
 
 

 

  

 
Abstract—Cellular Simultaneous Recurrent Network (CSRN) 

is a unique type of recurrent networks that is designed to solve 
complex optimization problems. This network has already 
shown to successfully solve many challenging problems such as 
2D maze navigation, image registration and affine 
transformation, game of go, and power system voltage profile 
prediction. One of the main challenges of using a complex 
network structure as CSRN is to efficiently train the network. 
Many representative training algorithms such as 
Back-propagation Through Time (BPTT), Extended Kalman 
Filtering (EKF) and Particle Swarm Optimization (PSO) have 
been used to train CSRN. Our prior works with CSRN suggest 
that for large number of network inputs, which is very common 
for large scale maze and image data, computational complexity 
of computing Jacobian in EKF training becomes prohibitive. In 
this paper, we propose Unscented Kalman Filter (UKF) for the 
training of CSRN to avoid computing Jacobian. We show that 
CSRN trained with UKF can solve the 2D maze traversal 
problem with better convergence rate than that of EKF. We also 
report preliminary results on binary image affine 
transformation wherein CSRN trained with UKF offers 
comparable performance to that of EKF.  A comparison has 
been obtained between CSRN with GMLP core versus an Elman 
core trained with UKF for Affine transform results. Finally, we 
show that for more complex applications such as large scale 
image processing, UKF is much faster than EKF in training 
CSRN.  

I. INTRODUCTION 
 Artificial Neural Networks (ANNs) are inspired by human 
and animal neural pathways such that the ANNs can  mimic 
the ability to learn and adapt. One of the main purposes of 
ANNs is to learn various nonlinear functions that are used in 
different applications. Among many widely used ANNs, 
Feed-forward neural networks are considered as universal 
function approximators. However, in many practical 
applications with large number of input variables, function 
approximation may not always be effective with generic 
feed-forward networks since the required approximation 
complexity increases exponentially. In order to solve 
nonlinear functions, more complex networks are needed. 
Cellular Simultaneous Recurrent Network (CSRN) is such a 
 

1 LV, MA and KMI are with the Vision Lab at Department of Electrical 
and Computer Engineering, Old Dominion University, Norfolk, VA 23529 
(email:{lvidy001, malam001, kiftekha}@odu.edu)  

2JKA, was with Department of Electrical and Computer Engineering, 
University of Memphis, Memphis, TN 38018, when part of this work was 
done. (e-mail: keith.anderson@thyssenkrupp.com). 

This work is partially supported through a grant funding from NSF 
(Award #1310353).  

network which has exhibited the ability to solve complex 
optimization problems [1] [2] [3] [4]. Although CSRN has the 
ability to approximate complex functions more successfully 
compared to that of feed-forward or multilayer perceptron 
(MLP) networks [1], the complexity of the network itself 
makes training a challenging task. 
 CSRN was first introduced by Pang et al. [1], wherein the 
authors solved 2D maze traversal problem. The authors have 
shown that the solution of 2D maze navigation problem is 
similar to approximating the J function of adaptive dynamic 
programming (ADP). The idea behind ADP is to approximate 
the exact solution of Bellman's optimality equation given 
below, ܬሺ݅ሻ ൌ min ሺcሺi, μሺiሻሻ ൅ ߛ ෍ B୧୨ሺμሻJሺjሻሻே

