

Abstract—Cellular Simultaneous Recurrent Network (CSRN)

is a unique type of recurrent networks that is designed to solve
complex optimization problems. This network has already
shown to successfully solve many challenging problems such as
2D maze navigation, image registration and affine
transformation, game of go, and power system voltage profile
prediction. One of the main challenges of using a complex
network structure as CSRN is to efficiently train the network.
Many representative training algorithms such as
Back-propagation Through Time (BPTT), Extended Kalman
Filtering (EKF) and Particle Swarm Optimization (PSO) have
been used to train CSRN. Our prior works with CSRN suggest
that for large number of network inputs, which is very common
for large scale maze and image data, computational complexity
of computing Jacobian in EKF training becomes prohibitive. In
this paper, we propose Unscented Kalman Filter (UKF) for the
training of CSRN to avoid computing Jacobian. We show that
CSRN trained with UKF can solve the 2D maze traversal
problem with better convergence rate than that of EKF. We also
report preliminary results on binary image affine
transformation wherein CSRN trained with UKF offers
comparable performance to that of EKF. A comparison has
been obtained between CSRN with GMLP core versus an Elman
core trained with UKF for Affine transform results. Finally, we
show that for more complex applications such as large scale
image processing, UKF is much faster than EKF in training
CSRN.

I. INTRODUCTION
 Artificial Neural Networks (ANNs) are inspired by human
and animal neural pathways such that the ANNs can mimic
the ability to learn and adapt. One of the main purposes of
ANNs is to learn various nonlinear functions that are used in
different applications. Among many widely used ANNs,
Feed-forward neural networks are considered as universal
function approximators. However, in many practical
applications with large number of input variables, function
approximation may not always be effective with generic
feed-forward networks since the required approximation
complexity increases exponentially. In order to solve
nonlinear functions, more complex networks are needed.
Cellular Simultaneous Recurrent Network (CSRN) is such a

1 LV, MA and KMI are with the Vision Lab at Department of Electrical
and Computer Engineering, Old Dominion University, Norfolk, VA 23529
(email:{lvidy001, malam001, kiftekha}@odu.edu)

2JKA, was with Department of Electrical and Computer Engineering,
University of Memphis, Memphis, TN 38018, when part of this work was
done. (e-mail: keith.anderson@thyssenkrupp.com).

This work is partially supported through a grant funding from NSF
(Award #1310353).

network which has exhibited the ability to solve complex
optimization problems [1] [2] [3] [4]. Although CSRN has the
ability to approximate complex functions more successfully
compared to that of feed-forward or multilayer perceptron
(MLP) networks [1], the complexity of the network itself
makes training a challenging task.
 CSRN was first introduced by Pang et al. [1], wherein the
authors solved 2D maze traversal problem. The authors have
shown that the solution of 2D maze navigation problem is
similar to approximating the J function of adaptive dynamic
programming (ADP). The idea behind ADP is to approximate
the exact solution of Bellman's optimality equation given
below, ܬሺ݅ሻ ൌ min ሺcሺi, μሺiሻሻ ൅ ߛ ෍ B୧୨ሺμሻJሺjሻሻே

௝ୀଵ ሺ1ሻ

where, the total estimated cost from the starting state "i" is
J(i), ߛ is the discount factor and µ is the policy, N is the
number of possible states, Bij indicates the probability, c(i, j)
is the expected cost between any two states “i” and “j”.
Optimal policy offers the optimal estimated cost [5]. The
authors in [1] use Back Propagation Through Time algorithm
(BPTT) to train the network. A single maze is trained with the
CSRN and tested with the same maze. The paper shows that
CSRN is successful to approximate the J function. In [5], the
authors later show that CSRN can also be more effectively
trained with Extended Kalman Filter (EKF) algorithm. Here,
the authors propose that CSRN can be trained with a different
set of mazes and Fthe network can learn any random maze.
The authors also show that the use of EKF algorithm rather
than BPTT improves the speed of convergence by several
orders.
 The BPTT is an extension of the standard
back-propagation algorithm that enables training neural
networks with feed-back connections. Hence, BPTT 'unfolds'
the recurrent networks through a certain number of iterations.
This forms a feed-forward network consisting replications of
the original network arranged in layers with the feedback
connections now feeding forward to the replication in front.
Once the network is 'unfolded', standard back-propagation is
applied for training. It is shown that in Pang et al. [1] that
CSRN trained by BPTT for 2D maze traversal converged
with approximately 1000 epochs.
 Kalman filters provide computational means to estimate
the state of a linear system using series of past observations.
The EKF is a generalization of the Kalman filter which can be
used for nonlinear system estimation. EKF essentially
'linearizes' the system by computing the derivatives
(Jacobian) of the nonlinear function prior to applying the

