
Learning Optimization for Decision Tree Classification of

Non-categorical Data with Information Gain Impurity

Criterion

K.I. Sofeikov, I. Yu. Tyukin, A.N.Gorban, E.M.Mirkes, D.V. Prokhorov, and I.V.Romanenko

Abstract—We consider the problem of construction
of decision trees in cases when data is non-categorical
and is inherently high-dimensional. Using conventional
tree growing algorithms that either rely on univariate
splits or employ direct search methods for determin-
ing multivariate splitting conditions is computationally
prohibitive. On the other hand application of standard
optimization methods for finding locally optimal splitting
conditions is obstructed by abundance of local minima
and discontinuities of classical goodness functions such as
e.g. information gain or Gini impurity. In order to avoid
this limitation a method to generate smoothed replacement
for measuring impurity of splits is proposed. This enables
to use vast number of efficient optimization techniques
for finding locally optimal splits and, at the same time,
decreases the number of local minima. The approach is
illustrated with examples.

I. INTRODUCTION

Decision trees have long been known as a viable and

efficient tool for solving various classification problems

(see e.g. [6], [11], [12], [8] references therein). Pop-

ularity of decision trees as classifiers is perhaps best

explained in terms of the combination of properties they

offer, including self-explanatory final classifiers, ability

to handle various types of data, dealing with incomplete

and corrupted data, no need for any prior models of

date, and easily interpretable decision tests [6].

Despite these advantages there are few technical

issues preventing successful induction of decision trees

in practice. According to [6] these are: most algorithms

require discrete valued target attributes, over-sensitivity

K.I. Sofeikov is with the University of Leicester, Department of
Mathematics, UK, and with Apical Ltd, Apical Technical Centre,
Leicester, UK (e-mail: sofeykov@gmail.com)

I. Yu. Tyukin is with the University of Leicester, Department of
Mathematics, UK and with Saint-Petersburg State Electrotechnical
University, Russia (e-mail: I.Tyukin@le.ac.uk)

A.N. Gorban is with the University of Leicester, Department of
Mathematics, UK (e-mail: ag153@le.ac.uk)

E.M. Mirkes is with the University of Leicester, Department of
Mathematics, UK (e-mail: em322@le.ac.uk)

D.V. Prokhorov is with Toyota Technical Centre, Ann Arbor, MI,
USA (e-mail: dvprokhorov@gmail.com)

I. Romanenko is with Apical Ltd, Apical Technical Centre, Leices-
ter, UK (e-mail: ilya@apical.co.uk)

to training sets, and issues (both at the level of learning

and performance) related to standard univariate split

criteria.

Huge body of work exists to date extending classical

univariate splits [11] to the multivariate ones. Oblique

decision trees [9], perceptron [14] and neural network

based trees [4], [5] are few examples of such gener-

alizations. Notwithstanding success of these results in

a range of problems, learning in these trees presents a

hard computational problem [9]. This is particularly true

for cases in which impurity measures, such as e.g. infor-

mation gain, Gini impurity etc., reflecting homogeneity

of data within a given subset is used as metrics to decide

which split of the data is best. Contributing to resolving

the issue of computational complexity of learning in

trees with multivariate splits is the main focus of this

article.

We begin with presenting classical decision tree

inducing algorithms in Section II. In Section II-E we

discuss a common feature of these algorithms which

obstructs efficient use of conventional gradient-based

optimization techniques to derive univariate and mul-

tivariate (locally) optimal splitting criteria. Section III

presents main results of the article, Section IV contains

illustrative examples, and Section V concludes the pa-

per.

II. BASIC APPROACHES FOR BUILDING DECISION

TREES

In what follows we will assume that the data includes

vectors of attributes, x = (x1, . . . , xn), with j-th

attribute xj taking values in R, and classes c from a

discrete and finite set of classes C; (x1,i, . . . , xn,i),
i = 1, . . . , N will denote elements from the training

set, and S is the initial (bounded) set from which the

training set is drawn. The overall organization of data

assumes the following form:

χ = (x, c) = (x1, x2, . . . , xn, c), (1)

2014 International Joint Conference on Neural Networks (IJCNN)
July 6-11, 2014, Beijing, China

978-1-4799-1484-5/14/$31.00 ©2014 IEEE 3548

A. ID3

The process of constructing a decision tree with

ID3 [11] can be briefly described as follows. For

each attribute xj we introduce a set of thresholds

{tj,1, . . . , tj,M} that are equally spaced in the interval

[minxj ,maxxj]. With each threshold tj,k we will

associate two subsets S+(tj,k) = {x ∈ S| xj ≥ tj,k}

and S−(tj,k) = {x ∈ S| xj < tj,k}. It is clear that

S = S+(tj,k) ∪ S−(tj,k), and in this sense thresholds

tj,k split the original set S into two disjoint subsets with

respect to the values of attribute xj . All points in the

training set are supposed to be already correctly classi-

fied into classes c from the set of admissible classes C.