௝ୀଵ               ሺ1ሻ 

where, the total estimated cost from the starting state "i" is 
J(i), ߛ  is the discount factor and µ is the policy, N is the 
number of possible states, Bij indicates the probability, c(i, j) 
is the expected cost between any two states “i” and “j”.  
Optimal policy offers the optimal estimated cost [5]. The 
authors in [1] use Back Propagation Through Time algorithm 
(BPTT) to train the network. A single maze is trained with the 
CSRN and tested with the same maze. The paper  shows that 
CSRN is successful to approximate the J function. In [5], the 
authors later show that CSRN can also be more effectively 
trained with Extended Kalman Filter (EKF) algorithm. Here, 
the authors propose that CSRN can be trained with a different 
set of mazes and Fthe network can learn any random maze. 
The authors also show that the use of EKF algorithm rather 
than BPTT improves the speed of convergence by several 
orders. 
 The BPTT is an extension of the standard 
back-propagation algorithm that enables training neural 
networks with feed-back connections. Hence, BPTT 'unfolds' 
the recurrent networks through a certain number of iterations. 
This forms a feed-forward network consisting replications of 
the original network arranged in layers with the feedback 
connections now feeding forward to the replication in front. 
Once the network is 'unfolded', standard back-propagation is 
applied for training. It is shown that in Pang et al. [1] that 
CSRN trained by BPTT for 2D maze traversal converged 
with approximately 1000 epochs. 
 Kalman filters provide computational means to estimate 
the state of a linear system using series of past observations. 
The EKF is a generalization of the Kalman filter which can be 
used for nonlinear system estimation. EKF essentially 
'linearizes' the system by computing the derivatives 
(Jacobian) of the nonlinear function prior to applying the 
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standard Kalman filter [6]. The ability of estimating nonlinear 
functions enables the use of EKF in training neural networks. 
However, the linearization process of EKF involves 
computing the Jacobian of the network which can be 
computationally expensive, especially in the case of CSRNs. 
Further, as the number of cells in CSRN is increased to 
account for more inputs, the size of Jacobian matrix increases 
accordingly. Consequently, for large number of network 
inputs, which is very common for large scale maze and image 
data, computational complexity of computing Jacobian in 
EKF training becomes prohibitive [4].  Furthermore, the 
linear approximation of the nonlinear system model could 
introduce errors in the estimation process [6] which may 
adversely affect convergence of the network.      
   In order to alleviate the drawbacks associated to training 
CSRN with EKF, this paper introduces UKF, for the first time 
in literature, to train CSRNs. The UKF implements the 
unscented transform, which is a method of calculating the 
statistics of a random variable that undergoes a nonlinear 
transformation. The UKF uses the true nonlinear system 
model in the estimation process, and therefore, when used in 
neural network training, it only requires the NN forward 
propagation function in parameter estimation. Consequently, 
one of the main advantages of using UKF to training CSRNs 
is that the complex Jacobian calculations can be avoided. 
Also, it is shown in [6] that UKF state estimates are accurate 
to the second order, while EKF achieves a first order 
accuracy. However, the computation complexity of the UKF 
is similar to that of EKF [6].  
  This work examines the effectiveness of UKF training in 
CSRN for 2D maze traversal and binary image affine 
transformation tasks. The results are compared with a CSRN 
trained with EKF for these applications.    

Section II of this paper outlines the 2D maze traversal 
problem. Section III discusses a brief overview of image 
affine transforms. Section IV introduces the CSRN and 
explains the learning algorithms including UKF. The results 
for CSRN maze traversal, binary image transformations and 
performance comparison of CSRN with both GMLP and 
Elman cores along with computational and performance 
metrics are presented in section V. Finally, section VI 
provides discussions and conclusions.           

II. 2D MAZE TRAVERSAL PROBLEM 
2D maze traversal problem consists of finding the optimal 

path from a starting location of a 2D grid to a certain goal 
avoiding some obstacles.  

 
 
 
 
 
 
 
 

 
Fig. 1 A 5x5 example maze. Grey boxes represent obstacles and ‘G’ 
represents goal. White cells are clear. Walls surrounding the maze make the 
maze size 7x7 

The optimal path can be obtained by computing the J cost 
function using Belman’s equation as shown in Eq. (1). An 
example maze with goal and obstacles is shown in Fig. 1. 
Each cell of the maze grid is either clear or an obstacle. In 
order to find the optimal path, the best strategy is to choose 
the neighboring cell that has the smallest J [1] [5].  

III. AFFINE TRANSFORMATION OF IMAGE 
Affine transformation is a 2D geometric transformation on 

an image. This is basically a mapping technique where the 
locations of the intensity values of an input image are mapped 
to the new location of an output image. Translation, rotation, 
scaling and shear are the type of affine transformations 
performed in an image. The affine transformation between 
two images is given by the following equation, 
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where (xn, yn) and (xo, yo) are the spatial coordinates of the 
corresponding pixel locations in transformed and original 
images, respectively. Rotation is performed by the 2x2 
rotation matrix with an angle of “θ”. “tx” and “ty” represent 
the translation along x and y axis. “Sx” and “Sy” represent the 
scaling parameter in x and y direction [4] [7].  Detail of affine 
transformation can be found in [8]. 

IV. CELLULAR SIMULTANEOUS RECURRENT NETWORK 

A. Introduction to CSRN 
The CSRN is first introduced by Pang et al. [1]. The 

authors have shown that this new type of neural network is 
capable of solving learning problems efficiently when 
compared to MLP. As an example they have solved 2D maze 
traversal problem and NetA/NetB problem.  

