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Abstract— This paper proposes an optimal control scheme
based on adaptive dynamic programming (ADP) algorithm for
complex-valued systems with input saturation. The equivalence
transformation is used to obtain the real dynamic system.
Then the performance index function is defined. Based on
the transformed system, an ADP optimal control method is
established. The update methods for critic network neural
network and action network are given. It is proved that the
closed-loop system is uniformly ultimately bounded based on
Lyapunov approach. Finally, the simulation study was given to
show the effectiveness of the proposed optimal control scheme.

I. INTRODUCTION

IN recent years, more and more researchers paid their
attention to complex-valued systems and neural networks

[2], [3]. Especially, [9] and [10] studied the complex-valued
filter problems for complex signals and systems. Using ob-
servational input/output data, [11] proposed complex-valued
B-spline neural network to model the complex-valued Wiener
system. On the other side, as the nonanalytic nature of the
actuator nonlinear dynamics, the optimal control problem of
complex-valued system with input saturation is a challenge
for control engineers.

It is well known that, dynamic programming is a very use-
ful tool in solving optimization and optimal control problems
by employing the principle of optimality. However, solving
the associated Hamilton-Jacobi-Bellman (HJB) equation de-
mands a large (rather infeasible) number of computations and
storage space. This prevented the implementation of dynamic
programming. An innovative idea was proposed in [12] to
get around this numerical complexity by using an adap-
tive/approximate dynamic programming (ADP) formulation.
During last decade, ADP has played an important role in
the area of optimal control [13], [14], [15], [16], [17], [18].
By now, ADP has successfully solved the nonlinear zero-
sum differential games problem [20], on-line optimization
problem [22], optimal tracking control problem [21], multi-
objective optimal control problem [19] etc. Especially, in [5],
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the near-optimal control problem for a class of nonlinear
discrete-time systems with control constraints was solved by
iterative adaptive dynamic programming algorithm. Based
on previous research, we will discuss the optimal control
problem for complex-valued nonlinear systems with input
saturation.

This paper will study the optimal control problem based
on ADP algorithm. First, the complex-valued system is
transformed into the real system. Then the performance index
function is presented. Based on the transformed system, an
optimal control is established by ADP algorithm. The update
methods for critic network neural (NN) and action NN are
given. And then, it is proven that the closed-loop system
is uniformly ultimately bounded (UUB) based on Lyapunov
approach. Finally, the simulation study is given to show the
effectiveness of the proposed control scheme.

The rest of this paper is organized as follows: Section II
derives motivations and preliminaries. Section III introduces
the neural-network-based optimal control method. The sta-
bility analysis is presented in Section IV. Section V presents
the simulation results. In Section VI, the conclusion is drawn.

II. MOTIVATIONS AND PRELIMINARIES

Consider a continuous-time complex-valued nonlinear sys-
tem

𝜂̇(𝑡) = 𝑓(𝜂(𝑡)) + 𝑔(𝜂(𝑡))𝑢, (1)

where 𝜂 ∈ 𝒞𝑛. 𝑓(𝜂(𝑡)) ∈ 𝒞𝑛 and 𝑓(0) = 0. 𝑓(𝜂(𝑡)) =
(𝑓1(𝜂(𝑡)), 𝑓2(𝜂(𝑡)), ⋅ ⋅ ⋅ , 𝑓𝑛(𝜂(𝑡)))𝑇 . 𝑔(𝜂(𝑡)) ∈ 𝒞𝑛×𝑛 is the
input gain and 𝑔(𝜂(𝑡)) is bounded. 𝑢 is the input vector and
𝑢 ∈ 𝒞𝑛. And the input 𝑢 = [𝑢1, 𝑢2, ⋅ ⋅ ⋅ , 𝑢𝑛]𝑇 , where 𝛼𝑖 ≤
∣∣𝑢𝑖∣∣ ≤ 𝛽𝑖, 𝛼𝑖 and 𝛽𝑖 are constants.

