

A Fast Learning Variable Lambda TD Model
Used to Realize Home Aware Robot Navigation

Abdulrahman Altahhan (Author)

College of Computer Information Technology

American University in the Emirates

United Arab Emirates

abed.tahhan@gmail.com

Abstract— This work describes a fast learning robot goal-

aware navigation model that employs both gradient and

conjugate gradient Temporal Difference (TD, TD-conj) methods.

It builds on the fact that TD-conj was proven to be equivalent to

a gradient TD method with a variable lambda under certain

conditions. Based on straightforward features extraction process

combined with goal-aware capabilities provided by whole image

measure, the model solves what we call u-turn-homing

benchmark problem without using landmarks. Only one goal

snapshot was used with agent facing the goal directly. Therefore

a novel threshold stopping formula was used to recognize the goal

which is less sensitive to the agent-goal orientation problem.

Unlike other models, this model refrains from artificially

manipulating or assuming a priori knowledge about the

environment, two constraints that widely restrict the applicability

of existing models in realistic scenarios. An on-line control

method was used to train a set of neural networks. With the aid

of variable and fixed eligibility traces, these networks

approximate the agent’s action-value function allowing it to take

close to optimal actions to reach its home. The effectiveness of the

model was experimentally verified on an agent.

Keywords—TD-conj; Home Aware; Variable λ TD; U-Turn-

Homin; Orientation Insensitive Thersholding

I. INTRODUCTION

Reinforcement learning (RL) with function approximation has

been shown in some cases to converge slowly [1].

Bootstrapping methods like temporal difference (TD) [2]

although was proved to be faster than other RL methods, such

as residual gradient established by Baird [3], it can still be slow

[4]. TD can be speed up by using it with other gradient types.

In [1], for example, TD along with the natural gradient has

been used to boost learning.

Slowness in TD methods can occur due to different reasons.

The frequent cause is when the state space is big, high-

dimensional or continuous. In this case, it is hard to maintain

the value of each state in a tabular form. Even when the state

space is approximated in some way, using artificial neural

networks (ANN) for example, the learning process can become

slow because it is still difficult to generalize in such huge

spaces. In order for TD to converge when used for prediction,

all states should be visited frequently enough. For large state

spaces this means that convergence may involve many steps

and will become slow. Actor-critic, for example, uses TD

update in its critic part. It maintains a structure for choosing the

actions according to a learned policy (the actor), that is separate

from the structure to estimate the value-function (the critic). In

those methods, when the gradient of the performance function

is used to explicitly estimate the policy (policy gradient

methods), convergence was shown to be slow because of the

high variance of their gradient estimates [1]. Other RL methods

such as Q-learning, although convenient for control, can suffer

from both divergence and slow convergence [5].

Numerical techniques have been used with RL methods to

speed up its performance. For example, [6] used a multi-grid

framework which is originated in numerical analysis to

enhance the iterative solution of linear equations. Whilst, other

attempt to speed up RL method performance in multi-agent

scenario, [7], by using a supervised approach combined with

RL to enhance the model performance.

The idea of using the conjugate gradient (CG) with TD has

been explored before [8, 9]. Their early experiments confirmed

that using such a combination can enhance the performance of

TD. In their study [10] a special emphasis is given on the

implementation details where an effort is made to save

computation costs by adopting the Møller’s scaled conjugate

gradient algorithm (SCG) [11]. SCG differs from CG in that it

avoids the line search for the step size
t by introducing a new

factor ρ that is raised or lowered within each iteration, during

execution, in order to regulate the indefiniteness of the Hessian

matrix of the error function. Nevertheless, no formal theoretical

study has been conducted which disclose the intrinsic

properties of such a combination. The present work is an

attempt to fill the former gap.

The outline of the paper is as follows. Firstly, a variable λ
TD is summarized. Then a detail description of the novel
navigation model and its components is presented in section 3.
The extensive simulation experiments and their results are
shown in sections 4 and 5, followed by conclusion and further
work in section 6.

II. VARIABLE LAMBDA TD

A. Biological Conformation and Plausibility

There can be many ways to vary λ, and some might be
heuristic [1]. However, there is an interesting canonical way

2014 International Joint Conference on Neural Networks (IJCNN)
July 6-11, 2014, Beijing, China

978-1-4799-1484-5/14/$31.00 ©2014 IEEE 1534

that is underpinned by following the conjugate gradient of the
TD error instead of the gradient [12]. This forces the eligibility
traces to vary the deepness of the blame (credit assignment),
for taking previous decisions, depending on the current TD
error that is constantly opposed according to the conjugate
gradient direction.