The CSRN is a combination of a cellular network and a 
simultaneous recurrent network (SRN). Simultaneous 
recurrent networks are different from standard recurrent 
networks by the fact that the feed-back from the output is 
taken without any delay. Theoretically, the inputs and the 
outputs should be simultaneous. SRNs can mimic the activity 
of human brain. The core part of a CSRN is SRN. 

On the other hand, the cellular network has identical 
elements in each cell which either can be a single neuron or an 
entire network. The elements are arranged in some geometric 
pattern. This kind of structure can be useful to solve problems 
that have some inherent geometry. A cellular architecture is 
shown in Fig. 2. 

 
 
 
 
 
 
 
 
 

Fig. 2 Cellular architecture 
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The primary benefit of cellular architecture is weight sharing 
between different elements. The idea of weight sharing 
significantly decreases the number of weights, as well as the 
time needed to train the network. 
 A CSRN architecture can be constructed by making each 
cell of the cellular network an SRN. CSRN architecture is 
shown in Fig. 3. The grey boxes represent the CSRN cell with 
a SRN core. Each cell of the network receives output from its 
four neighbors from previous iteration as input. Also each cell 
provides output to its neighbors.  
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3 CSRN architecture 
 
Note that the cellular structure of CSRN matches with the 
input pattern. Therefore, each cell of the input can be directly 
fed to each cell of CSRN [9]. The core network is a 
generalized multi-layered perceptron (GMLP). The detail of 
GMLP network can be found in [4]. 
 

B. Back-Propagation Through Time (BPTT) 
Recurrent neural network training can be done using the 

BPTT algorithm. The BPTT algorithm is an extension of the 
regular back-propagation algorithm in which the recurrent 
neural network is 'unfolded' prior to training. Specifically, 
this 'unfolding' process creates a pseudo feed-forward 
network consisting of replications of the original network 
with the recurrent link being fed forward into the successive 
copy. If the network stabilizes, the output may not change in 
further replications; in which case the replication process is 
stopped. The multi-layered feed-forward network resulting 
from the above process can be considered as equivalent to the 
recurrent network and this can be trained using the regular 
back-propagation algorithm. However, the weights in each 
replication must be equal, and therefore, cannot be updated 
individually. Weight updating in BPTT is done by updating 
the weights simultaneously by using the sum of all the 
derivatives. In the case of cellular SRN, the derivatives must 
be calculated and summed over each cell of the network [5]. 
This greatly increases the complexity of back-propagation 
and affects the training efficiency. BPTT was successfully 
applied in CSRN training for maze traversal in [10]. However 
for a single maze, the CSRN learning with BPTT requires 
around 1000 epochs for convergence.   

C. Extended Kalman Filter (EKF) 
The Kalman filters, originally proposed by Kalman [11], 

are commonly used in signal processing applications. Kalman 
filter essentially provides a computational means to 
recursively estimate future states of a system based on past 
observations. The original Kalman filters are linear recursive 
filters that estimate the state of a linear dynamic system. For 
estimation of nonlinear models, an extension of Kalman 
filters referred to as Extended Kalman Filer (EKF) is used. 
Parameter estimation through Kalman filters have been 
utilized in neural network training [6]. In this case, the neural 
network weights are regarded as the parameters to be 
estimated, and the neural network outputs are regarded as the 
observations of the system. The basic idea of EKF is to 
linearize the system model at each iteration prior to applying 
standard Kalman filter [6]. The linear approximation of the 
nonlinear model is performed by computing the partial 
derivative matrices (Jacobian) of the nonlinear state transition 
and observation functions.  In parameter estimation for neural 
networks, the state transition and observation equations are 
given as, 

 ௧ܹାଵ ൌ ௧ܹ ൅  ௧, (3)ߛ
 and 
 ௧ܻାଵ ൌ ሺܨ ௧ܹ, ௧ሻݑ ൅  ௧. (4)ߟ

 
In Equation (3), the system state or the neural network 
weights are denoted by ௧ܹ at time t and the process noise is 
denoted by  ߛ௧. ݑ௧ represents the input to the neural network. 
In the observation equation (Equation 4), ௧ܻାଵ  denotes the 
observation (NN output) at time t+1,and F  denotes the 
forward propagation function of the neural network. ߟ௧ 
represents the measurement noise. Here, for EKF, the 
Jacobian matrix [6] is calculated using standard 
back-propagation or BPTT for feed-forward and recurrent 
networks.  