Improved Training of Cellular SRN Using Unscented Kalman
Filtering for ADP

L. Vidyaratne1, M. Alam1, J. K. Anderson2, and K. M. Iftekharuddin1

2014 International Joint Conference on Neural Networks (IJCNN)
July 6-11, 2014, Beijing, China

978-1-4799-1484-5/14/$31.00 ©2014 IEEE 993

standard Kalman filter [6]. The ability of estimating nonlinear
functions enables the use of EKF in training neural networks.
However, the linearization process of EKF involves
computing the Jacobian of the network which can be
computationally expensive, especially in the case of CSRNs.
Further, as the number of cells in CSRN is increased to
account for more inputs, the size of Jacobian matrix increases
accordingly. Consequently, for large number of network
inputs, which is very common for large scale maze and image
data, computational complexity of computing Jacobian in
EKF training becomes prohibitive [4]. Furthermore, the
linear approximation of the nonlinear system model could
introduce errors in the estimation process [6] which may
adversely affect convergence of the network.
 In order to alleviate the drawbacks associated to training
CSRN with EKF, this paper introduces UKF, for the first time
in literature, to train CSRNs. The UKF implements the
unscented transform, which is a method of calculating the
statistics of a random variable that undergoes a nonlinear
transformation. The UKF uses the true nonlinear system
model in the estimation process, and therefore, when used in
neural network training, it only requires the NN forward
propagation function in parameter estimation. Consequently,
one of the main advantages of using UKF to training CSRNs
is that the complex Jacobian calculations can be avoided.
Also, it is shown in [6] that UKF state estimates are accurate
to the second order, while EKF achieves a first order
accuracy. However, the computation complexity of the UKF
is similar to that of EKF [6].
 This work examines the effectiveness of UKF training in
CSRN for 2D maze traversal and binary image affine
transformation tasks. The results are compared with a CSRN
trained with EKF for these applications.

Section II of this paper outlines the 2D maze traversal
problem. Section III discusses a brief overview of image
affine transforms. Section IV introduces the CSRN and
explains the learning algorithms including UKF. The results
for CSRN maze traversal, binary image transformations and
performance comparison of CSRN with both GMLP and
Elman cores along with computational and performance
metrics are presented in section V. Finally, section VI
provides discussions and conclusions.

II. 2D MAZE TRAVERSAL PROBLEM
2D maze traversal problem consists of finding the optimal

path from a starting location of a 2D grid to a certain goal
avoiding some obstacles.

Fig. 1 A 5x5 example maze. Grey boxes represent obstacles and ‘G’
represents goal. White cells are clear. Walls surrounding the maze make the
maze size 7x7

The optimal path can be obtained by computing the J cost
function using Belman’s equation as shown in Eq. (1). An
example maze with goal and obstacles is shown in Fig. 1.
Each cell of the maze grid is either clear or an obstacle. In
order to find the optimal path, the best strategy is to choose
the neighboring cell that has the smallest J [1] [5].

III. AFFINE TRANSFORMATION OF IMAGE
Affine transformation is a 2D geometric transformation on

an image. This is basically a mapping technique where the
locations of the intensity values of an input image are mapped
to the new location of an output image. Translation, rotation,
scaling and shear are the type of affine transformations
performed in an image. The affine transformation between
two images is given by the following equation,

 ⎥
⎦

⎤
⎢
⎣

⎡
+⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡ −
=⎥

⎦

⎤
⎢
⎣

⎡

y

x

o

o

y

x

n

n

t
t

y
x

S
S

y
x

0
0

cossin
sincos

θθ
θθ (2)

where (xn, yn) and (xo, yo) are the spatial coordinates of the
corresponding pixel locations in transformed and original
images, respectively. Rotation is performed by the 2x2
rotation matrix with an angle of “θ”. “tx” and “ty” represent
the translation along x and y axis. “Sx” and “Sy” represent the
scaling parameter in x and y direction [4] [7]. Detail of affine
transformation can be found in [8].

IV. CELLULAR SIMULTANEOUS RECURRENT NETWORK

A. Introduction to CSRN
The CSRN is first introduced by Pang et al. [1]. The

authors have shown that this new type of neural network is
capable of solving learning problems efficiently when
compared to MLP. As an example they have solved 2D maze
traversal problem and NetA/NetB problem.

The CSRN is a combination of a cellular network and a
simultaneous recurrent network (SRN). Simultaneous
recurrent networks are different from standard recurrent
networks by the fact that the feed-back from the output is
taken without any delay. Theoretically, the inputs and the
outputs should be simultaneous. SRNs can mimic the activity
of human brain. The core part of a CSRN is SRN.