The performance advantage of using this type of variable λ
TD over fixed λ TD is confirmed by the comparative study
performed by [12]. In summary, those advantages are
recapitulated by: acquiring better or comparable performance
with less training and parameters changes and with less
execution time. In other word, the conjugate variable λ TD is
more efficient than fixed λ TD. What is more, using variable λ
TD has a biological justification of varying the level of
learning readiness (attentiveness) from a situation to another,
depending on previous experience and other internal factors,
e.g. attention. Also it can be related to varying the deepness of
thinking, where it is not always beneficial to propagate deeply
through past experience in every coming situation; some
situations need shallow thinking for the best interest of the
animal.

Results from [12] confirms that fixing λ to force the
learning process to take advantage of the longest possible past
experience is not always the right approach. It is argued that
doing so can exhaust the organ without apparent advantages.
Whereas, varying the deepness of the eligibility traces,
although might initially be thought to have inferior
performance, has been proved to achieve a comparable, if not
better, results than forcing the agent to think always to the
deepest possible extent.

We think that this is an interesting and important
proposition and it worth to bring the attention to it by
presenting a model that employs it successfully. This paper
presents a comprehensive biologically-inspired model for robot
navigation that uses variable λ TD to achieve autonomy in
learning to visually navigate towards a pre-specified goal
location. To the best knowledge of the author variable λ TD
has not been used before in robot navigation by other
researchers.

B. TD-Conj Methods

In general TD is a reinforcement learning method that tries
to calculate or approximate the expected future accumulated
rewards/cost due to following some policy . A policy is a

mapping between a states and actions that specifies what the
agent should do in a certain state s . It guides this process

through the TD error t which is defined as:

)()(11 tttttt sVsVr (1)

Where value function)(tt sV is the expected future

accumulated rewards, ts denotes a state at time step t, r is for

the reward/cost and is a decay factor.)(tt sV can be

approximated through a linear approximation of parameters
t

and state’s features t

 as:

t

T

ttt sV

)((2)

ttt sV
t

)((3)

In this case an update rule for fixed λ TD can be written as:

ttttt e

 1 (3)

ttt ee

 1 (4)

Here
te

is the eligibility trace that specifies how deep the

blame is to be for the current cost. While the update rules for

conjugate variable λ TD can be written as:

)(

1

conj

ttttt e

 (5)

t

conj

t

conj

t

conj

t ee

)(

1

)()((6)

Where)(conj

t can be given in any of the following forms:

2

11

11)(3

2

1

2

1

)(2

111

11)(1 ,.,

tt

t

T

ttttconj

t

t

t

t

tconj

t

t

T

tttt

t

T

ttttconj

t

e

(7)

Since]1,0[then)(conj

t should satisfy that]1,0[)(conj

t .

From an application point of view, it suffices to reset)(conj

t

value to the boundaries of this condition whenever its value
goes beyond those boundaries1.

C. Biological Interpretation of)(conj

t

It can be realized that both
t and

1t are involved in the

calculations of eligibility traces. This means that the relative
rate-of-changes between consequent steps of TD error plays an
important role in changing)(conj

t . For simplicity we discuss the

second form of)(conj

t which involves two terms; the first is the

rate of change of TD error
1/ tt and the second is the rate of

change of the norm of current and previous feature vectors
2

1

2

/ tt

. Both has a biological interpretation and)(conj

t

tries to strike a good balance between both. The
1/ tt term

implies that if we compared the current and previous errors and
found that the previous error is bigger it means that we should
allow future steps to blame the decision made at the previous
step. While, if we found that the current error is bigger than
the previous error it means that we need to allow future steps to
blame the current step mainly without propagating the error to
previous steps as they are guiltless of the current error.
Cognitively, it means either that “I must have done a mistake in
past states so in the future I will blame those estimates”, or “it
seems that I am doing some mistakes in the current state so in
the future I will blame this state estimate”. Also the second
term is more problem specific. It expresses that, if there are
more features present in the current state than the previous,

1 Any method that depends on TD updates such as Sarsa or Q-learning

can take advantage of the more efficient and more biologically-plausible
update rules of conjugate variable λ TD

1535

then this state is more important and it should undergo more
learning in the future than the previous state, and vice versa.