Furthermore, the following statistical characterizations

of the training set are supposed to be readily available:

1) |S|, |S+(tj,k)|, |S−(tj,k)| – the total numbers of

elements in the sets S, S+(tj,k), and S−(tj,k); 2)

p(c, S), p(c, S+(tj,k)), and p(c, S−(tj,k)) – the ratios

of the number of elements from S, S+(tj,k), and

S−(tj,k) classified as from class c to the total number

of elements in S, S+(tj,k), and S−(tj,k) respectively.

For the sets S, S+(tj,k), and S−(tj,k) defined above

we introduce quantities specifying variability of classes

within these sets. In this case standard Shannon entropy

[15] is used:

H(S) = −

∑

c∈C p(c, S) log
2
p(c, S)

H(S+) = −

∑

c∈C p(c, S+) log
2
p(c, S+)

H(S−) = −

∑

c∈C p(c, S−) log
2
p(c, S−)

(2)

Obviously, if e.g. H(S+(tj,k)) = 0 (or

H(S−(tj,k)) = 0) then the set S+(tj,k) (or S−(tj,k))
contains objects of only one class. Finally, we specify

conditional entropy H(S|tj,k)

H(S|tj,k) =
|S+(tj,k)|

|S|
H(S+(tj,k))

+
|S−(tj,k)|

|S|
H(S−(tj,k)),

(3)

and relative information gain RIG(S|tj,k)

RIG(S|tj,k) = (H(S)−H(S|tj,k))/H(S). (4)

Algorithm 1: The algorithm for constructing binary

decision trees can now be described as follows:

1) Consider initial set S

2) Create a set of thresholds {tj,k}

3) For every tj,k calculate RIG(S|tj,k)
4) Determine

tl,m = arg max
j=1,...,n;k=1,...,M

RIG(S|tj,k)

5) Create a node with attribute xl being a decision

variable, and xl < tl,m, xl ≥ tl,m being its cor-

responding branching conditions; split the initial

set S into two sets S+

l,m and S−

l,m

6) Remove tl,m from the list of thresholds and repeat

this procedure recursively for each subsequent

subsets S+

l,m and S−

l,m until a stopping condition

is met

Extensions of ID3 such as C4.5 and C5.0 allow to

handle incomplete and “continuous” data, deal with

overfitting and improve memory utilization [2].

B. CART and Oblique Decision Trees

Classification And Regression Trees (CART) induc-

ers [1] extend classical ID3 algorithm in various di-

rections. In particular they allow for multivariate linear

splits (CART-LC) of the original set S in the following

form

S+(w) = {x ∈ S|α(w, x) > 0},

S−(w) = {x ∈ S|α(w, x) ≤ 0},
(5)

where the function α

α(w, x) = w0 + w1x1 + w2x2 + · · ·+ wnxn, (6)

w = (w0, . . . , wn), w ∈ R
n+1, is the corresponding

splitting criterion. Finding the values of w in this al-

gorithm requires exploration of the space of parameters

in each i-th direction by looking for the values of wi

maximizing goodness of the split w0+wTx−δ(wi+γ)
with respect to δ and three fixed values of γ =
{−1/4, 0, 1/4}. The data is assumed to be normalized.

Oblique trees inducers [9] develop the above idea

further by introducing random perturbations to avoid

local minima after the best values of wi have been found

by direct search.

C. Perceptron Learning Induced Decision trees

Perceptron learning [13] combined with the pocket

algorithm [3] has been proposed in [14] as a method

for finding linear splits that maximize information gain.

As a result of this procedure a decision tree is produced

with linear multivariate splits in each node, and the tree

is implementable as a multilayered perceptron.