On the other hand, the cellular network has identical
elements in each cell which either can be a single neuron or an
entire network. The elements are arranged in some geometric
pattern. This kind of structure can be useful to solve problems
that have some inherent geometry. A cellular architecture is
shown in Fig. 2.

Fig. 2 Cellular architecture

994

The primary benefit of cellular architecture is weight sharing
between different elements. The idea of weight sharing
significantly decreases the number of weights, as well as the
time needed to train the network.
 A CSRN architecture can be constructed by making each
cell of the cellular network an SRN. CSRN architecture is
shown in Fig. 3. The grey boxes represent the CSRN cell with
a SRN core. Each cell of the network receives output from its
four neighbors from previous iteration as input. Also each cell
provides output to its neighbors.

Fig. 3 CSRN architecture

Note that the cellular structure of CSRN matches with the
input pattern. Therefore, each cell of the input can be directly
fed to each cell of CSRN [9]. The core network is a
generalized multi-layered perceptron (GMLP). The detail of
GMLP network can be found in [4].

B. Back-Propagation Through Time (BPTT)
Recurrent neural network training can be done using the

BPTT algorithm. The BPTT algorithm is an extension of the
regular back-propagation algorithm in which the recurrent
neural network is 'unfolded' prior to training. Specifically,
this 'unfolding' process creates a pseudo feed-forward
network consisting of replications of the original network
with the recurrent link being fed forward into the successive
copy. If the network stabilizes, the output may not change in
further replications; in which case the replication process is
stopped. The multi-layered feed-forward network resulting
from the above process can be considered as equivalent to the
recurrent network and this can be trained using the regular
back-propagation algorithm. However, the weights in each
replication must be equal, and therefore, cannot be updated
individually. Weight updating in BPTT is done by updating
the weights simultaneously by using the sum of all the
derivatives. In the case of cellular SRN, the derivatives must
be calculated and summed over each cell of the network [5].
This greatly increases the complexity of back-propagation
and affects the training efficiency. BPTT was successfully
applied in CSRN training for maze traversal in [10]. However
for a single maze, the CSRN learning with BPTT requires
around 1000 epochs for convergence.

C. Extended Kalman Filter (EKF)
The Kalman filters, originally proposed by Kalman [11],

are commonly used in signal processing applications. Kalman
filter essentially provides a computational means to
recursively estimate future states of a system based on past
observations. The original Kalman filters are linear recursive
filters that estimate the state of a linear dynamic system. For
estimation of nonlinear models, an extension of Kalman
filters referred to as Extended Kalman Filer (EKF) is used.
Parameter estimation through Kalman filters have been
utilized in neural network training [6]. In this case, the neural
network weights are regarded as the parameters to be
estimated, and the neural network outputs are regarded as the
observations of the system. The basic idea of EKF is to
linearize the system model at each iteration prior to applying
standard Kalman filter [6]. The linear approximation of the
nonlinear model is performed by computing the partial
derivative matrices (Jacobian) of the nonlinear state transition
and observation functions. In parameter estimation for neural
networks, the state transition and observation equations are
given as,

 ௧ܹାଵ ൌ ௧ܹ ൅ ௧, (3)ߛ
 and
 ௧ܻାଵ ൌ ሺܨ ௧ܹ, ௧ሻݑ ൅ ௧. (4)ߟ

In Equation (3), the system state or the neural network
weights are denoted by ௧ܹ at time t and the process noise is
denoted by ߛ௧. ݑ௧ represents the input to the neural network.
In the observation equation (Equation 4), ௧ܻାଵ denotes the
observation (NN output) at time t+1,and F denotes the
forward propagation function of the neural network. ߟ௧
represents the measurement noise. Here, for EKF, the
Jacobian matrix [6] is calculated using standard
back-propagation or BPTT for feed-forward and recurrent
networks.

Ilin et al. in [5] successfully trained CSRN with EKF for
maze navigation. Anderson et al. [4] used the CSRN trained
with EKF for topological image transforms. The authors
report a large reduction in training time with EKF. For an
example, CSRN trained with EKF for a single maze
converges within 15 to 30 epochs while that with BPTT
requires approximately 1000 epochs. However, the Jacobian
matrix required in EKF parameter estimation for CSRN is
calculated using the BPTT algorithm, which can be quite
complex due to the structure of the CSRN. Furthermore, the
computation of Jacobian in CSRN trained with EKF can be
cumbersome as discussed above [4].

