 of these videos primarily contain inspections
of towers supporting high voltage lines (Type 1 and Type
2 towers) and the other 5 videos contain inspections of
towers for medium voltage lines (Type 3 and Type 4). The
inspections were non-intensive, therefore the video quality
is relatively poor. The resolution of the frames is also low:
for Type 1 and Type 2 towers, the average frame size is
550 × 480, and for Type 3 and Type 4, the average frame
size is 720× 576.

From these videos, a dataset of cropped images was
created where each of those images was either labeled as
Background or as Tower, indicating, in the latter case, also
the type of the tower. To collect this data, two software tools
were created:

• Data acquisition tool: Given all the frames of a video,
this tool allows a human user to traverse through each
frame sequentially or randomly. From any chosen im-
age, the user can select a rectangular region, which can
contain a tower or part of the background. Finally, for a
selected region, the tool allows to provide the label, for
example, if the region containing the tower is selected,
user can provide the type of the tower, otherwise label
the region as Background.

• Label correction tool: Labeling process is a time con-
suming and tiring process. It is possible that some
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Fig. 4. System architecture. The proposed strategy for power line inspection is based on the interaction between a tower detection Fig. 4(a) and a tower
classification stage Fig. 4(b). In the first stage (tower detection stage), a neural network classifier is trained for tower-background classification, and in the
second stage (tower classification stage), a 4-class neural network classifier is trained for identifying the type of tower. In both stages, HOG (Histograms
of Oriented Gradients) features are used.

labeling errors can occur. This tool allows the user to
see the cropped images and the associated labels, and
correct them in case there is a labeling mistake.

The data acquisition tool was used to collect and label
3200 image regions (1600 regions containing tower and 1600
containing background) from 11 videos. For 1600 tower
images, 400 image regions of each type were labeled. Later,
the label correction tool was applied to remove any labeling
mistakes. Finally, all the image regions were resized to the
size of 64 × 128. Fig. 5 can give the reader an idea of the
labeled images of different types of towers and background.

The experiments have been carried out using the Matlab
Neural Network Toolbox, and the HOG descriptor imple-
mentation developed in [20].

B. Training and Evaluation Methodology

In order to train and evaluate the MLP for detection,
3200 images have been divided into 3 sets: training, cross
validation, and test set. 1200 images of each class (tower and
background) have been used for training, while 200 images
of each class are used for the cross validation and 200 of each
class for the test set. The images belonging to the tower class
have to be equally distributed according to each type, such
that 300 images of each type of tower are used for training,
and 50 images of each type are used for validation, and 50
for test.

For training and evaluating the MLP for classifying tower
types, 1600 images of electric towers (Fig. 5(a)) have been
divided into training, cross validation and test set. From these
images, 300 of each tower type (Type 1 to Type 4) have been
used for training, 200 (50 images per tower type) for cross-
validation and another 200 for testing.

C. Results and Discussion

Table I shows the confusion matrix obtained on testing
the MLP used in the detection stage. A total test error of
3.25% is attained. A false positive rate of 2.5% was achieved,
which means that only 5 of the 200 background test images
were incorrectly classified as tower. On the other hand, we
obtain a false negative rate of 4%, which indicates that 8
tower images, out of 200 used for testing, were predicted
as background. These results suggest that, although overall
performance of the classifier is good, tower images get
predicted as background more often than background images
as tower.

The errors in the detection stage will have significant
influence on the complete system, since the prediction errors
get carried forward to the tower classification stage. More
specifically, the regions detected as Tower, which were actu-
ally Background, will always lead to prediction errors in the
tower-type classification stage. That is, from the perspective
of the complete system, it is more favorable to have less
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(a) Tower training examples

(b) Background training examples

Fig. 5. Examples of cropped images of: (a) 4 tower images and (b) 5
background images. These and similar images are used for training and
evaluation of the MLPs for tower detection and tower-type classification.

false positives than false negatives in the detection stage.
Since the false positives in the evaluation of the detection
stage, are relatively low, we believe this MLP configuration
is suitable for being applied to the complete tower detection-
classification pipeline.