Ilin et al. in [5] successfully trained CSRN with EKF for 
maze navigation. Anderson et al. [4] used the CSRN trained 
with EKF for topological image transforms. The authors 
report a large reduction in training time with EKF. For an 
example, CSRN trained with EKF for a single maze 
converges within 15 to 30 epochs while that with BPTT 
requires approximately 1000 epochs. However, the Jacobian 
matrix required in EKF parameter estimation for CSRN is 
calculated using the BPTT algorithm, which can be quite 
complex due to the structure of the CSRN. Furthermore, the 
computation of Jacobian in CSRN trained with EKF can be 
cumbersome as discussed above [4].    

D. Unscented Kalman Filter (UKF) 
In this work, we propose UKF for the training of CSRN. 

The UKF was first introduced by Julier et al. [12] and was 
further developed by van der Merwe et al. [13]. The main 
difference between EKF and UKF lies in the method of 
representing random variable for the propagation through a 
dynamic system [6]. In EKF, the state of the system, 
approximated by a Gaussian random variable is propagated 
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through a first order linear estimate of the nonlinear system 
[6]. This may introduce errors in the transformed mean and 
covariance of the random variable [6]. In comparison, UKF 
attempts to solve this problem by first sampling the state 
approximation and choosing the best sample points that 
represents the true mean and covariance of Gaussian random 
variable. These sample points are then propagated through the 
true nonlinear system [6]. The transformed sample points 
capture the transformed mean and covariance with a second 
order accuracy. The UKF utilizes unscented transformation, 
which is a method of calculating the statistics of a random 
variable that goes through a nonlinear transformation.   

Consider an n-dimensional Gaussian random variable, x 
with a mean ߤ௫, and covariance  ௫ܲ, that is transformed with 
by non-linear function g as follows, 

 ܻ ൌ ݃ሺݔሻ (5) 
        

Instead of computing a linear approximation of g as is done in 
EKF, the unscented transform computes a minimal set of 
weighted sample points that captures the true mean and 
covariance of the prior, x. These samples are referred to as 
sigma points. The sigma points, when passed through the true 
nonlinear function, g, captures the mean and covariance of the 
posterior y, with a minimum second order accuracy [14].  

A number of 2݊ ൅ 1  sigma points must be selected to 
accurately capture the mean and covariance of the prior, x. 
The sigma points (ࢆሾ௜ሿሻ are located at the mean and along the 
main axes of covariance. The sigma points are calculated as, 

ሾ଴ሿࢆ  ൌ  ௫, (6)ߤ
ሾ௜ሿࢆ   ൌ ௫ߤ ൅ ሺඥሺ݊ ൅ .ሻߣ ௫ܲሻ௜, ݅ ݎ݋݂ ൌ ݊ ݋ݐ 1  (7) 
ሾ௜ሿࢆ   ൌ ௫ߤ െ ሺඥሺ݊ ൅ .ሻߣ ௫ܲሻ௜ି௡, ݅ ݎ݋݂ ൌ ݊ ൅ ݋ݐ 1 2݊  (8) 
and 
ߣ  ൌ ଶሺ݊ߙ  ൅ ݇ሻ െ ݊ (9) 
 
where n is the dimensionality of x and ࢆሾ௜ሿ is the ith sigma 
point. The parameters α and k are scaling parameters that 
adjusts the spread of sigma points with respect to the mean.  

The sigma points are then passed through the nonlinear 
function as follows,  

ሾ௜ሿݕ  ൌ ݃൫ࢆሾ௜ሿ൯. (10) 
 
The mean and covariance of the posterior y, can now be 

approximated from a weighted sample mean and covariance 
of the transformed sigma points ݕሾ௜ሿ as [6], 

௬ߤ  ൌ ෍ ௠ሾ௜ሿ.ଶ௡ݓ
௜ୀ଴  ሾ௜ሿ, (11)ݕ

and 

௬ܲ ൌ ෍ ௖ሾ௜ሿ.ଶ௡ݓ
௜ୀ଴ ሺݕሾ௜ሿ െ ሾ௜ሿݕ௬ሻሺߤ െ  ௬ሻ் (12)ߤ

with the weights computed as, 
௠ሾ଴ሿݓ  ൌ ݊ߣ ൅  (13) ,ߣ

௖ሾ଴ሿݓ  ൌ ఒ௡ାఒ ൅ ሺ1 െ ଶߙ ൅  ሻ, (14)ߚ
and ݓ௠ሾ௜ሿ ൌ ௖ሾ௜ሿݓ ൌ 12ሺ݊ ൅ ሻߣ ݅ ݎ݋݂      , ൌ ݋ݐ 1 2݊ (15) 

 
where ݓ௠ሾ௜ሿ  and ݓ௖ሾ௜ሿ are the mean and covariance weights 

of the ith sigma point, and parameter ߚ) ߚ ൌ 2 is optimal for 
Gaussian distributions [6]) is chosen to incorporate prior 
knowledge of the underlying Gaussian. 