D. Unscented Kalman Filter (UKF)
In this work, we propose UKF for the training of CSRN.

The UKF was first introduced by Julier et al. [12] and was
further developed by van der Merwe et al. [13]. The main
difference between EKF and UKF lies in the method of
representing random variable for the propagation through a
dynamic system [6]. In EKF, the state of the system,
approximated by a Gaussian random variable is propagated

995

through a first order linear estimate of the nonlinear system
[6]. This may introduce errors in the transformed mean and
covariance of the random variable [6]. In comparison, UKF
attempts to solve this problem by first sampling the state
approximation and choosing the best sample points that
represents the true mean and covariance of Gaussian random
variable. These sample points are then propagated through the
true nonlinear system [6]. The transformed sample points
capture the transformed mean and covariance with a second
order accuracy. The UKF utilizes unscented transformation,
which is a method of calculating the statistics of a random
variable that goes through a nonlinear transformation.

Consider an n-dimensional Gaussian random variable, x
with a mean ߤ௫, and covariance ௫ܲ, that is transformed with
by non-linear function g as follows,

 ܻ ൌ ݃ሺݔሻ (5)

Instead of computing a linear approximation of g as is done in
EKF, the unscented transform computes a minimal set of
weighted sample points that captures the true mean and
covariance of the prior, x. These samples are referred to as
sigma points. The sigma points, when passed through the true
nonlinear function, g, captures the mean and covariance of the
posterior y, with a minimum second order accuracy [14].

A number of 2݊ ൅ 1 sigma points must be selected to
accurately capture the mean and covariance of the prior, x.
The sigma points (ࢆሾ௜ሿሻ are located at the mean and along the
main axes of covariance. The sigma points are calculated as,

ሾ଴ሿࢆ ൌ ௫, (6)ߤ
ሾ௜ሿࢆ ൌ ௫ߤ ൅ ሺඥሺ݊ ൅ .ሻߣ ௫ܲሻ௜, ݅ ݎ݋݂ ൌ ݊ ݋ݐ 1 (7)
ሾ௜ሿࢆ ൌ ௫ߤ െ ሺඥሺ݊ ൅ .ሻߣ ௫ܲሻ௜ି௡, ݅ ݎ݋݂ ൌ ݊ ൅ ݋ݐ 1 2݊ (8)
and
ߣ ൌ ଶሺ݊ߙ ൅ ݇ሻ െ ݊ (9)

where n is the dimensionality of x and ࢆሾ௜ሿ is the ith sigma
point. The parameters α and k are scaling parameters that
adjusts the spread of sigma points with respect to the mean.

The sigma points are then passed through the nonlinear
function as follows,

ሾ௜ሿݕ ൌ ݃൫ࢆሾ௜ሿ൯. (10)

The mean and covariance of the posterior y, can now be

approximated from a weighted sample mean and covariance
of the transformed sigma points ݕሾ௜ሿ as [6],

௬ߤ ൌ ෍ ௠ሾ௜ሿ.ଶ௡ݓ
௜ୀ଴ ሾ௜ሿ, (11)ݕ

and

௬ܲ ൌ ෍ ௖ሾ௜ሿ.ଶ௡ݓ
௜ୀ଴ ሺݕሾ௜ሿ െ ሾ௜ሿݕ௬ሻሺߤ െ ௬ሻ் (12)ߤ

with the weights computed as,
௠ሾ଴ሿݓ ൌ ݊ߣ ൅ (13) ,ߣ

௖ሾ଴ሿݓ ൌ ఒ௡ାఒ ൅ ሺ1 െ ଶߙ ൅ ሻ, (14)ߚ
and ݓ௠ሾ௜ሿ ൌ ௖ሾ௜ሿݓ ൌ 12ሺ݊ ൅ ሻߣ ݅ ݎ݋݂ , ൌ ݋ݐ 1 2݊ (15)

where ݓ௠ሾ௜ሿ and ݓ௖ሾ௜ሿ are the mean and covariance weights

of the ith sigma point, and parameter ߚ) ߚ ൌ 2 is optimal for
Gaussian distributions [6]) is chosen to incorporate prior
knowledge of the underlying Gaussian.

The UKF implements a Bayesian filter using the unscented
transform [15]. When using UKF for training neural
networks, the problem is posed as a parameter estimation
case, similar to EKF. Here, the NN weights are considered as
the state of the system, and the system equations utilized are
given as,

௧ାଵݓ ൌ ௧ݓ ൅ ௧, (16)ߝ
and ݕ௧ ൌ ,௧ݓሺܩ ௧ሻݑ ൅ ௧, (17)ߜ

where (16) is the state transition and (17) is the measurement
equations respectively, ߝ௧ and ߜ௧ are zero mean Gaussian
additive process and measurement noise with covariance Qt
and Rt respectively. The nonlinear transformation G is the
forward propagation function of the neural network and ݕ௧ is
the resulting output of the neural network.