TABLE I
CONFUSION MATRIX OBTAINED FOR THE TOWER DETECTION TEST SET

Predicted class
Actual class Tower Background

Tower (%) 96 2.5
Background (%) 4 97.5

Table II presents the confusion matrix corresponding to
the tower classification MLP tested with the test set of tower
images. In this results it can be seen that towers of Type 1
and 2 are the most likely to be well classified, obtaining a
classification accuracy of 98% and 96% respectively, while
towers Type 3 and 4 are the hardest one in the classification
task, obtaining a classification accuracy of 94% and 92%
respectively. It is interesting to see that most of the false
positives obtained for Type 3 correspond to tower Type 4
and vice versa. These obtained classification results seem to
be reasonable due to the fact that Types 3 and 4 correspond
to medium-voltage towers (Fig. 5(a), the two images on the
right), which are mainly identified by their vertical pole. In
contrast, towers Type 1 and 2 correspond to high-voltage
towers (Fig. 5(a), the two images on the left), which have a
more complex structure, and therefore a more complex HOG
pattern, very different from the one of the other tower types.

TABLE II
CONFUSION MATRIX OBTAINED FOR THE TOWER CLASSIFICATION TEST

SET

Predicted class
Actual class Type 1 Type 2 Type 3 Type 4

Type 1 (%) 98 4 2 2
Type 2 (%) 0 96 0 0
Type 3 (%) 0 0 94 6
Type 4 (%) 2 0 4 92

D. Evaluation of the complete system

Finally, the complete system is evaluated. Therefore, given
an input image, the tower detection and classification stages
are applied together, as explained in section III-A, obtaining
as output a final ROI (result of de detection stage) with
the associated tower type (result of the classification stage).
For the purpose of evaluating the complete system, 120
completely new images (not cropped, like the labeled ones
used for training the neural networks) were collected from
the video data, 60 containing no tower, and 60 (15 per tower
type) containing an electric tower. These images were not
used in the training and evaluation of the MLPs.

Table III presents the confusion matrix of the tower
detection stage when the complete system was tested. In this
table, it can be seen that when there is an electric tower in
the image, it is detected in 92% of the cases. That is, only in
5 images, of the 60 images containing a tower, the detection
stage has missed it.

On the other hand, the false positive rate (background
region detected as a tower) is 25%. Although, this result
appear contrary to the one presented in Table I, it is important
to take into account that Table III shows the results after scan-
ning the complete image with a sliding window approach.
Thus, Table III should be analyzed from the perspective of
the number of sliding windows per image, which in this
test can range anywhere between 550 and 900. Making a
cautious assumption that most of the windows in an image
only contain background regions, then the real false positive
rate is much lower.

TABLE III
CONFUSION MATRIX OF THE TOWER DETECTION STAGE OF THE

COMPLETE SYSTEM.

Predicted class
Actual class Tower Background

Tower (%) 91.67 25
Background (%) 8.33 75

Table IV presents the confusion matrix of the tower
classification stage when the complete system was evaluated.
Note that, in Table IV, the results do not show the false
positives (background detected as a tower) of the detection
stage.

This results presented in Table IV are very promising. The
towers with complex structure, Types 1 and 2, lead to 93%
and 87% accuracy. Due to the complexity of the structure,
as captured by the HOG features, these two types of towers
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Classification: Type 1 Classification: Type 2

Classification: Type 4

Classification: Type 2Classification: Type 1

Classification: Type 3

(a)

Classification: Type 2 Classification: Type 1

(b)

Classification: Type 4 Classification: Type 1

(c)

Fig. 6. Detection and classification results obtained during evaluation of
the complete system: (a) Examples of correct detection and classification
for different types of towers; (b) Examples of incorrect detection; and (c)
Examples of incorrect classification.

do not get confused with Types 3 and 4. Type 4 towers
get predicted correctly in 87% of the cases. It has to be
mentioned that results presented in Table IV (classification
stage) are highly dependent on the final ROI obtained from
the detection stage, which depends on the sliding window
algorithm (currently based in two window sizes). That is,

TABLE IV
CONFUSION MATRIX OF THE TOWER CLASSIFICATION STAGE OF THE

COMPLETE SYSTEM.