D. Decision trees with neural network feature extrac-

tion

Extending the idea of perceptron trees as well as

replacing splits (5) with α linear in w, (6), with more

general criteria

α : Rp
× R

n
→ R, (7)

3549

leads naturally to configurations know as classification

trees with neural network feature extraction [4]. The

network output, NN(w, x), is used as the splitting

criterion α(w, x). Learning in these trees, however,

is not based on information gain or other standard

impurity measures. The best values of w are defined

as minimizers of
∑

i(NN(w, xi)− ci)
2.

E. Issues with standard inducers of decision trees

The above brief review of conventional methods

for growing of decision trees is by all means non-

exhaustive. Yet, this review itself as well as benchmark-

ing of these methods in practice already reveal a few

issues of the overall very successful approach that may

require improvements.

The first issue is the computational complexity of

finding (locally) optimal multivariate splits. Even in the

case of linear splits, as e.g. in CART-LC inducers and

oblique trees, determining the best splitting hyperplane

involves coordinate-wise direct search. As the number

of data attributes grows or if a finer search grid is

required, the sheer amount of computations needed to

build a split may become impractically large. Using

perceptron feature extraction is an attempt to avoid

this difficulty. However, since perceptron rule is not

guaranteed to converge for arbitrary data, and that

cycling can occur, the method is not ideal. Furthermore,

if the cycling occurs, the number of searched splitting

hyperplanes is obviously limited. Neural network-base

feature extraction uses gradient methods for finding

(locally) optimal splits [4]. This drastically reduces

computations at each step. Yet, the price for such a

reduction is that the split goodness criterion is not

impurity-based anymore.

The second issue is sensitivity to training data. The

latter is best illustrated with an example. Consider, the

problem of finding a classifier for data shown in Fig.

1. The data is comprised of points on the real line

which are labelled as ”class 1” (circles) and ”class 2”

(crosses). The corresponding information gain is shown

as a black solid curve. Notice that the minimal value of

conditional entropy is attained at tj = 5. At this point

the conditional entropy has a narrow drop which is due

to the presence of just a few crosses and circles in its

neighborhood. The optimal classifier will therefore be

dependent on whether these points are present or absent

from the data, and hence the sensitivity.

The third issue is discontinuity of goodness measures

and potential abundance of local minima. This is related

to the previous issue and also can be seen from the

figure.

0 1 2 3 4 5 6 7 8
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

Param boundary

E
n

tr
o

p
y
 v

a
lu

e

Figure 1: Points that belong to different classes are

marked with crosses and circles recpectively. Solid

curve is the conditional entropy, H(S|tj) plotted as a

function of the threshold values, tj .

With respect to computational complexity, a remedy

could be to make use of various optimization meth-

ods with linear and super-linear convergence (gradient,

quasy-Newton, Newton). This, however, is not directly

plausible since, as we have already shown, the goodness

function is largely discontinuous, with a large number

of local minima. While discontinuity per se does not

possess severe limitations from optimization point of

view, local minima hinder performance of non-gradient

alternatives such as the Nelder Mead algorithm [10].

Therefore, in order to enable application of conventional

optimization algorithms for efficient finding of splitting

criteria in each node, a modification of decision tree

inducers is needed.

The issues exemplified above will apparently be alle-

viated if goodness criteria can somehow be smoothed.

This, on one hand, will remove spurious local minima

and, on the other hand, will open up a possibility to em-

ploy the wealth of conventional optimization methods

for finding (locally) optimal splits in each node. The

latter will address the complexity issue, and the former

will deal with sensitivity and discontinuity.

In what follows we present an approach for deriving

smoothed goodness functions for decision tree growing.

III. DECISION TREES WITH SMOOTHED

IMPURITY-BASED GOODNESS FUNCTIONS

A. Univariate case

For simplicity, we begin with considering the stan-

dard ID3 algorithm described in II-A. With each point

χi = (xi, ci) = (xi
1
, . . . , xi

n, ci) (n + 1-tuple) of the

original data set we associate an auxiliary integrable

and non-negative ”smearing” function fχi
: Rn

→ R
≥0.

3550

Even though the choice of specific fχi
is not discussed

in this article few obvious candidates of fχi
are

Gaussian : 1
√

(2π)n|Σ|

e(−
1

2
(x−xi)

T
Σ

−1
(x−xi)),

Inverse multiquadric : 1
√

1+(x−xi)
TΣ−1(x−xi)

Delta− function : δ(x1 − xi
1
) · · · δ(xn − xi

n),

where Σ is a positive definite symmetric matrix, and

|Σ| is the determinant of Σ. Having defined fχi
we

introduce

D(S) =
∫

S

∑N

i=1
fχi

(x)dx

Dc(S) =
∫

S

∑N

i=1
fχi

(x)Ic(χi)dx,

where Ic(χi) is the indicator function:

Ic(χi) =

{

1, c = ci
0, c 6= ci

.