This paper is desired to find 𝑢, which minimizes a gener-
alized nonquadratic functional

Λ(𝜂(𝑡)) =

∫ ∞

𝑡

𝑈 (𝜂(𝜏), 𝑢(𝜂(𝜏)))𝑑𝜏, (2)

where the utility function 𝑈 is positive definite. It can be
expanded as follows:

Λ(𝜂(𝑡)) =

∫ 𝑇

𝑡

𝑈 (𝜂(𝜏), 𝑢(𝜂(𝜏)))𝑑𝜏 +

∫ ∞

𝑇

𝑈 (𝜂(𝜏), 𝑢(𝜂(𝜏)))𝑑𝜏

=

∫ 𝑇

𝑡

𝑈 (𝜂(𝜏), 𝑢(𝜂(𝜏)))𝑑𝜏 + Λ(𝜂(𝑇 )). (3)

Define 𝜂 = 𝜂𝑅 + 𝑖𝜂𝐼 , 𝑓 = 𝑓𝑅 + 𝑖𝑓 𝐼 , 𝑔 = 𝑔𝑅 + 𝑖𝑔𝐼 and
𝑢 = 𝑢𝑅 + 𝑖𝑢𝐼 , then we have

𝑥̇ = 𝐹 (𝑥) +𝐺(𝑥)𝑣, (4)
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where 𝑥 = [𝜂𝑅; 𝜂𝐼 ], 𝐹 = [𝑓𝑅; 𝑓 𝐼 ], 𝐺 = [𝑔𝑅,−𝑔𝐼 ; 𝑔𝐼 , 𝑔𝑅]
and 𝑣 = [𝑢𝑅;𝑢𝐼 ].

Then we can define

Λ(𝑥(𝑡)) =

∫ 𝑇

𝑡

𝑈(𝑥(𝜏), 𝑣(𝜏))𝑑𝜏 + Λ(𝑥(𝑇 )), (5)

where 𝑈(𝑥, 𝑣) = 𝑥𝑇𝑄𝑥 + 2

∫ 𝑣

0

𝜑−1(𝑣)𝑅𝑑𝑣, 𝑄 and 𝑅 are

positive definite matrices, 𝜑 is the bounded and monotone
odd function, i.e., ∣∣𝜑∣∣ < 𝜑𝑀 .

The infinitesimal version of (3) is

0 = Λ𝑇𝑥 (𝐹 (𝑥) +𝐺(𝑥)𝑣) + 𝑈(𝑥, 𝑣). (6)

Defining the Hamiltonian function as follows

𝐻(𝑥, 𝑣,Λ𝑥) = Λ𝑇𝑥 (𝐹 (𝑥) +𝐺(𝑥)𝑣) + 𝑈(𝑥, 𝑣). (7)

So we can define the optimal performance index function
satisfying

0 = min
𝑣

𝐻(𝑥, 𝑣,Λ∗𝑥), (8)

where

Λ∗(𝑥) = min
𝑣

∫ ∞

𝑡

𝑈 (𝑥(𝜏), 𝑣(𝑥(𝜏)))𝑑𝜏, (9)

and the optimal control is

𝑣∗ = −𝜑

(
1

2
𝑅−1𝐺𝑇Λ∗𝑥

)

. (10)

III. NEURAL-NETWORK-BASED OPTIMAL CONTROL

DESIGN METHOD

In the following part, the neural-network-based optimal
control design method using the ADP will be established.
As we all know the critic NN and the action NN, are two
vital modules of ADP method. The NNs are used to be as the
critic NN and action NN. In the NN, the number of hidden
layer neurons is 𝐿, the weight matrix between the input layer
and hidden layer is 𝑌 , the weight matrix between the hidden
layer and output layer is 𝑊 , the input vector is 𝑋 . Then
the output is represented as 𝐹𝑁 (𝑋,𝑌,𝑊 ) = 𝑊𝑇𝜎(𝑌 𝑋),
where 𝜎(𝑌 𝑋) is the activation function. For convenience of
analysis, only the output weight 𝑊 is updating during the
training, while the hidden weight is kept fixed. Hence, in
the following part, the NN function can be simplified by the
expression 𝐹𝑁 (𝑋,𝑊 ) = 𝑊𝑇 𝜎̄(𝑋), where 𝜎̄(𝑋) = 𝜎(𝑌 𝑋).