III. 3. NAVIGATION VARIABLE Λ SARSA MODEL

For visual navigation it is assumed that the image at each
time step represents the current state, and the state space S is
the set of all images, or views, that can be taken for any
location (with specific orientation) in the environment. This
complex state space has two problems. Firstly, each state is of
high dimensionality, i.e. it is represented by a large number of
pixels. Secondly, the state space is huge, and a policy cannot be
learned directly for each state. Instead, a feature representation
of the states is used to reduce the high-dimensionality of the
state space and to gain the advantages of coding that allows a
parameterized representation to be used for the value function
[3]. In turn, parameterization permits learning a value function
representation that can easily accommodate new unvisited
states by generalization. Eventually, this helps to solve the
second problem of having to deal with a huge state space.

The feature representation can reduce the high-
dimensionality problem simply by reducing the number of
components needed to represent the views. Hence, reducing
dimensionality is normally carried out at the cost of less
distinctiveness for states belonging to a huge space. Therefore,
the features representation of the state space should strike a
good balance between distinctiveness of states and reduced
dimensionality. This assumption is of importance towards the
realization of any RL model with a high-dimensional states
problem.

In a previous work done by the author three snapshots has
been taken by the agent for the goal in order to accommodate
for the different angles in which the robot can come towards
the goal which worked well. However, this has expanded the
features vectors and contributed to a more ambiguous ways of
specifying the similarity threshold through trial and error. This
is because the other two angle snapshots were acting as
dissimulators for the goal when the agent is coming from the
third angle and has made the best positions features less similar
to the goal. It was thought that such processing is redundant
and unnecessary if a better approach can be found which
should allow the agent to use one snapshot for the goal. The
idea is to compare the current image with one direct snapshot
only, but at the same time find a parameterized specification
for the similarity threshold. Here we are referring to the
threshold that specify whether the current image is similar
enough with the goal to issue a stopping command for the
agent declaring that it reaches the goal and achieved the current
episodic learning to move to the next episode.

A. State representation and home information

One representation that maintains an acceptable level of
distinctiveness and reduces the high-dimensionality of images
is the histogram. A histogram of an image is a vector of
components, each of which contains the number of pixels that
belong to a certain range of intensity values. This effectively
encodes the input state space into a coarser feature space.
Therefore, for a coloured image, the histogram of each colour

channel is a vector of components; each component contains
the number of pixels that lie in the component's interval (bin).

Fig. 1. Sample of a stored view taken for a goal location with its associated

histograms in a simulated environment.

A histogram does not preserve the distinctiveness of the
image, i.e. two different images can have the same histogram,
especially when low granularity bin intervals are chosen.
Nevertheless, histograms have been found to be widely
acceptable and useful in image processing and image retrieval
applications [4].

The histogram alone does not give a direct indication of the
distance to the goal location. Although the assumption that the
goal location is always in the robot's field of view will not be
made, by comparing the current view with the goal view(s) the
properties of distinctiveness, distance and orientation can be
embodied to an extent in the RL model. Since the home
location can be approached from different directions, the
recognition of the home from different angles must be
accommodated either by different snapshots from different
angles or by the similarity measure itself that is able to tell
whether a goal was reached form an angle. In this work the
latter approach has been taken. One snapshot of the home
location is taken before the learning stage. This snapshot
defines the goal location and is the only information required to
allow the agent to learn to reach its goal location starting from
any arbitrary position in the environment (including those from
which it cannot see the home, i.e. the agent should be able to
reach a hidden goal location). Figure 1 shows a sample of a
stored view of a goal location and its associated histogram
taken in a simulated environment.

B. Features vectors and differential radial basis

representation

The difference between a histogram of each channel of the
current view and those of the stored views is taken and passed
through a radial basis function (RBF) component. Hence it is
called differential radial basis representation. This provides the

features space nS : representation (9) which is used

with the Sarsa algorithm, described later:

2

2

ˆ2

),()(
exp),(

i

jcvhcsh
jcs iti

ti

 (8)

Index t stands for the time step, j for the jth stored view, and
c is the index of the channel, where the RGB representation of
images is used. Accordingly,),(jcv is the channel c of the jth

1536

stored view,),(jcvhi
 is histogram bin i of channel),(jcv ,

and)(csh ti
 is histogram bin i of channel c of the current

view. The number of bins will have an effect on the structure
and richness of this representation and hence on the model.