The current estimate of the system state is given by the
mean ߤ௞௪ and its covariance ௞ܲ௪. The UKF based NN training
starts with the previous estimate of the system state
௞ିଵ௪ߤ) , ௞ܲିଵ௪ ሻ, the current input to the neural network ݑ௞, and
the NN target output Tk. The Bayesian filter prediction step is
given as,

ҧ௞௪ߤ ൌ ௞ିଵ௪ߤ , (18)
and തܲ௞௪ ൌ ௞ܲିଵ௪ ൅ ܳ௞ିଵ. (19)

The sigma points are then extracted as shown in (6) to (8) to

form the vector,
௞ࢆ ൌ ቈߤҧ௞௪ ҧ௞௪ߤ ൅ ටߛ തܲ௞௪ ߤҧ௞௪ െ ටߛ തܲ௞௪቉, (20)

where, ߛ ൌ √݊ ൅ ߣ . Next, the sigma points are passed
through the non-linear measurement process equation to
obtain the measurement update,
௞ሾ௜ሿࢅ ൌ ,௞ሾ௜ሿࢆሺܩ ௞ሻ. (21)ݑ

The updated state estimate statistics are computed using
transformed sigma points Yk as shown in equations (11) and
(12) to obtain,

996

௞௬ߤ ൌ ෍ ௠ሾ௜ሿ.ଶ௡ݓ
௜ୀ଴ ௞ሾ௜ሿ, (22)ࢅ

௞ܲ௬ ൌ ෍ ௖ሾ௜ሿ.ଶ௡ݓ
௜ୀ଴ ሺࢅ௞ሾ௜ሿ െ ௞ሾ௜ሿࢅ௞௬ሻሺߤ െ ௞௬ሻ்ߤ ൅ ܴ௧, (23)

and

௞ܲ௪,௬ ൌ ෍ ௖ሾ௜ሿ.ଶ௡ݓ
௜ୀ଴ ሺࢅ௞ሾ௜ሿ െ ௞ሾ௜ሿࢅҧ௞௪ሻሺߤ െ ௞௬ሻ்ߤ (24)

The Kalman gain is computed using above estimates given as,
௞ܭ ൌ ௞ܲ௪,௬. ሺ ௞ܲ௬ሻିଵ. (25)

Finally, the system estimation updates are computed for the
current state as follows,
௞௪ߤ ൌ ҧ௞௪ߤ ൅ ௞ሺܭ ௞ܶ െ ௞௬ሻ, (26)ߤ
and ௞ܲ௪ ൌ തܲ௞௪ ൅ .௞ܭ ௞ܲ௬. ௞்ܭ . (27)

The UKF based training for the CSRN is performed using the
same steps by taking CSRN forward propagation function as
the nonlinear observation function G in equation (15). The
UKF training algorithm for CSRN is shown in Figure 4 [15].

Fig. 4 UKF algorithm

Unlike the EKF, the UKF algorithm in Fig. 4 does not need
a linear approximation process. UKF uses the true nonlinear
observation function for its estimation. Therefore UKF does
not have the Jacobian calculation related problems inherent to
EKF. Furthermore, as UKF results are accurate to the 2nd
order, theoretically it should outperform EKF in weight
estimation process.

V. RESULTS AND DISCUSSION

A. Maze Navigation
The CSRN is trained using UKF algorithm to solve 2D

maze traversal problem. First, a single maze is chosen to train
and test the network. The same experiment is repeated with
EKF based training. The training is obtained over 200 epochs
for both EKF and UKF. Note the number of epochs in this
work is fixed to different upper limits by observation. The
experiment is performed in an Intel© Core© i7 2GHz machine
with 8 GB RAM. All the experiments are performed using
this machine. Figure 5(a) shows the target maze, Fig. 5(b)
shows the J function approximation using UKF and Fig. 5(c)
shows the J function approximation using EKF respectively.
Note Fig. 5 clearly shows that UKF offers better J function
approximation than EKF.

 (a)

 (b) (c)

Fig. 5 J function approximation using CSRN trained by EKF and UKF. (a)
Target maze, (b) J function approximation with UKF, (c) J function
approximation with EKF

Figure 6 shows sum squared error (SSE) over the entire

200 epochs for both EKF and UKF. It can be clearly seen that
UKF converges faster than EKF. The network converges after
20 epochs when trained by UKF compared to that of 50
epochs by EKF. The final SSE is also smaller for UKF
(0.0654) than EKF (8.0611).

Next the CSRN is trained using UKF with 10 randomly
generated mazes and then tested with 6 completely different
random test mazes. The network is trained with 200 epochs.
The purpose of this experiment is to investigate the ability of
the CSRN network trained with UKF to learn from a set of
random mazes and to apply that knowledge to navigate an
unseen maze.

By observing the outputs it can be seen that the network is
capable of correctly predicting the optimal path from a
starting point to the goal.