In the following subsections, the detailed design methods
for the critic NN and the action NN will be given.

A. Critic NN design method

In this paper, the performance index function Λ(𝑥) is
obtained by the critic NN. The ideal critic NN is expressed
as

Λ(𝑥) = 𝑀𝑇
𝑐 𝜙𝑐(𝑥) + 𝜖𝑐, (11)

where 𝜙𝑐(𝑥) is the activation function, 𝑀𝑐 is the ideal critic
NN weight matrix and 𝜖𝑐 is the critic NN approximation
error.

So we have

Λ𝑥 = ∇𝜙𝑇𝑐 (𝑥)𝑀𝑐 +∇𝜖𝑐, (12)

and if we define 𝜖𝐻 = −∇𝜖𝑇𝑐 (𝐹 +𝐺𝑣), then we can get

𝐻(𝑥, 𝑣,𝑀𝑐) = 𝑀𝑇
𝑐 ∇𝜙𝑐(𝐹 +𝐺𝑣) + 𝑈(𝑥, 𝑣)− 𝜖𝐻 . (13)

For the actual NNs, let the estimate of 𝑀𝑐 be 𝑀̂𝑐, then
the actual output of the critic NN is

Λ̂(𝑥) = 𝑀̂𝑇
𝑐 𝜙𝑐(𝑥). (14)

So we can get

𝐻(𝑥, 𝑣, 𝑀̂𝑐) = 𝑀̂𝑇
𝑐 ∇𝜙𝑐(𝐹 +𝐺𝑣) + 𝑈(𝑥, 𝑣). (15)

Define the weight estimation error of the critic NN as
follows

𝑀̃𝑐 = 𝑀𝑐 − 𝑀̂𝑐. (16)

Let 𝑒𝑐 = 𝐻(𝑥, 𝑣, 𝑀̂𝑐)−𝐻(𝑥, 𝑣,𝑀𝑐), then we have

𝑒𝑐 =− 𝑀̃𝑇
𝑐 ∇𝜙𝑐(𝑥)(𝐹 (𝑥) +𝐺(𝑥)𝑣) + 𝜖𝐻 . (17)

Define the weight update law ˙̂
𝑀𝑐 is given as

˙̂
𝑀 𝑐 = −𝛼𝑐

𝜉1(𝜉
𝑇
1 𝑀̂𝑐 + 𝑈(𝑥, 𝑣))

(𝜉𝑇1 𝜉1 + 1)
2 , (18)

where 𝛼𝑐 is the adaptive gain of the critic network and is
positive, 𝜉1 = ∇𝜙𝑐(𝐹 +𝐺𝑣).

Define 𝜉2 =
𝜉1
𝜉3

and 𝜉3 = 𝜉𝑇1 𝜉1 + 1, we have

˙̃𝑀 𝑐 =− 𝛼𝑐𝜉2𝜉
𝑇
2 𝑀̃𝑐 + 𝛼𝑐𝜉2

𝜖𝐻
𝜉3

. (19)

B. Action NN design method

The action NN is used to obtain the control error policy
𝑣. Define the action NN as follows

𝑣 = 𝑀𝑇
𝑎 𝜙𝑎(𝑥) + 𝜖𝑎, (20)

where 𝑀𝑎 is the ideal weight matrix of the action network,
𝜙𝑎(𝑥) is the activation function and 𝜖𝑎 is the action network
approximation error.