Predicted class
Actual class Type 1 Type 2 Type 3 Type 4

Type 1 (%) 93.33 6.66 20 13.33
Type 2 (%) 6.67 86.67 6.67 0
Type 3 (%) 0 0 60 0
Type 4 (%) 0 0 13.33 86.67

when accurate tower detections are achieved, classification
results of the complete system could lead to similar results
such as those presented in Table II.

Fig. 6 shows a few tower detection and classification re-
sults obtained during the evaluation of the complete system.1

As shown in Fig. 6(a) good results are obtained in highly
cluttered backgrounds, with varying illumination, color, tex-
ture, and for the different types of tower that we have
considered. In the figure, it can be seen that the towers are
properly detected even with a very complex background with
vertical structures in the terrain and even with houses or other
parts of electric towers in the scene.

Several poor cases were also observed in the detection,
as well as, in the classification stages, as shown in Fig(s).
6(b) and 6(c) respectively. However, it is important to note
that the results were achieved with a relatively small dataset.
More labeled data is expected to further improve, both the
detection and the classification stages.

V. CONCLUSIONS AND FUTURE DIRECTIONS

Power line infrastructures are heterogeneous and complex,
making automatic power line inspection a difficult problem.
To achieve the goal of autonomous inspection, research
efforts must aim towards developing general approaches that
satisfy several requirements: e.g. simultaneous detection of
power lines and electric towers, fault detection in several
power line components, analysis of security distances, among
others. The current paper is an effort in this direction, with
emphasis on electric tower detection and classification in
aerial inspection data. We believe this is a key stage to be
able to develop more complex tasks such as fault analysis.

A learning paradigm, based on two feed-forward back-
propagation MLP neural networks, has been investigated in
this paper for solving the tower detection and classifica-
tion problem during power line inspection. The first MLP
has been trained for tower-background segmentation, and
a second MLP has been trained for identifying 4 different
types of electric towers. Both MLPs were trained using HOG
features. To our knowledge, the problem of tower detection
and classification in video sequences has not been addressed
as a machine learning problem, which are the key novelties
of this paper.

A thorough evaluation of the tower detection and classifi-
cation approach has been carried out using image data from

1A video demonstration of the reported results has been made available
at:http://youtu.be/iZmuOOXB4ps
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real visual inspection tasks. In the independent evaluations
of the MLPs, highly encouraging results were obtained.
Tower detection was shown to be very robust in several
challenging environments with cluttered background, varying
illumination, different tower shapes and viewpoints, etc. This
shows that a learning-based approach is a promising direction
for power line inspection, which can be generalized to work
in multiple environments, and with multiple tower types and
power line components, if the appropriate data for training
the neural networks is available.

One of the main reasons for the good performance is due
to the use of local shape and appearance features, HOG,
for image region representation. However, in addition to the
HOG features, simpler feature spaces can be simultaneously
explored, especially for towers with a simple structure (e.g.
medium voltage towers).

Therefore, immediate future work is lined towards ex-
ploring other feature spaces to achieve better discrimination.
Another promising direction is to use ensemble classifiers
where multiple classifiers are trained on different features.
This can enhance the performance of the detection as well
as the classification stages. Visual tracking is also anticipated
to significantly enhance the results from tower detection.
Finally, future direction is also focused on extending the
system for automatic fault detection and analysis by fusing
information from different sensor (e.g. infrared cameras and
Lidar)
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