Randomly assign the network weights, ݓ଴ and set ߤ௞ିଵ௪ ൌ .଴ݓ

Calculate initial covariance matrix, ଴ܲ௪ and set ௞ܲିଵ௪ ൌ ଴ܲ௪.

For each epoch

For each training maze/image

Perform Bayesian prediction step given by (18) and (19)

Compute sigma points using (5) - (9)

Compute Measurement updates: CSRN

forward-propagation with sigma points (17)

Compute measurement update statistics using sigma point

weights (22)-(24)

Compute the Kalman gain (25)

Compute the state estimation update (26), (27)

End

End

997

0 20 40 60 80 100 120 140 160 180 200
0

100

200

300

400

500

600

700

800

epochs

S
S

E

SSE Vs epochs for UKF and EKF

UKF

EKF

0 20 40 60 80 100 120 140 160 180 200
200

400

600

800

1000

1200

1400

1600

1800

2000

epochs

S
S

E

UKF Vs EKF (SSE over Testing epoch)

UKF

EKF

Fig. 6 Sum squared error over epochs for EKF and UKF
`

 Figure 7 (a) and (b) shows one of the testing results and its
target maze.

 (a) (b)

Fig. 7 Testing result, (a) A testing maze, (b) Target maze of (a)

The same experiment is performed using EKF for

comparison. Figure 8 shows the testing maze sum squared
error (SSE) for EKF and UKF for the entire 200 epochs. Here
again UKF offers significant improvement over EKF. The
detailed result of this specific experiment with multiple
random mazes for CSRN trained with EKF can be found in
[2].

Note in Fig. 8, the UKF testing appears somewhat unstable
representing random fluctuations in the error curve. This may
be due to local minima in UKF optimization process;
however, this needs further investigation. Furthermore, the
overall error in UKF is still much less than that for EKF.

Fig. 8 Comparison of EKF and UKF in terms of SSE (Testing)

The processing time for UKF and EKF to train the network

with a single maze and with ten mazes is shown in Table I.

TABLE I
TRAINING TIME OF UKF AND EKF

As expected, Table I shows that UKF training is slower

than EKF. The higher processing time in UKF is due to the
fact that each sigma points generated in the unscented
transform process has to propagate through the nonlinear
observation function (CSRN forward propagation)
sequentially. Since the number of sigma points generated is
related to the dimensionality of the state random variable
(CSRN network weights), having a relatively large number of
weights in CSRN increases the processing time. This shows
that even though UKF training is slower than EKF, it
produces better convergence. This suggests that CSRN
trained with UKF is capable to approximate J function for
ADP better than that trained with EKF.

B. Binary Image Transformation
 The CSRN trained with EKF has been successfully
implemented for binary image affine transformation [4]. In
this section CSRN trained with UKF is evaluated for binary
image transformations. Several key image statistics
introduced in [4] have been used in this paper to evaluate the
performance of binary image transformation. Brief
description of these metrics is given below [4].

 Jacc - function accuracy. Each network cell output is
compared with the corresponding transformation function
value for that cell. When the values are equal it is
considered as a match. Total number of match is then
normalized by the number of cells to get the accuracy.

 IMacc - image accuracy. Pixel by pixel comparison of the
output image and the target image. If the pixel values are
same, it is considered as a match. The ratio of the number
of matched pixels and the total number of pixels gives the
percentage image accuracy.

 IMcr - Normalized cross correlation between output image
and target image. Correlation value closer to 1 means
better similarity between the images.

Several binary images of size 15x15 pixels is used for
evaluation and comparison. A simple binary cross image is
used for the experiments. The results of binary image
transformations are given below.

1) Translation
 For the translation task, a binary cross image of size 5x5
overlayed on a 15x15 blank image is used. The CSRN is
trained with UKF using 10 training images each moved by
one pixel in x direction and trained with 50 epochs. The
network is then tested with an image translated by 10 pixels.
The same experiment is performed by CSRN trained with
EKF for comparison. Figure 9(a) shows the target image, Fig.
9(b) shows the input image, Fig. 9(c) shows the CSRN output
trained with UKF and Fig. 9(d) shows CSRN output trained
with EKF, respectively.

 Processing Time (Seconds)
UKF EKF

Training one maze 16.734 1.81671

Training ten mazes 162.93 21.22

998

0 5 10 15 20 25 30 35 40 45 50
0

500

1000

1500

2000

2500

3000

epochs

S
S

E

EKF Vs UKF (SSE Vs Testing Epoch)

UKF

EKF

 (a) (b) (c) (d)

Fig. 9 CSRN image translation results, (a) Target image, (b) Input image, (c)
Output of CSRN trained with UKF, (d) Output of CSRN trained with EKF.
For UKF and EKF the network achieves IMacc = 100%, Jacc = 86.67% for
UKF and 60% for EKF.