Define the actual output of action network as

𝑣(𝑥) = 𝑀̂𝑇
𝑎 𝜙𝑎(𝑥), (21)

where 𝑀̂𝑎 is the actual weight of the action network. Define

𝑒𝑎 = 𝑀̂𝑇
𝑎 𝜙𝑎 + 𝜑

(
1

2
𝑅−1𝐺𝑇 Λ̂𝑥

)

. (22)

The update method of 𝑀̂𝑎 is given as follows

˙̂
𝑀𝑎 = −𝛼𝑎𝜙𝑎

(

𝑀̂𝑇
𝑎 𝜙𝑎 + 𝜑

(
1

2
𝑅−1𝐺𝑇 Λ̂𝑥

))𝑇
, (23)

where 𝛼𝑎 is the adaptive gain.
Define the weight estimation error of the action network

as

𝑀̃𝑎 = 𝑀𝑎 − 𝑀̂𝑎. (24)
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Then the update law of 𝑀̃𝑎 is

˙̃𝑀𝑎 =𝛼𝑎𝜙𝑎(−𝑀̃𝑇
𝑎 𝜙𝑎 + 𝜑(

1

2
𝑅−1𝐺𝑇∇𝜙𝑇𝑐 (𝑀𝑐 − 𝑀̃𝑐))

+𝑀𝑇
𝑎 𝜙𝑎)

𝑇 . (25)

IV. STABILITY ANALYSIS

For the proposed method, we will give the detail stability
analysis.

Theorem 1: Let the weight updating laws of the critic
network and the action network be given as in (18) and
(23), respectively. Then the closed-loop error system (4), the
weight estimation errors 𝑊̃𝑐 and 𝑊̃𝑎 are UUB.
Proof: Define Lyapunov function candidate as follows:

Γ(𝑡) = Γ1(𝑡) + Γ2(𝑡) + Γ3(𝑡), (26)

where Γ1(𝑡) =
1

2𝛼𝑐
𝑊̃𝑇
𝑐 𝑊̃𝑐, Γ2(𝑡) =

𝑙2
2𝛼𝑎

𝑡𝑟{𝑊̃𝑇
𝑎 𝑊̃𝑎},

Γ3(𝑡) =𝑥𝑇𝑥+ 𝑙3𝐽(𝑥), 𝑙2 > 0, 𝑙3 > 0.
So the time derivative of the Lyapunov function candidate

(26) along the trajectories of the closed-loop systems (6) is
computed as Γ̇(𝑡) = Γ̇1(𝑡) + Γ̇2(𝑡) + Γ̇3(𝑡). According to
(18), we have

Γ̇1(𝑡) = −(𝑊̃𝑇
𝑐 𝜉2)

𝑇 𝑊̃𝑇
𝑐 𝜉2 + (𝑊̃𝑇

𝑐 𝜉2)
𝑇 𝜖𝐻

𝜉3
. (27)

Based on (23), we obtain

Γ̇2(𝑡) =− 𝑙2(𝑊̃
𝑇
𝑎 𝜙𝑎)

𝑇 𝑊̃𝑇
𝑎 𝜙𝑎 − 𝑙2(𝑊̃

𝑇
𝑎 𝜙𝑎)

𝑇 (𝑣 − 𝜖𝑎)

+ 𝑙2(𝑊̃
𝑇
𝑎 𝜙𝑎)

𝑇𝜑(
1

2
𝑅−1𝐺𝑇∇𝜙𝑇𝑐 (𝑀𝑐 − 𝑀̃𝑐))

≤− 𝑙2(𝑊̃
𝑇
𝑎 𝜙𝑎)

𝑇 𝑊̃𝑇
𝑎 𝜙𝑎 +

𝑙2
4
(𝑊̃𝑇

𝑎 𝜙𝑎)
𝑇 𝑊̃𝑇

𝑎 𝜙𝑎 + 𝑙2𝜑
2
𝑀

+
𝑙2
4
(𝑊̃𝑇

𝑎 𝜙𝑎)
𝑇 𝑊̃𝑇

𝑎 𝜙𝑎 + 𝑙2𝑣
𝑇 𝑣

+ 𝑙2(𝑊̃
𝑇
𝑎 𝜙𝑎)

𝑇 𝜖𝑎. (28)