Finally we define pf (c, S)

pf (c, S) =
Dc(S)

D(S)

Hf (S) = −

∑

c∈C pf (c, S) log2 pf (c, S)

Hf (S|tj,k) =
D(S+(tj,k))

D(S)
Hf (S

+(tj,k))

+
D(S−(tj,k))

D(S)
Hf (S

−(tj,k)),

and

RIGf (S|tj,k) = (Hf (S)−Hf (S|tj,k))/Hf (S). (8)

Note that D(S), Dc(S), pf (c, S) ≥ 0,
∑

c pf (c, S) =
1, D(S+(tj,k)) + D(S−(tj,k)) = D(S). Replacing

RIG with RIGf in Algorithm 1 gives rise to the

proposed modification.

The following characterizations of the newly intro-

duced RIGf (S|·) are immediate

Proposition 1:

P1) Let fχi
(·) be piece-wise continuous for all i ∈

{1, . . . , N}, then RIGf (S|·) is continuous. If fχi

are continuous then RIGf (S|·) is differentiable.

P2) Let fχi
(·) be the delta-function: fχi

(x) = δ(x1 −

xi
1
)δ(x2 − xi

2
) · · · δ(xn − xi

n), then

RIG(S|tj,k) = RIGf (S|tj,k) for all tj,k.

P3) Let fχi
(·) be the indicator-function 1S , then

RIGf (S|tj,k) = const for all tj,k.

Properties P2), P3) are straightforward. Property

P1 follows from that piece-wise continuity (conti-

nuity) implies that pf (c, S
+(tj,k)), pf (c, S

−(tj,k)),

0 1 2 3 4 5 6 7 8
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Param boundary

E
n

tr
o

p
y
 v

a
lu

e

Figure 2: Points that belong to different classes are

marked with crosses and circles. Solid curve shows con-

ditional entropy curve. Dotted curve shows smoothed

version of the same curve. Solid line that is perpendic-

ular to param boundary axis indicates minimal value for

the smoothed continuous version.

D(S+(tj,k)), and D(S−(tj,k)) are continuous (differ-

entiable). Hence so are the functions Hf (S|tj,k) (with

respect to tj,k) and, consequently, RIGf (S|tj,k).

According to the Proposition, using “broad” identical

fχi
flattens the shape of RIGf (S|·), RIGf (S|·) with

fχi
concentrated at χi resembles (in the limit) the shape

of RIG(S|·). Figure 2 shows how Hf (S|·), derived

for fχi
Gaussian, compares to H(S|·) for a randomly

drawn data sample S (represented by o,+ in the figure).

The function RIGf (S|·), obviously, is just a scaled and

translated version of Hf (S|·). Note that Hf (S|·) is a

quite smooth curve, which agrees with property P1 in

Proposition 1. Hence one can use a range of standard

optimization methods to infer the optimal values of

tj,k. It is also clear that Hf (S|·) (and RIGf (S|·)) may

still have a number of local minima. These can, how-

ever, be addressed by starting optimization procedures

from various initial conditions. While this approach

may increase the total number of calculations in total,

it is generally more advantageous than direct search

especially when nominal dimensionality of the data is

high. Note that the number of local minima may be

controlled by the width of the smearing functions fχi
.

Fig. 3 shows how the shape of Hf (S|tj,k), changes with

the width of fχi
for fχi

Gaussian. The filtering feature

of RIGf (S|·) and Hf (S|·) related to local minima

removal is becoming particularly relevant for data sets

with large number of attributes. In order to illustrate

this point we show in Fig. 4 how Hf (S|·) and H(S|·)
look like in the case of a two-attribute data sample.

3551

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.908

0.91

0.912

0.914

0.916

0.918

0.92

Threshold

C
o

n
d

it
io

n
a

l
e

n
tr

o
p

y

Figure 3: Dependence of Hf (S|tj,k) on the width of fχi

(Gaussian, and σ is the corresponding width parameter).