Further, the variance of each bin will be substituted by an
average of the variances of those bins:

T

t

i thTi

1

22)()11(̂ (9)

 22),()()(jcvhcshth itii (10)

where T is the total number of time steps.

To normalize the feature representation the scaled

histogram bins Hcsh ti /)(are used where we have that:

 Hcshjcvh
n

i ti

n

i i)(),((11)

assuming that n is the number of features. It can be realized

that H is a constant and is equal to the number of all pixels
taken for a view. Consequently, the final feature calculation
takes the form:

22

2

ˆ2

),()(
exp),(

H

jcvhcsh
jcs iti

ti
 (12)

It should be noted that this feature representation has the
advantage of being in the interval [0 1], which will be
beneficial for the reasons discussed in the next section.

The feature vector of the current view (state) is a union of
all of the features for three channels and each stored view, as
follows:

),,,,(),()(1

1

3

11

niti

B

ic

m

j

t jcss

 (13)

where m is the number of stored views for the goal
location, and B is the number of bins to be considered. A value
in the range of [0 255] will be used for each pixel, hence the
dimension of the feature space is given by:

m
b

roundmBn)1)
256

((33 (14)

Where b is the bin’s size. Different bin sizes give different
dimensions, which in turn give different numbers of

parameters

that will be used to approximate the value

function.

C. NRB similarity measure and the termination condition

To measure the similarity between two images, the sum of
all the Normalized Radial Basis (NRB) features defined above
can be taken and then divided by the feature dimension. The
resultant quantity is scaled to 1 and it expresses the overall
belief that the two images are identical:

 nssNRB
n

i tit

1
)((15)

D. Action space and cyclic learning

In order to avoid the complexity of dealing with a set of
actions each with infinite speed values (which in effect turns
into an infinite number of actions), the two differential wheel
speeds of the agent are assumed to be set to particular values,
so that a set of three actions with fixed values is obtained. The
set of actions is A = [Left_Forward, Right_Forward,
Go_Forward]. By using actions with a small differential speed
(i.e. small thrust rotation angle) the model can still get the
effect of continuous rotation by repeating the same action as
needed. This is done at the cost of more action steps.

On the other hand, an episode describes the collective
(action, reward, state) learning steps an agent needs to navigate
from any starting location in the environment until it reaches
the goal location. The agent is assumed to finish an episode and
be in the goal location (final state) if its similarity measure
indicates with high certainty that its current view is similar to
one of the stored views. This specifies the episode termination

condition of the model. uppertsNRBIf)(Terminate

Episode. Similarly, the agent is assumed to be in the
neighbourhood of the home location with the desired

orientation
lowertsNRBIf)(where

lowerupper this

situation is called goal-at-perspective.

E. Setting the reward/cost signal

Each time step the robot spend without finding the goal
location has a cost of -1/t. The position signal, expressed by the

current similarity
tNRB , is added to the reward/cost signal.

Thus, as the current location differs less from the home
location, the reward will increase. The third signal is the
increase/decrease in similarity between the current step and the
previous step, which we call the approaching reward. This

signal is defined as
1 tt NRBNRB . Hence, the reward can be

rewritten in the following form:

12/1 tt NRBNRBtr (16)

The two additional reward components above will be
considered only if the similarity of t and t-1 steps are both

beyond the threshold lower to ensure that home-at-perspective

is satisfied in both steps. This threshold is empirically
determined, and is introduced merely to enhance the
performance.

F. Variable action eligibility traces and TD update rules

An eligibility trace constitutes a mechanism for temporal
credit assignment. It marks the memory parameters associated
with the action as being eligible for undergoing learning
changes [6]. For the visual homing application, the eligibility
trace for the current action a is constructed from the feature
vectors encountered so far. More specifically, it is the
discounted sum of the feature vectors of the images that the
robot has seen each time the same action a had been taken. The
eligibility trace for other actions which have not been taken
while in the current state is simply its previous trace but
discounted, i.e. those actions are now less accredited, as
demonstrated in the following equation.