As

𝑥̇ = 𝐹 +𝐺𝑊̂𝑇
𝑎 𝜙𝑎

= 𝐹 +𝐺(𝑊𝑎 − 𝑊̃𝑎)
𝑇𝜙𝑎

= 𝐹 +𝐺𝑣 −𝐺𝑊̃𝑇
𝑎 𝜙𝑎 −𝐺𝜖𝑎. (29)

Then the time derivative of Γ3 is calculated as follows

Γ̇3 =2𝑥𝑇 (𝐹 +𝐺𝑣 −𝐺𝑊̃𝑇
𝑎 𝜙𝑎 −𝐺𝜖𝑎)− 𝑙3𝑈(𝑥, 𝑣). (30)

As 2𝑥𝑇𝐹 ≤ 2𝑘 ⋅ ∣∣𝑥∣∣2, and

−2𝑥𝑇𝐺𝑇 𝑊̃𝑇
𝑎 𝜙𝑎 ≤∣∣𝑥∣∣2 + ∣∣𝐺𝑇 ∣∣2(𝑊̃𝑇

𝑎 𝜙𝑎)
𝑇 𝑊̃𝑇

𝑎 𝜙𝑎, (31)

2𝑥𝑇𝐺𝑇 𝑣 ≤ ∣∣𝑥∣∣2 + ∣∣𝐺𝑇 ∣∣2∣∣𝑣∣∣2, (32)

−2𝑥𝑇𝐺𝑇 𝜖𝑎 ≤ ∣∣𝑥∣∣2 + ∣∣𝐺𝑇 ∣∣2𝜖2𝑎𝑀 . (33)

So (30) can be rewritten as

Γ̇3 ≤(2𝑘 + 3− 𝑙3𝜆min(𝑄))∣∣𝑥∣∣2 + (∣∣𝐺𝑇 ∣∣2 − 𝑙3𝜆min(𝑅))∣∣𝑣∣∣2
+ ∣∣𝐺𝑇 ∣∣2(𝑊̃𝑇

𝑎 𝜙𝑎)
𝑇 𝑊̃𝑇

𝑎 𝜙𝑎 + ∣∣𝐺𝑇 ∣∣2𝜖2𝑎𝑀 . (34)

Therefore, we have

Γ̇(𝑡) ≤− (𝑊̃𝑇
𝑐 𝜉2)

𝑇 𝑊̃𝑇
𝑐 𝜉2 − 1

2
𝑙2(𝑊̃

𝑇
𝑎 𝜙𝑎)

𝑇 𝑊̃𝑇
𝑎 𝜙𝑎

+ ∣∣𝐺𝑇 ∣∣2(𝑊̃𝑇
𝑎 𝜙𝑎)

𝑇 𝑊̃𝑇
𝑎 𝜙𝑎

+ 𝑙2(𝑊̃
𝑇
𝑎 𝜙𝑎)

𝑇 𝜖𝑎 + 𝑙2𝜑
2
𝑀

+ (𝑊̃𝑇
𝑐 𝜉2)

𝑇 𝜖𝐻
𝜉3

+ (2𝑘 + 3− 𝑙3𝜆min(𝑄))∣∣𝑥∣∣2

+ (∣∣𝐺𝑇 ∣∣2 − 𝑙3𝜆min(𝑅) + 𝑙2)∣∣𝑣∣∣2
+ ∣∣𝐺𝑇 ∣∣2𝜖2𝑎𝑀 . (35)

Let 𝑌 =

⎡

⎢
⎢
⎣

𝑒
𝑣

𝑊̃𝑇
𝑐 𝜉2

𝑊̃𝑇
𝑎 𝜙𝑎

⎤

⎥
⎥
⎦, 𝑁Γ =

⎡

⎢
⎢
⎣

0
0
𝜖𝐻
𝜉3

𝑙2𝜖𝑎

⎤

⎥
⎥
⎦ and

𝜖Γ = ∣∣𝐺𝑇 ∣∣2𝜖2𝑎𝑀 + 𝑙2𝜑
2
𝑀 , where 𝑀Γ = 𝑑𝑖𝑎𝑔

(𝑙3𝜆min(𝑄)− 2𝑘 − 3, 𝑙3𝜆min(𝑅)− ∣∣𝐺𝑇 ∣∣2 − 𝑙2, 1,
1
2 𝑙2 − ∣∣𝐺𝑇 ∣∣2), then we can get