Solid blue curve depicts the original H(S|tj,k). Thick

red solid curve shows H(S|tj,k) for σ = 0.05. Dotted

line corresponds to the case of σ = 0.01, and dashed

line stands for σ = 0.0001.

B. Multivariate case

The procedure for constructing continuous and dif-

ferentiable goodness criteria can be straightforwardly

extended to general multivariate case. Indeed, consider

splitting criterion (5), (7) and let

Hf (S|w) =
D(S+(w))

D(S)
Hf (S

+(w))

+
D(S−(w))

D(S)
Hf (S

−(w)),

RIGf (S|w) = (Hf (S)−Hf (S|w))/Hf (S). (9)

The following property of RIGf (S|w) is now imme-

diate.

Proposition 2: Suppose that for every value of w the

set

A(w) = {x ∈ S|α(x,w) = 0}

is an n−1 dimensional manifold, and it is such that that

for any ε > 0 there is a δ > 0: ‖w1 −w2‖ < δ implies

that maxx∈A(w1)
dist(A(w2), x) < ε. Furthermore, let

fχi
be continuous. Then RIGf (S|·) is differentiable.

IV. EXAMPLES

A. A synthetic example

In order check plausibility of the approach we first

considered a synthetic data set which is shown by green

circles and red crosses in Fig. 5. Circles correspond to

”class 1”, and crosses correspond to ”class 2”. The task

was to induce a decision tree for classifying the data. We

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

X threshold

Y
 t
h

re
s
h

o
ld

0.984

0.986

0.988

0.99

0.992

0.994

0.996

0.998

1

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

X threshold

Y
 t

h
re

s
h
o
ld

0.992

0.993

0.994

0.995

0.996

0.997

0.998

0.999

Figure 4: Contour plots of functions H(S|·) (upper

panel) and Hf (S|·) (lower panel) for a randomly drawn

sample of two-attribute data set. The number of classes

is 2. The number of local minima is drastically reduced

in the lower panel.

started with the decision tree inducer with multivariate

linear splits in each node and RIGf (S|w) instead of

RIG(S|w). The values of w were determined by the

Nelder-Mead algorithm. The corresponding linear splits

are shown in the figure as blue solid lines. The classifier

had the following performance characterisation: the rate

of false-false detections is 98%, the rate of positive-

positive is 92%, and the overall rate of correct detections

is 95%.

Performance of the classifier had been compared

with the classifier induced by standard ID3 algorithm

(the corresponding univariate splitting conditions are

shown as red dashed lines in the figure). Stopping

conditions were set identical to the multivariate one.

The rates of positive-positive and false-false detections

for this classifier were 91% and 92% respectively. This

shows that the proposed inducer with Nelder-Mead

optimization and multivariate splits performs better than

ID3 algorithm in this task. Note that this advantage did

3552

0 0.5 1 1.5 2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

x
1

x
2

Figure 5: Splitting conditions for the proposed multi-

variate inducer (solid blue lines) and standard univariate

splits of ID3 (dashed red lines).

not have excessive computational cost attached.

B. Multivariate vs Univariate splits

Previous example showed that our method is feasible

for construction of multivariate splits. Next we examine

what advantages multivariate splits may offer over the

univariate ones in a real-life problem. Consider the

problem of AWB (Automatic White Balance) setting

in challenging light conditions [16]. In this context

decision trees are used to detect grass and sky areas

in an image. These are then used as clues for color

adjustments. In our task the variables available for direct

observation have been restricted to: 1) average R/G

value, 2) average B/G value, 3) variance of R/G

value, 4) variance of B/G value, 5) Illumination of

scene (lux value) 6) Intensity variation. Every photo was

split into 15 × 15 pieces and for every such piece we

formed a corresponding 6D parameter/feature vector.

Each training set was built from about 100 photos, and

the total number of training 6D points was about 22500.

Training sets were organized as follows.

The training set was split into two subsets: positive

(with grass featuring in the images) and negative (no

grass objects in the images). Images in the positive

training set contained large amount of different textures

of grass and foliage in different light conditions. The

size occupied by grass/foliage patches varied from one

image to another. The negative training set contained

photos with different objects and colors and, at the same

time, did not contain any grass/foliage or sharp green

real world objects.