The UKF implements a Bayesian filter using the unscented 
transform [15]. When using UKF for training neural 
networks, the problem is posed as a parameter estimation 
case, similar to EKF. Here, the NN weights are considered as 
the state of the system, and the system equations utilized are 
given as, 

௧ାଵݓ  ൌ ௧ݓ ൅  ௧, (16)ߝ
and ݕ௧ ൌ ,௧ݓሺܩ ௧ሻݑ ൅  ௧, (17)ߜ

 
where (16) is the state transition and (17) is the measurement 
equations respectively, ߝ௧  and ߜ௧  are zero mean Gaussian 
additive process and measurement noise with covariance Qt 
and Rt respectively. The nonlinear transformation G is the 
forward propagation function of the neural network and ݕ௧  is 
the resulting output of the neural network.  

The current estimate of the system state is given by the 
mean ߤ௞௪ and its covariance ௞ܲ௪. The UKF based NN training 
starts with the previous estimate of the system state 
௞ିଵ௪ߤ) , ௞ܲିଵ௪ ሻ, the current input to the neural network ݑ௞, and 
the NN target output Tk. The Bayesian filter prediction step is 
given as, 

ҧ௞௪ߤ  ൌ ௞ିଵ௪ߤ , (18) 
and   തܲ௞௪ ൌ ௞ܲିଵ௪ ൅ ܳ௞ିଵ. (19) 
 
The sigma points are then extracted as shown in (6) to (8) to 

form the vector, 
௞ࢆ  ൌ ቈߤҧ௞௪ ҧ௞௪ߤ ൅ ටߛ തܲ௞௪         ߤҧ௞௪ െ ටߛ തܲ௞௪቉, (20) 

 
where, ߛ ൌ √݊ ൅ ߣ . Next, the sigma points are passed 
through the non-linear measurement process equation to 
obtain the measurement update, 
௞ሾ௜ሿࢅ  ൌ ,௞ሾ௜ሿࢆሺܩ  ௞ሻ. (21)ݑ
 
The updated state estimate statistics are computed using 
transformed sigma points Yk as shown in equations (11) and 
(12)  to obtain, 
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௞௬ߤ ൌ ෍ ௠ሾ௜ሿ.ଶ௡ݓ
௜ୀ଴  ௞ሾ௜ሿ, (22)ࢅ

 

௞ܲ௬ ൌ ෍ ௖ሾ௜ሿ.ଶ௡ݓ
௜ୀ଴ ሺࢅ௞ሾ௜ሿ െ ௞ሾ௜ሿࢅ௞௬ሻሺߤ െ ௞௬ሻ்ߤ ൅ ܴ௧, (23) 

and 

௞ܲ௪,௬ ൌ ෍ ௖ሾ௜ሿ.ଶ௡ݓ
௜ୀ଴ ሺࢅ௞ሾ௜ሿ െ ௞ሾ௜ሿࢅҧ௞௪ሻሺߤ െ ௞௬ሻ்ߤ  (24) 

 
The Kalman gain is computed using above estimates given as, 
௞ܭ  ൌ ௞ܲ௪,௬. ሺ ௞ܲ௬ሻିଵ. (25) 
 
Finally, the system estimation updates are computed for the 
current state as follows, 
௞௪ߤ   ൌ ҧ௞௪ߤ ൅ ௞ሺܭ ௞ܶ െ  ௞௬ሻ, (26)ߤ
and ௞ܲ௪ ൌ തܲ௞௪ ൅ .௞ܭ ௞ܲ௬. ௞்ܭ . (27) 
 
The UKF based training for the CSRN is performed using the 
same steps by taking CSRN forward propagation function as 
the nonlinear observation function G in equation (15). The 
UKF training algorithm for CSRN is shown in Figure 4 [15]. 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 4 UKF algorithm 
 

Unlike the EKF,  the UKF algorithm in Fig. 4 does not need 
a linear approximation process. UKF uses the true nonlinear 
observation function for its estimation. Therefore UKF does 
not have the Jacobian calculation related problems inherent to 
EKF. Furthermore, as UKF results are accurate to the 2nd 
order, theoretically it should outperform EKF in weight 
estimation process.  