1537

otherwisea

aaifsa
a

conj

t

conj

t

tt

conj

t

conj

tconj

t
)(

)()(
)(

)(

1

)(

)(

1

)(

)(

e

φe
e

 (17)

)(conj

t is conjugate variable discount rate for eligibility

traces
)(

1

conj

te

of action a. It is given in (8). is the rewards

discount rate . The eligibility trace components do not comply
with the unit interval i.e. each component can be more than 1.
The reward function also does not comply with the unit
interval. The update rule that uses the action eligibility trace
and the episodically changed learning rate is as follows:

ttttt aaa)()()(eθθ

 (18)

G. The learning algorithm

Figure 2 shows the model learning algorithm. The basis of
the model learning algorithm is the Sarsa(λ) control algorithm
with linear function approximation [6]. However, this

algorithm was changed to use the TD(
)(conj

t) instead of the

TD(λ) update rules. Hence, it was denoted as Sarsa(
)(conj

t).

The benefit of using TD()(conj

t) update is to optimize the

learning process (in terms of speed and performance) by
optimizing the depth of the credit assignment process
according to the conjugate directions, purely through
automatically varying λ in each time step instead of assigning a
fixed value to λ manually for the duration of the learning

process.)(conj

t can be calculated using any of the three forms

of (8) although the algorithm shows)(2 conj

t .

Sarsa is an on-policy bootstrapping algorithm that has the
properties of (a) being suitable for control, (b) providing
function approximation capabilities to deal with huge state
space, and (c) applying on-line learning. These three properties
are considered ideal for the robot visual navigation problem.
(a) The ultimate goal for solving this problem is to control the
robot to reach the goal location using vision sensor, (b) the
state space is huge because of the visual input, and (c) on-line
learning is preferred because of its higher practicality and
usability in real world situations than off-line learning.

An action-value function),(asQ , is similar to the value

function)(sV but is confined to a certain action. It calculates

the expected future accumulated rewards stemming from:
applying action a when agent in state s then following some
policy . It is primarily used to take advantage of the policy
improvement theorem. This theorem states that the policy can
be improved by increasing the probability of selecting the

action with the highest),(asQ .

The algorithm learns on-line through interaction with
software modules that feed it with the robot visual sensors. The
algorithm coded as a controller returns the chosen action to be
taken by the robot, and updates its policy through updating its
set of parameters used to approximate the action-value function
Q. Three linear networks are used to approximate the action-

value function for the three actions.

Aia ia

n

ia

i

ia
i ,..1),,,,()()()()(

1)(

θ

.

The current image was passed through an RBF layer, which

provides the feature vector),,()(1 nits

φ . The robot

was left to run through several episodes. After each episode the
learning rate was decreased, and the policy was improved
further.

odefinal_episepisode

ratedecreasratedecreas

episodeepepratedecreas

s
n

aa

ssss

aaa

i
otherwisea

aaifsa
a

asasr

aa

Aiasa

s,ra

asa

ts

Aia

multmult

mult

aAiam
b

n

odefinal_episandmbinitialize

tionInitializa

upper

n

i

ti

tttt

tttt

tt

conj

ttt

i

conj

t

conj

t

titi

conj

t

conj

tconj

t

tt

ttconj

t

t

T

tt

T

ttt

it

i

T

t
a

best

ttt

i

lowerupper

i

i

 until

,

)()1(_

)(
1

until

,

)()(),()(

)()()(

31,
)(

)()(
)(

)()()()(

).,,(y probabilit of sampling using Generate

1)),()((maxarg

),(Observe,actionTake

episode)ofstepeach(forRepeat

),),((y probabilit of sampling using Generate

1 ,robot view Initial

1)(

episodeeach for Repeat

11,1

12

2,11)(,
256

3

,,

00

00

1

11

11

)(

)(

1

)(

)(

1

)(

)(

2

11

2

)(

111

311

11

000

0

0

11

00

φφφφ

eθθ

e

φe
e

φ

φ

θφθφ

θφ

φ

φ

0e

θ

Fig. 2. Algorithm of conjugate variable λ Sarsa control, with RBF features

extraction, linear action-value function approximation and dynamic

exploration policy.