Figure 6 shows examples of possible 2D projections

of clusters of the original 6D feature vectors. As

we can see from these pictures relationships between

individual components of feature vectors corresponding

RG RG RGRG

BG LUX S

LUX S S

BG BG LUX

Figure 6: Representation of the dataset on the planes of

pairs of attributes. Green circles correspond to patches

of grass, black circles mark patches of images without

grass.

to different clusters is rather complicated, with large

overlapping areas in relevant 2D projections.

In the original work [16] univariate splitting criteria

have been chosen. Results of grass detection in a sample

image with this algorithm is shown in 6. As expected,

the quality of detection improves when standard uni-

variate splits are replaced with linear multivariate ones

(Fig. 6, third column).

C. The benefits of smoothing

In Section III we showed that using smoothed good-

ness functions RIGf (S|·), Hf (S|·) may help to re-

duce the number of local minima whilst looking for

(locally) optimal parameterizations of splitting condi-

tions α(x,w) = 0. This has been done on randomly

drawn data samples. Let us know show how this ap-

proach works in the case of real experimental data.

We consider the problem of computational diagnosis

of canine lymphoma [7]. The problem has been re-

solved using decision trees inducers involving direct

search in the direction derived from linear discriminant

analysis (Fisher discriminant). Let us examine if our

smoothed RIGf (S|·), Hf (S|·) may offer an advantage.

Fig. 8 shows original (solid thin blue line) H(S|·) and

Hf (S|·) for Gaussian fχi
and for various values of σ.

Notice that, remarkably, for a large interval of values of

σ the function Hf (S|·) is apparently unimodal. More-

over smoothed goodness functions are not sensitive to

presence/removal of few data points from training sam-

ples making the process of inducing trees more robust as

compared to standard methods. We would like to note

3553

Figure 7: Examples of grass detection. White patches in the second and third columns stand for high grass

probability in the current zone. First column from the left : source images. Center column: probability/likelyhood

maps of grass obtained with ID3 algorithm. Third column: probability/likelyhood maps of grass obtained with

using of binary trees with combined attributes in nodes. We may see from the first row of this figure that the

number of Positive-Negatives detections was reduced. From the second row we may conclude that the number of

Negative-Positive detections has also been reduced. Moreover, we registered these improvement for nearly 75%

of all images in our testing set.

Figure 8: Original and smoothed conditional entropy for

canine lymphoma data [7].

that that minima of the smoothed conditional entropy

profiles, as well as the corresponding splitting criteria,

may differ from those obtained for the non-smoothed

conditional entropy (see e.g. Fig. 2). On the other hand,

as follows from Proposition 2, the discrepancy can be

controlled by proper choice of σ. Investigating how to

choose the values of σ in order to keep the balance of

precision vs robustness at an optimum is the subject of

our future work.

D. Statistical Analysis

In order to assess quality of the proposed classifiers

we built several decision trees for the example problem

described in Section IV-B and compared their perfor-

mance to standard ID3 algorithm with 10 nodes per

each attribute. The data comprised of 60000 of points,

and each point had 6 attributes.Training sets in each

experiment consisted of 10% of the total number of data

points. Remaining 90% of data has been used to validate

the model. In order to derive a splitting criterion in

each node we run Nelder-Mead algorithm in the original

6D space from 5 randomly chosen initial conditions.

The best outcome from these 5 runs has been chosen

as the splitting criterion for the node. Table I presents

typical values of false-positive and false-negative rates

observed in these experiments. As we can see from the

Table, the overall classification quality tends to be lower

for smaller values of σ. This may be explained bt that

the smoothed RIG surface approaches the original RIG

for σ small. The latter, however, is discontinuous and

has many local minima that are not optimal. The Nelder-

Mead algorithm stucks in one of these, and hence the

procedure results in trees with poorer performance. In

addition we compare performance of trees obtained with

to that of decision trees resulting from classical ID3 for

the same problem (last two columns in Table I).

3554

Table I: Examples of False-Positives and False-

Negatives scores obtained with suggested approach and

ID3
New approach ID3

σ = 0.75 σ = 0.35 σ = 0.15
FP FN FP FN FP FN FP FN

0.02 0.1 0.07 0.17 0.2 0.06 0.03 0.07

0.06 0.11 0.02 0.12 0.2 0.05 0.03 0.08

0.1 0.06 0.07 0.17 0.2 0.2 0.13 0.01

0.04 0.07 0.07 0.11 0.14 0.07 0.04 0.05

0.09 0.08 0.03 0.09 0.19 0.17 0.09 0.02

0.09 0.08 0.08 0.18 0.08 0.17 0.11 0.2

0.12 0.13 0.09 0.08 0.05 0.13 0.12 0.01

Notice that since training and validations sets for each

experiments have been chosen randomly, the values of

False-Positives and False-Negatives vary in each col-

umn. In order to provide a clearer performance picture

we built random forests for σ = 0.75 and ID3, and

used the majority rule in order to work out classification

outcomes. Best results for both approaches are shown

in Table II. As follows from this Table, performance

of forests generated by standard ID3 algorithm with

10 nodes per each attribute is higher than that of ours.