V. RESULTS AND DISCUSSION 

A. Maze Navigation  
The CSRN is trained using UKF algorithm to solve 2D 

maze traversal problem. First, a single maze is chosen to train 
and test the network. The same experiment is repeated with 
EKF based training. The training is obtained over 200 epochs 
for both EKF and UKF. Note the number of epochs in this 
work is fixed to different upper limits by observation.   The 
experiment is performed in an Intel© Core© i7 2GHz machine 
with 8 GB RAM. All the experiments are performed using 
this machine. Figure 5(a) shows the target maze, Fig. 5(b) 
shows the J function approximation using UKF and Fig. 5(c) 
shows the J function approximation using EKF respectively. 
Note Fig. 5 clearly shows that UKF offers better J function 
approximation than EKF. 

 
 
 
 
 
 
 
 
 
                                            (a) 
 
 
 
 
 
 
                                         
 
 
                            (b)                                                        (c) 
 

Fig. 5 J function approximation using CSRN trained by EKF and UKF. (a) 
Target maze, (b) J function approximation with UKF, (c) J function 
approximation with EKF 

 
Figure 6 shows sum squared error (SSE) over the entire 

200 epochs for both EKF and UKF. It can be clearly seen that 
UKF converges faster than EKF. The network converges after 
20 epochs when trained by UKF compared to that of 50 
epochs by EKF. The final SSE is also smaller for UKF 
(0.0654) than EKF (8.0611).  

Next the CSRN is trained using UKF with 10 randomly 
generated mazes and then tested with 6 completely different 
random test mazes. The network is trained with 200 epochs. 
The purpose of this experiment is to investigate the ability of 
the CSRN network trained with UKF to learn from a set of 
random mazes and to apply that knowledge to navigate an 
unseen maze. 

By observing the outputs it can be seen that the network is 
capable of correctly predicting the optimal path from a 
starting point to the goal.  

 
 
 
 

Randomly assign the network weights, ݓ଴ and set ߤ௞ିଵ௪ ൌ  .଴ݓ

Calculate initial covariance matrix, ଴ܲ௪ and set ௞ܲିଵ௪ ൌ ଴ܲ௪. 

For each epoch 

For each training maze/image 

Perform Bayesian prediction step given by (18) and (19) 

Compute sigma points using (5) - (9) 

Compute Measurement updates: CSRN 

forward-propagation with sigma points (17)   

Compute measurement update statistics using sigma point 

weights (22)-(24) 

Compute the Kalman gain (25) 

Compute the state estimation update (26), (27)  

End 

End 
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Fig. 6 Sum squared error over epochs for EKF and UKF 
` 

  Figure 7 (a) and (b) shows one of the testing results and its 
target maze.     

 
 
 
 
 
 
 
 
                        (a)                                                            (b) 

Fig. 7 Testing result, (a) A testing maze, (b) Target maze of (a) 
 
The same experiment is performed using EKF for 

comparison. Figure 8 shows the testing maze sum squared 
error (SSE) for EKF and UKF for the entire 200 epochs.  Here 
again UKF offers significant improvement over EKF. The 
detailed result of this specific experiment with multiple 
random mazes for CSRN trained with EKF can be found in 
[2]. 

Note in Fig. 8, the UKF testing appears somewhat unstable 
representing random fluctuations in the error curve. This may 
be due to local minima in UKF optimization process; 
however, this needs further investigation. Furthermore, the 
overall error in UKF is still much less than that for EKF.   

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

Fig. 8 Comparison of EKF and UKF in terms of SSE (Testing) 
 
The processing time for UKF and EKF to train the network 

with a single maze and with ten mazes is shown in Table I.  

TABLE I 
TRAINING TIME OF UKF AND EKF 

 

 
As expected, Table I shows that UKF training is slower 

than EKF. The higher processing time in UKF is due to the 
fact that each sigma points generated in the unscented 
transform process has to propagate through the nonlinear 
observation function (CSRN forward propagation) 
sequentially. Since the number of sigma points generated is 
related to the dimensionality of the state random variable 
(CSRN network weights), having a relatively large number of 
weights in CSRN increases the processing time. This shows 
that even though UKF training is slower than EKF, it 
produces better convergence. This suggests that CSRN 
trained with UKF is capable to approximate J function for 
ADP better than that trained with EKF. 
 