H. Stopping Thresholds and von Mises Distribution

Directional or circular statistics provide a comprehensive
framework that deals with the orientation data. It deals with
directions and rotation in multidimensional spaces.
Probabilities that are defined to deal with lines or variable that
can increase to infinity is not suitable to deal with data that
repeat itself intervaly such as robot orientation. Images taken in
this way varies in a behaviour that is not suitable to be
described by normal statistics, it must be addressed through

1538

directional statistics. von Mises distribution can be used as an
approximation for a warped normal distribution for the normal
distribution. Gauss defined the standard normal as having
variance σ2 = 1/2. However other alternative definitions exist,
for example Stephen Stigler defined the standard normal
distribution with variance 212 , in this case the standard

distribution will be defined as
2

)(xexf . This definition is

more appealing as it simplify the function itself of course on
the account of making the variance more complicated, one can
also define 22 21 . Similarly, wrapped normal distribution

can be defined through different variances if it is desired to be
localized further around its mean. We used a multiplier of 1/π
to specify the variance which in turn specifies the boundaries
of the confidence interval for our similarity measure which is
the mean of the features. We will construct our threshold by
assuming that we are fitting a uniformed warped normal
distribution around the maximum similarity measure
NRBmax=1, which can be assigned a variance σ = 1/multiples
of π to recognise its rotational behaviour. Hence, one can
construct the following confidence interval

]1,1[
5.05.0

 mm . Of course half of this interval is

impossible to achieve as it exceeds the maximum similarity,
however the first half is where we are interested which
specifies the upper threshold]1,1[

5.0
 m . Another thing to

realize is that if the multiple is assumed to be the square root of
another integer then one can specify an easy way to vary the
interval with slow increments, which is suitable for the
problem in hand, hence another empirical interval is

]1,1[5.01 m . Figure 3 show the change rate of both ways of

specifying the threshold. It should be noted that the second is
more desirable as it will make the difference between ψupper and
ψlower easily achieved by decrementing the multiplier by 1.
Equation (19) gives a rule of setting the stopping threshold.

 11

11,1

 multmult lowerupper (19)

We chose multipliers 11 and 12 (through trial and error) that
yields the values 0.904 0.908 respectively to represents the
max and min similarities (ψupper, ψlower) that specify the
termination conditions for our robot. It should be noted that
changing the multiplier is much easier to tune the model
instead of changing continues values such as ψupper, ψlower.

Fig. 3. Change rate of different settings for the Threshold ψupper

I. Dynamic exploration policy

The action-value function was used to express the policy,
and control the robot accordingly. The policy model has two
components: An exponential component that takes the action-
value as input. This component has been scaled first to avoid

the problem of raising large number to a power to get a
softmax effect.

))(,(
),(

)()(

)()(
)(

ti saScaled

i

A

j j

T

t

i

T

t
i

eaSoftMax

as

as
aScaled

φ

θφ

θφ

 (20)

The second component is a greedy scheme also participated
in the action selection process:

otherwizeA

aaifA
aGreedy

besti

i
/

/1
),(

 (21)

A

j jj

ii
i

aGreedyaSoftMax

aGreedyaSoftMax
a

),(),(

),(),(
),,(

 (22)

An important thing to note here is that ε is passed as an
argument for the ε-greedy component. i.e. ε has been varied
during learning. Early episode had a large ε to encourage the
agent to explore its environment more, while late episode had
less exploration tendency. Same applies for τ for early and late
episodes. This makes our policy a dynamic exploration policy,
something to that distinguishes our model. It should be noted
that convergence for such dynamic policies has not been
confirmed before, and this paper dose not study this
convergence form theoretical point of view, instead it show
that such dynamic policy model can still converges to an
optimal policy. The Gibbs exponential distribution has some
important properties which helped in realizing the
convergence. According to [7] it helps the TD error to lie in
accordance with the natural gradient. Both ε (exploration rate)
and α (learning rate) have been exponentially reduced form one
episode to another according to the following decrease rate [8]:

)()1(_ 00 episodeepepratedecreas (23)

Where ep0 is the initial episode that specifies how quickly
to decrease both entities.

IV. EXPERIMENTS AND MODEL SETTINGS

Fig. 4. A snapshot of the realistic simulated environment.

The model was applied using a simulated Khepera
(Floreano and Mondada, 1998) robot in Webots™ (Michel,
2004) simulation software. The real Khepera is a miniature
robot, 70 mm in diameter and 30 mm in height, and is provided
with 8 infra-red sensors for reactive behaviour, as well as a
colour camera extension.