 In Fig. 9, for both UKF and EKF the network achieves 100%
image accuracy in translating the test image. However, UKF
performs better in approximating the transformation function
values. Table II summarizes the binary translation results for
CSRN trained with UKF and EKF respectively. Similar to
maze traversal case, CSRN trained with UKF requires more
time when compared to that with EKF.
SSE of translation task over 50 testing epochs for both UKF
and EKF is shown in Fig. 10. Here again the fluctuations in
the UKF error curve can be observed as discussed above.

Fig. 10 SSE of translation over 50 epochs for EKF and UKF

 2) Rotation
 Next UKF trained CSRN is applied for rotation
transformation. Rotation is a more complex transformation
compared to translation in which each pixel in an image is
subjected to different transformation values. Therefore,
rotation evaluates the ability of CSRN trained with UKF to
approximate complex transformation functions. For the
rotation case, the same reference image in translation
experiment is used to generate the training image set. The
CSRN is trained with 11 training images each rotated by 20
that ranges from 00 to 200. The network is then tested with an
image rotated by 16 degrees. The test is also conducted with
EKF trained CSRN for comparison. The rotation results are
shown in Fig. 11. Note the number of training images and all
other values are set by observation in this work.
 Although the result of UKF and EKF in Fig. 11 appears
similar, UKF offers slightly better image accuracy when
compared to EKF. Further, the function approximation
accuracy is higher in UKF.

 (a) (b) (c) (d)

Fig. 11 CSRN image rotation results, (a) Target image, (b) Input image, (c)
Output of CSRN trained with UKF, (d) Output of CSRN trained with EKF.
For UKF and EKF the network achieves IMacc = 94.22% & 93.33%, Jacc =
61.33% & 52.00% for UKF and EKF respectively

3) Scaling
Finally Scaling is performed using CSRN trained with

UKF and EKF. Scaling is also a complex transformation
operation similar to rotation. The experiment is performed on
down scale operation, for an example. The CSRN is trained
for 50 epochs with four training images generated from a
reference image of size 7x7 binary cross overlayed on a
15x15 blank background image. The four training images are
constructed such that each image is a 85% scaled down
version of the previous image to produce 62%, 73%, 86% and
100% of the original image size respectively. The testing is
performed on the 73% scaled version. Figure 12 shows the
scaling results.

 (a) (b) (c) (d)

Fig. 12 CSRN image scaling results, (a) Target image, (b) Input image, (c)
Output of CSRN trained with UKF, (d) Output of CSRN trained with EKF.
For UKF and EKF the network achieves IMacc = 94.67% & 92.44%, Jacc =
35.56% & 30.22% for UKF and EKF respectively

Table II summarizes all the affine transformation results.

TABLE II
AFFINE TRANSFORMATION RESULT

Table II shows that UKF shows comparable results for
transformed image accuracy metric, IMacc, and better
transformation function approximation accuracy metric Jacc
when compared with EKF.

In order to compare the CSRN network performance with a
different core architecture, an Elman recurrent core is
implemented. Unlike the GMLP core used, the Elman core is
designed with three layers, an input layer, a hidden layer and
an output layer. The comparison of performance between the
CSRN with GMLP core and the CSRN with Elman core
trained with UKF is shown in Table III. The comparison is

999

shown using the metric, image accuracies (IMacc), that
represents the difference between target and output images.

TABLE III

PERFORMANCE COMPARISON BETWEEN CSRN WITH GMLP CORE VS.
ELMAN CORE TRAINED WITH UKF

Transformation CSRN with

GMLP Core
CSRN with

ELMAN Core
Translation (%) 100 100

Rotation (%) 94.22 95.56
Scaling (%) 94.67 94.67

Table III shows that the performance of CSRN with GMLP

core is comparable to that of CSRN with Elman core.
 The results in Tables II show that the processing time for
UKF is higher than EKF as explained above. However, note
also that UKF does not require computation of Jacobian
matrix unlike EKF. Therefore, UKF training is expected to
offer faster training involving larger input array with more
complex CSRN structures with that of EKF. To investigate
this hypothesis, an experiment is conducted on binary image
translation using images of different sizes. The CSRN is
trained with both UKF and EKF over 10 epochs for each
image size. Other parameters are set similar to the previous
binary image translation experiment. The processing time for
different image sizes are shown in Table IV.

TABLE IV
PROCESSING TIME OF UKF AND EKF FOR DIFFERENT IMAGE SIZE

Image Size Processing Time (Minutes)
UKF EKF

15x15 0.32 0.16
25x25 0.87 0.86
35x35 1.89 3.57
45x45 3.72 12.06

Table IV shows that computation using UKF is faster as
image size increases. For a 15x15 image the processing time
of UKF is twice than that of EKF. However, for an image of
size 45x45 the processing time of UKF is one fourth of that of
EKF. Therefore, we conclude that the CSRN trained with
UKF is more efficient in solving more complex problems
such as large scale image processing and maze traversal when
compared to that of EKF.