B. Binary Image Transformation 
 The CSRN trained with EKF has been successfully 
implemented for binary image affine transformation [4]. In 
this section CSRN trained with UKF is evaluated for binary 
image transformations. Several key image statistics 
introduced in [4] have been used in this paper to evaluate the 
performance of binary image transformation. Brief 
description of these metrics is given below [4]. 

 Jacc - function accuracy. Each network cell output is 
compared with the corresponding transformation function 
value for that cell. When the values are equal it is 
considered as a match. Total number of match is then 
normalized by the number of cells to get the accuracy. 

 IMacc - image accuracy. Pixel by pixel comparison of the 
output image and the target image. If the pixel values are 
same, it is considered as a match. The ratio of the number 
of matched pixels and the total number of pixels gives the 
percentage image accuracy. 

 IMcr - Normalized cross correlation between output image 
and target image. Correlation value closer to 1 means 
better similarity between the images.   

Several binary images of size 15x15 pixels is used for 
evaluation and comparison. A simple binary cross image is 
used for the experiments. The results of binary image 
transformations are given below.  

1) Translation 
  For the translation task, a binary cross image of size 5x5 
overlayed on a 15x15 blank image is used. The CSRN is 
trained with UKF using 10 training images each moved by 
one pixel in x direction and trained with 50 epochs. The 
network is then tested with an image translated by 10 pixels. 
The same experiment is performed by CSRN trained with 
EKF for comparison. Figure 9(a) shows the target image, Fig. 
9(b) shows the input image, Fig. 9(c) shows the CSRN output 
trained with UKF and Fig. 9(d) shows CSRN output trained 
with EKF, respectively.  

 Processing Time (Seconds) 
UKF EKF 

Training one maze 16.734 1.81671 

Training ten mazes 162.93 21.22 
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            (a)                           (b)                            (c)                          (d)      
 
Fig. 9 CSRN image translation results, (a) Target image, (b) Input image, (c) 
Output of CSRN trained with UKF, (d) Output of CSRN trained with EKF. 
For UKF and EKF the network achieves IMacc = 100%,  Jacc = 86.67% for 
UKF and 60% for EKF.  
 
 In Fig. 9, for both UKF and EKF the network achieves 100% 
image accuracy in translating the test image. However, UKF 
performs better in approximating the transformation function 
values. Table II summarizes the binary translation results for 
CSRN trained with UKF and EKF respectively. Similar to 
maze traversal case, CSRN trained with UKF requires more 
time when compared to that with EKF. 
SSE of translation task over 50 testing epochs for both UKF 
and EKF is shown in Fig. 10. Here again the fluctuations in 
the UKF error curve can be observed as discussed above. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 10 SSE of translation over 50 epochs for EKF and UKF 
 
 2) Rotation 
 Next UKF trained CSRN is applied for rotation 
transformation. Rotation is a more complex transformation 
compared to translation in which each pixel in an image is 
subjected to different transformation values. Therefore, 
rotation evaluates the ability of CSRN trained with UKF to 
approximate complex transformation functions. For the 
rotation case, the same reference image in translation 
experiment is used to generate the training image set. The 
CSRN is trained with 11 training images each rotated by 20 
that ranges from 00 to 200. The network is then tested with an 
image rotated by 16 degrees. The test is also conducted with 
EKF trained CSRN for comparison. The rotation results are 
shown in Fig. 11. Note the number of training images and all 
other values are set by observation in this work.  
 Although the result of UKF and EKF in Fig. 11 appears 
similar, UKF offers slightly better image accuracy when 
compared to EKF. Further, the function approximation 
accuracy is higher in UKF.  
 

 

 

 
 
            (a)                           (b)                            (c)                          (d)      
 
Fig. 11 CSRN image rotation results, (a) Target image, (b) Input image, (c) 
Output of CSRN trained with UKF, (d) Output of CSRN trained with EKF. 
For UKF and EKF the network achieves IMacc = 94.22% & 93.33%,  Jacc = 
61.33% & 52.00% for UKF and EKF respectively 

 
3) Scaling  
Finally Scaling is performed using CSRN trained with 

UKF and EKF. Scaling is also a complex transformation 
operation similar to rotation. The experiment is performed on 
down scale operation, for an example. The CSRN is trained 
for 50 epochs with four training images generated from a 
reference image of size 7x7 binary cross overlayed on a 
15x15 blank background image. The four training images are 
constructed such that each image is a 85% scaled down 
version of the previous image to produce 62%, 73%, 86% and 
100% of the original image size respectively. The testing is 
performed on the 73% scaled version. Figure 12 shows the 
scaling results.   