Khepera robot in its starting location

Target locations

1539

A (1.15 m x 1 m) simulated environment has been used as a
test bed for our model. The task is to learn to navigate from any
location in the environment to a home location (without using
any specific object or landmark). For training, the robot always
starts from the same location, where it cannot see the target
location, and the end state is the target location. After learning,
the robot can be placed in any part of the environment and can
find the home location. Figure 4 shows the environment used.

The home is assumed to be in front of the television set. A
cone and ball of different colours are included to enrich and
add more texture to the home location. It should be re-
emphasized that no object recognition techniques were used,
only the whole image measure. This allows the model to be
applied to any environment with no constraints and with
minimal prior information about the home. The controller was
developed using a combination of C++ code and Matlab
Engine code.

The robot starts by taking three (m=1) snapshots for the
goal location. It then undergoes a specific number (EP) of
episodes that are collectively called a run-set or simply a run.
In each episode the robot starts from a specific location and is
left to navigate until it reaches the home location. The robot
starts with a random policy, and should finish a run set with an
optimised learned policy.

A. Practical settings of the model parameters

Table 1 summarises the various constants and parameters
used in the Sarsa()(2 conj

t) algorithm and their values/initial

values and updates. Each run lasts for 20 episodes (EP=20),
and the findings are averaged over 5 runs to insure validity of
the results. The feature space parameters were chosen to be
b=3, m=1.

TABLE I. THE MODEL PARAMETERS, THEIR VALUES AND THEIR

DESCRIPTION

Symbol Value Description

EP 20 Number of episodes in each run

α0 321

0 1025.1210 EP Initial learning rate

0 EP3.0 Initial exploration rate

ep0 EP3.0 Start episode for decreasing α and ε

γ 1 The reward discount factor

m 1 Number of snapshots of the home

b 3 Features histograms bin size

ψupper, ψlower 0.904 0.908 Goal_at_perspective thresholds

Hence, 258)1)3/256((3 roundn features. the value for

b, which gives a medium feature size (and hence medium
learning parameters dimension), together with the minimum
number of stored views (m=1), were chosen mainly to the
algorithms performance on average model settings. However,
different setting could have been chosen. The initial learning

rate was set to 321

0 1025.1210 EP in accordance with

the number of episodes. This is to divide the learning between
all episodes to allow for good generalization and stochastic
variations. The learning rate was decreased further from one
episode to another, to facilitate learning and to prevent

divergence of the policy parameters

[9] (especially due to the

fact that the policy exploration rate is changing). The discount

constant was set to 1 , i.e. the rewards sum does not need

to be discounted through time because it is bounded, given that
the task ends after reaching the final state at time T.

V. RESULTS

To show the path taken by the robot in each episode the
Global Positioning System (GPS) was used to register the robot
positions but not to aid the navigation process whatsoever.
Figure 5. (c and d) shows the evident improvements that took
place during the different learning episodes. Evidently, good
performance was started to occur in early episodes (episode 9)
but it was not always sustained because the agent had to keep
looking for better policy, especially in early episodes. GPS
gives a problem-specific assessment about the performance of
the algorithm and have strong indication that the algorithms is
working well for the problem (navigation).

Fig. 5. TD(conj) algorithm’s performance performance using GPS, it can be

seen that after learning the agent made a u-turn very efficently

Figure 6. shows the learning plots for the TD()(1 conj

t).

Convergence is evident by the decreased number of steps
needed in each episode. In particular the cumulative rewards
converged to an acceptable value. The steps plot resonates with
the rewards plot, i.e. the agent attains gradually good
performance in terms of cumulative rewards and steps-per-
episode. The cumulative changes made to the policy
parameters have also a regular exponential shape, which
suggests the minimization of required learning from one
episode to another. It should be noted that although the learning
rate is decreased through episodes, if the model were not
converging then more learning would have occurred in later

a

b

1540

episodes, which would deform the shape of the changes in the
policy parameters plot.

Fig. 6. TD-conj algorithm performance for the homing problem

A. So why the model is faster?

The better performance of this model can be attributed to the
following enhancements. First Less number of initial
snapshots, in fact only one snapshot has been taken for the goal
from one angle (facing the goal). Better Termination condition
as shown in previous section. Better calibration of Gibbs for
the exploration/exploitation rate. Better and simpler reactive
behavior. Learning is continued during reactive behaviour.
Cost is changed to 1/t (t is time step) to penalize early steps
more than latter steps as normally those will have more
profound effect on the future than late steps for this benchmark
problem. Finally, high penalty was set for wall hitting. Wall
hitting is included in the learning process (in previous work
[12] it was paused until the reactive behavior is finished) now
reactive takes control but the neural network will be charged
penalty during that time as long as the robot is hitting walls.
This proved to be moderately effective in preventing costal
behavior or blind walking where the robot hit two or three
walls before reaching the target.