Γ̇ ≤− 𝑌 𝑇𝑀Γ𝑌 + 𝑌 𝑇𝑁Γ

≤− ∣∣𝑌 ∣∣2𝜆𝑚𝑖𝑛(𝑀Γ) + ∣∣𝑌 ∣∣∣∣𝑁Γ∣∣+ 𝜖Γ. (36)

So if the parameters 𝑙2 and 𝑙3 satisfying

𝑙2 > 2∣∣𝐺∣∣, (37)

and

𝑙3 > max

{ ∣∣𝐺∣∣2 + 𝑙2
𝜆min(𝑅)

,
2𝑘 + 3

𝜆min(𝑄)

}

. (38)

Then the Lyapunov derivative is negative if ∣∣𝑌 ∣∣ >

∣∣𝑁Γ∣∣
2𝜆min(𝑀Γ)

+

√
𝑁2

Γ

4𝜆2
min(𝑀Γ)

+ 𝜖Γ
𝜆min(𝑀Γ)

≡ 𝑌𝐵 . It is now

straightforward to demonstrate that if Γ exceeds a certain
bound, then, Γ̇ is negative. Therefore, according to the
standard Lyapunov extension theorem the analysis above
demonstrates the state and the weight errors are UUB [1].

V. SIMULATION STUDY

We consider the following nonlinear oscillator [4]:

𝜂̇1 =𝜂1 + 𝜂2 − 𝜂1(𝜂
2
1 + 𝜂22)

𝜂̇2 =− 𝜂1 + 𝜂2 − 𝜂2(𝜂
2
1 + 𝜂22) + 𝑢 (39)

where 𝜂 = [𝜂1, 𝜂2]
𝑇 ∈ 𝒞2, 𝜂𝑗 = 𝑥𝑅𝑗 + 𝑖𝑦𝐼𝑗 and 𝑢 = 𝑢𝑅+ 𝑖𝑢𝐼 ,

∣∣𝑢∣∣ ≤ 1.5.
For the infinite-horizon optimal control problem, in the

utility function 𝜑 = 𝑡𝑎𝑛ℎ, 𝑄1 = 𝐼4, 𝑅1 = 𝐼2. The
critic network and action network are Λ̂(𝑥) = 𝑊̂𝑇

𝑐 𝜙𝑐(𝑌𝑐𝑥)
and 𝑣(𝑥) = 𝑊̂𝑇

𝑎 𝜙𝑎(𝑌𝑎𝑥), where 𝑌𝑐 and 𝑌𝑎 are constant
matrices. The activation functions in the critic network and
the action network are hyperbolic tangent functions. The
structures of critic network and action network are 4-4-1
and 4-8-2, respectively. The initial weights 𝑊𝑐 and 𝑊𝑎 are
selected arbitrarily from (−1, 1), respectively. The adaptive
gains for the critic network and the action network are
selected as 𝛼𝑐 = 𝛼𝑎 = 0.1. The initial state of system (39)
is [−1 + 𝑖, 1 − 𝑖]𝑇 . After 100 time steps, the simulation
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results are obtained in Figs. 1-2. The simulation results
reveal that the proposed optimal controller can be applied
to complex-valued nonlinear systems and obtain satisfying
control performance.
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Fig. 1. The control trajectories of system (39).
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Fig. 2. The state trajectories of system (39).

VI. CONCLUSION

In this paper, the optimal control scheme based on ADP
algorithm for complex-valued systems with input satura-
tion has been established for the first time. First, the per-
formance index function is defined. Then the equivalence
transformations are used to obtain the corresponding real
dynamic system and performance index function. Based on
the transformed system, an ADP optimal control method is
established. Finally, the simulation study is given to show
the effectiveness of the proposed optimal control scheme.
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