 

 
 
            (a)                           (b)                            (c)                          (d)      
 
Fig. 12 CSRN image scaling results, (a) Target image, (b) Input image, (c) 
Output of CSRN trained with UKF, (d) Output of CSRN trained with EKF. 
For UKF and EKF the network achieves IMacc = 94.67% & 92.44%,  Jacc = 
35.56% & 30.22% for UKF and EKF respectively 
 
Table II summarizes all the affine transformation results. 
 

TABLE II 
AFFINE TRANSFORMATION RESULT 

 
 
 
 
 
 
 
 
Table II shows that UKF shows comparable results for 
transformed image accuracy metric, IMacc, and better 
transformation function approximation accuracy metric Jacc 
when compared with EKF. 

In order to compare the CSRN network performance with a 
different core architecture, an Elman recurrent core is 
implemented. Unlike the GMLP core used, the Elman core is 
designed with three layers, an input layer, a hidden layer and 
an output layer. The comparison of performance between the 
CSRN with GMLP core and the CSRN with Elman core 
trained with UKF is shown in Table III. The comparison is 
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shown using the metric, image accuracies (IMacc), that 
represents the difference between target and output images. 

 
TABLE III 

PERFORMANCE COMPARISON BETWEEN CSRN WITH GMLP CORE VS. 
ELMAN CORE TRAINED WITH UKF 

 
Transformation CSRN with 

GMLP Core 
CSRN with 

ELMAN Core 
Translation (%) 100 100 

Rotation (%) 94.22 95.56 
Scaling (%) 94.67 94.67 

 
Table III shows that the performance of CSRN with GMLP 

core is comparable to that of CSRN with Elman core.  
 The results in Tables II show that the processing time for 
UKF is higher than EKF as explained above. However, note 
also that UKF does not require computation of Jacobian 
matrix unlike EKF. Therefore, UKF training is expected to 
offer faster training involving larger input array with more 
complex CSRN structures with that of EKF. To investigate 
this hypothesis, an experiment is conducted on binary image 
translation using images of different sizes. The CSRN is 
trained with both UKF and EKF over 10 epochs for each 
image size. Other parameters are set similar to the previous 
binary image translation experiment.  The processing time for 
different image sizes are shown in Table IV. 
 

TABLE IV 
PROCESSING TIME OF UKF AND EKF FOR DIFFERENT IMAGE SIZE 

 

Image Size Processing Time (Minutes) 
UKF EKF 

15x15 0.32 0.16 
25x25 0.87 0.86 
35x35 1.89 3.57 
45x45 3.72 12.06 

 
Table IV shows that computation using UKF is faster as 
image size increases. For a 15x15 image the processing time 
of UKF is twice than that of EKF. However, for an image of 
size 45x45 the processing time of UKF is one fourth of that of 
EKF. Therefore, we conclude that the CSRN trained with 
UKF is more efficient in solving more complex problems 
such as large scale image processing and maze traversal when 
compared to that of EKF. 

VI. CONCLUSION 
In this work, we introduce UKF as a learning algorithm for 

CSRN. We have investigated the performance of a CSRN 
trained with UKF for solving two representative problems 
such as 2D maze navigation and binary image affine 
transformations. We show that UKF can successfully train 
CSRN to perform both tasks. We systematically compare the 
performance of CSRN trained with UKF against that of EKF 
and observe that UKF generally converges faster than EKF. 
For 2D maze traversal problem, CSRN trained with UKF 
performs better than that of EKF in terms of both accuracy 
and convergence. For binary image affine transformation 

problem, UKF performance is comparable to EKF. We also 
show that for large scale complex data processing, UKF 
training is faster than that of EKF.  This property is desirable 
for large image processing tasks. We further compare the 
performance of CSRN with GMLP core to that of CSRN with 
an Elman core. The results show that CSRN with both these 
core architectures trained with UKF are capable of 
performing binary image transformations successfully. Our 
future aims include introduction of UKF training in CSRN for 
more complex image processing tasks such as grey-scale 
image processing, face recognition, and pattern recognition.    
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