VI. CONCLUSIONS

This work presents a robot navigation model that employs a
form of conjugate variable λ TD and a homing technique to
realize full autonomous navigation. It utilizes a novel
thresholding technique that uses von Mises distribution to
reduce sensitivity to the goal orientation. Comparing to
previous work this model achieved convergence in a small
number of episodes (20) in comparison with previous model
which had to go through hundreds of episodes. This makes this
model appealing for industrial and home realistic application.
We bring the attention to the capability of the proposed model
which is not confined to homing in the conventional sense
where the home is on sight. It goes beyond homing to
navigating towards a hidden goal location autonomously. We
would like also to point out that, after learning, robot learns to
navigate towards the goal location starting from almost any
location in the environment.

The model learns to tackle the u-turn problem to reach a
hidden goal without human intervention, no pre- or manual
processing is required, and no a priori knowledge about the
environment is needed (landmarks etc), with the added
advantage of solving the robot abduction problem instantly.
The only required information is in the form of three views of
the goal location that the robot itself takes and stores
automatically before starting the learning process.

Therefore the proposed approach for learning to navigate
towards a hidden-goal is extremely practical and portable, and
depends entirely on automatic learning. If it can find its way to
industry all what the operator would need to do is to show the
robot its goal location then sit and watch it learning to reach the
goal from anywhere in the environment. This approach is also
interesting for the design of multi navigational tasks model
where a robot can learn to reach each goal independently using
a dedicated linear neural network. Then some prioritization
technique can be used to switch between those inexpensive
neural networks. This potential is what we intend to investigate
in the future.

References

[1] S. Bhatnagar, R. S. Sutton, M. Ghavamzadeh, and M. Lee,
"Incremental Natural Actor-Critic Algorithms," presented at
Neural Information Processing Systems (NIPS19), 2007.

[2] R. S. Sutton, "Learning to predict by the methods of temporal
differences," Machine Learning, vol. 3, pp. 9–44, 1988.

[3] L. C. Baird, "Residual Algorithms: Reinforcement Learning
with Function Approximation," presented at International
Conference on Machine Learning, proceedings of the Twelfth
International Conference, San Francisco, CA, 1995.

[4] R. Schoknecht and A. Merke, "TD(0) Converges Provably
Faster than the Residual Gradient Algorithm," Machine
Learning, vol. 20, pp. 680-687, 2003.

[5] V. Konda and J. Tsitsiklis, "Actor-critic algorithms. ," presented
at NIPS 12, 2000.

[6] O. Ziv and N. Shimkin, "Multigrid Methods for Policy
Evaluation and Reinforcement Learning," presented at IEEE
International Symposium on Intelligent Control, Limassol, 2005.

[7] C. Zhang, S. Abdallah, and V. Lesser, "Efficient multi-agent
reinforcement learning through automated supervision,"
presented at International Conference on Autonomous Agents
Estoril, Portugal, 2008.

[8] T. Falas and A.-G. Stafylopatis, "Temporal differences learning
with the conjugate gradient algorithm," presented at Neural
Networks, 2001. Proceedings. IJCNN '01. International Joint
Conference on, Washington, DC, USA, 2001.

[9] T. Falas and A.-G. Stafylopatis, "Temporal differences learning
with the scaled conjugate gradient algorithm," presented at
Neural Information Processing ICONIP 2002, 2002.

[10] T. Falas and A.-G. Stafylopatis, "Implementing Temporal-
Difference Learning with the Scaled Conjugate Gradient
Algorithm," Neural Processing Letters, vol. 22, pp. 361 - 375,
2005.

[11] M. F. Møller, "A scaled conjugate gradient algorithm for
supervised learning," Neural Networks, vol. 6, pp. 525-533,
1993.

[12] A. Altahhan, "A Robot Visual Homing Model that Traverses
Conjugate Gradient TD to a Variable λ TD and Uses Radial
Basis Features," in Advances in Reinforcement Learning, A.
Mellouk, Ed. Vienna: InTech Education and Publishing, 2011,
pp. 225-254.

1541