VI. CONCLUSION
In this work, we introduce UKF as a learning algorithm for

CSRN. We have investigated the performance of a CSRN
trained with UKF for solving two representative problems
such as 2D maze navigation and binary image affine
transformations. We show that UKF can successfully train
CSRN to perform both tasks. We systematically compare the
performance of CSRN trained with UKF against that of EKF
and observe that UKF generally converges faster than EKF.
For 2D maze traversal problem, CSRN trained with UKF
performs better than that of EKF in terms of both accuracy
and convergence. For binary image affine transformation

problem, UKF performance is comparable to EKF. We also
show that for large scale complex data processing, UKF
training is faster than that of EKF. This property is desirable
for large image processing tasks. We further compare the
performance of CSRN with GMLP core to that of CSRN with
an Elman core. The results show that CSRN with both these
core architectures trained with UKF are capable of
performing binary image transformations successfully. Our
future aims include introduction of UKF training in CSRN for
more complex image processing tasks such as grey-scale
image processing, face recognition, and pattern recognition.

REFERENCES

[1] X. Pang and P. Werbos, "Neural Network Design for J Function
Approximation in Dynamic Programming," vol. 1, ed:
arXiv:adap-org/9806001, June 1998.

[2] K. Tae-Hyung and D. C. Wunsch, "Modified cellular simultaneous
recurrent networks with cellular particle swarm optimization," IEEE
World Congress on Computational Intelligence (WCCI), Brisbane,
Australlia, June 10-15, 2012, pp. 1-8.

[3] L. L. Grant and G. K. Venayagamoorthy, "Voltage prediction using a
Cellular Network," Power and Energy Society General Meeting, 2010
IEEE, 2010, pp. 1-7.

[4] J. K. Anderson and K. M. Iftekharuddin, "Learning topological image
transforms using cellular simultaneous recurrent networks," Neural
Networks (IJCNN), The 2013 International Joint Conference on, 2013,
pp. 1-9.

[5] R. Ilin, R. Kozma, and P. J. Werbos, "Cellular SRN Trained by
Extended Kalman Filter Shows Promise for ADP,"Neural Networks,
2006. IJCNN '06. International Joint Conference on, 2006, pp.
506-510.

[6] S. Haykin, "Kalman Filtering and Neural Networks." New York:
Wiley, 2001, pp. 221-245.

[7] A. B. Abche, F. Yaacoub, A. Maalouf, and E. Karam, "Image
Registration based on Neural Network and Fourier Transform,"
Engineering in Medicine and Biology Society, 2006. EMBS '06. 28th
Annual International Conference of the IEEE, 2006, pp. 4803-4806.

[8] A. K. Jain, Fundamentals of digital image processing. Englewood
Cliffs, NJ: Prentice Hall, 1989.

[9] T. Salan and K. M. Iftekharuddin, "Large pose invariant face
recognition using feature-based recurrent neural network," Neural
Networks (IJCNN), The 2012 International Joint Conference on, 2012,
pp. 1-7.

[10] P. J. Werbos and P. Xiaozhong, "Generalized maze navigation: SRN
critics solve what feedforward or Hebbian nets cannot," Systems, Man,
and Cybernetics, 1996., IEEE International Conference on, 1996,
vol.3, pp. 1764-1769.

[11] R. E. Kalman and R. S. Bucy, "New Results in Linear Filtering and
Prediction Theory," Journal of Basic Engineering, vol. 83, 1961, pp.
95-108.

[12] S. J. Julier, J. K. Uhlmann, and H. F. Durrant-Whyte, "A new approach
for filtering nonlinear systems," American Control Conference,
Proceedings of the 1995, vol.3, 1995, pp. 1628-1632

[13] E. A. Wan and R. Van der Merwe, "The unscented Kalman filter for
nonlinear estimation," Adaptive Systems for Signal Processing,
Communications, and Control Symposium 2000. AS-SPCC. The IEEE
2000, 2000, pp. 153-158.

[14] R. van der Merwe, E. Wan, and S. Julier, "Sigma-Point Kalman Filters
for Nonlinear Estimation and Sensor-Fusion: Applications to Integrated
Navigation," Proceedings of the AIAA Guidance, Navigation, and
Control Conference, 2004, pp. 1735-1764.

[15] J. K. Anderson, "Cellular Simultaneous Recurrent Networks for Image
Processing," Electrical Engineering, Department of Electrical and
Computer Engineering, University of Memphis, July 2013.

1000