This, however, comes at a price of exhaustive search.

Even though in our example problem computational

complexity of ID3 did not exceed that of ours the issue

of complexity will become more apparent for problems

with higher dimensionality of data.

Table II: False-Positives and False-Negatives scores for

random forests
New approach ID3
FP FN FP FN

0.06 0.08 0.03 0.04

V. CONCLUSION AND FUTURE WORK

In this article we discussed and analysed limitations

of standard decision tree growing methods for data with

large number of attributes. We argue that for a range

of impurity measures and discrete training data sets

the issue is mostly due to the fact that the impurity

measures are discontinuous and are prone to having

large number of local minima. In order to relax these

limitations a method for smoothing impurity measures

is introduced. We show that the resulting impurity mea-

sures can always be made continuous and differentiable

and, at the same time, they preserve shape of the orig-

inal impurity. Moreover, in the limit when smoothing

kernels (smearing functions) approach delta-functions,

our newly generated impurity measure converges to the

original one.

The approach is illustrated with an example of

construction of a decision tree classifier with linear

multivariate splitting condition. We note though, that the

proposed modification is not limited to linear cases. It

can be applied to neural network based feature selection

too. Doing so is the focus of our ongoing work in this

direction.

REFERENCES

[1] L. Breiman, J. Friedman, R. Olshen, and C. Stone. Classification

and Regression Trees. Wadsworth International Group, 1984.

[2] Margaret H. Dunham. Data Mining: Introductory and Advanced

topics. Pearson Education, 2003.

[3] S. I. Gallant. Optimal linear discriminants. In Proc. 8th Int.

Conf. Pattern Recognition, pages 849–852, 1986.

[4] H. Guo and S. Gelfand. Classification trees with neural network
feature extraction. IEEE Trans. on Neural Networks, 3(6):923–
933, 1992.

[5] Jae. H. Yoo Ishwar K. Sethi. Structure-driven induction of
decision tree classifiers through neural learning. Pattern Recog-

nition, 30:939–947, 1994.

[6] Rokach L. and Maimon O. Data Mining and Knowledge

Discovery Handbook. Springer, 2010.

[7] E.M. Mirkes, I. Alexandrakis, K. Slater, R. Tuli, and A.N.
Gorban. Computational diagnosis of canine lymphoma. J. Phys.:

Conf. Ser. 490 012135, 2014.

[8] S.K. Murthy. Automatic construction of decision trees from
data: a multi-disciplinary survey. Data mining and knowledge

discovery, 2(4):345–389, 1998.

[9] S.K. Murthy, S. Kasis, and S. Salzberg. A system for induction
of oblique decision trees. Journal of Artificial Intelligence, 2:1–
32, 1994.

[10] R. Mead Nelder, John A. A simplex method for function
minimization. Computer Journal, 7:308313, 1965.

[11] J. R. Quinlan. Induction of decision trees. Machine Learning,
1:81–106, 1986.

[12] L. Rokach and O. Maimon. Top-down induction of decision
trees classifiers a survey. IEEE Trans. on Systems Man and

Cybernetics: Part C, 1(11), 2001.

[13] F. Rosenblatt. The perceptron–a perceiving and recognizing
automaton. Report 85-460-1, Cornell Aeronautical Laboratory,
1957.

[14] I.K. Sethi and J.H. Yoo. Design of multicategory multifeature
split decision trees using perceptron learning. Pattern recogni-

tion, 27(7):939–947, 1994.

[15] C. Shannon. A mathematical theory of communication. The

Bell System Technical Journal, 27:379–423, 623–656, 1948.

[16] K. Sofeikov, I. Romanenko, I. Tyukin, and A.N. Gorban. Scene
analysis assisting for awb using binary decision trees and
average image metrics. In IEEE Conference on Consumer

Electronics, pages 488–491. 2013.

3555

