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Abstract— This work describes a fast learning robot goal-

aware navigation model that employs both gradient and 

conjugate gradient Temporal Difference (TD, TD-conj) methods. 

It builds on the fact that TD-conj was proven to be equivalent to 

a gradient TD method with a variable lambda under certain 

conditions. Based on straightforward features extraction process 

combined with goal-aware capabilities provided by whole image 

measure, the model solves what we call u-turn-homing 

benchmark problem without using landmarks. Only one goal 

snapshot was used with agent facing the goal directly. Therefore 

a novel threshold stopping formula was used to recognize the goal 

which is less sensitive to the agent-goal orientation problem. 

Unlike other models, this model refrains from artificially 

manipulating or assuming a priori knowledge about the 

environment, two constraints that widely restrict the applicability 

of existing models in realistic scenarios. An on-line control 

method was used to train a set of neural networks. With the aid 

of variable and fixed eligibility traces, these networks 

approximate the agent’s action-value function allowing it to take 

close to optimal actions to reach its home. The effectiveness of the 

model was experimentally verified on an agent.  

Keywords—TD-conj; Home Aware; Variable λ TD; U-Turn- 

Homin; Orientation Insensitive Thersholding 

I.  INTRODUCTION 

Reinforcement learning (RL) with function approximation has 

been shown in some cases to converge slowly [1]. 

Bootstrapping methods like temporal difference (TD) [2] 

although was proved to be faster than other RL methods, such 

as residual gradient established by Baird [3], it can still be slow 

[4]. TD can be speed up by using it with other gradient types. 

In [1], for example, TD along with the natural gradient has 

been used to boost learning.  

Slowness in TD methods can occur due to different reasons. 

The frequent cause is when the state space is big, high-

dimensional or continuous. In this case, it is hard to maintain 

the value of each state in a tabular form. Even when the state 

space is approximated in some way, using artificial neural 

networks (ANN) for example, the learning process can become 

slow because it is still difficult to generalize in such huge 

spaces. In order for TD to converge when used for prediction, 

all states should be visited frequently enough. For large state 

spaces this means that convergence may involve many steps 

and will become slow. Actor-critic, for example, uses TD 

update in its critic part. It maintains a structure for choosing the 

actions according to a learned policy (the actor), that is separate 

from the structure to estimate the value-function (the critic). In 

those methods, when the gradient of the performance function 

is used to explicitly estimate the policy (policy gradient 

methods), convergence was shown to be slow because of the 

high variance of their gradient estimates [1]. Other RL methods 

such as Q-learning, although convenient for control, can suffer 

from both divergence and slow convergence [5].  

Numerical techniques have been used with RL methods to 

speed up its performance. For example, [6] used a multi-grid 

framework which is originated in numerical analysis to 

enhance the iterative solution of linear equations. Whilst, other 

attempt to speed up RL method performance in multi-agent 

scenario, [7], by using a supervised approach combined with 

RL to enhance the model performance. 

The idea of using the conjugate gradient (CG) with TD has 

been explored before [8, 9]. Their early experiments confirmed 

that using such a combination can enhance the performance of 

TD. In their study [10] a special emphasis is given on the 

implementation details where an effort is made to save 

computation costs by adopting the Møller’s scaled conjugate 

gradient algorithm (SCG) [11]. SCG differs from CG in that it 

avoids the line search for the step size 
t  by introducing a new 

factor ρ that is raised or lowered within each iteration, during 

execution, in order to regulate the indefiniteness of the Hessian 

matrix of the error function. Nevertheless, no formal theoretical 

study has been conducted which disclose the intrinsic 

properties of such a combination.  The present work is an 

attempt to fill the former gap.  

The outline of the paper is as follows. Firstly, a variable λ 
TD is summarized. Then a detail description of the novel 
navigation model and its components is presented in section 3. 
The extensive simulation experiments and their results are 
shown in sections 4 and 5, followed by conclusion and further 
work in section 6. 

II. VARIABLE LAMBDA TD 

A. Biological Conformation and Plausibility 

There can be many ways to vary λ, and some might be 
heuristic [1]. However, there is an interesting canonical way 
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that is underpinned by following the conjugate gradient of the 
TD error instead of the gradient [12]. This forces the eligibility 
traces to vary the deepness of the blame (credit assignment), 
for taking previous decisions, depending on the current TD 
error that is constantly opposed according to the conjugate 
gradient direction. 

The performance advantage of using this type of variable λ 
TD over fixed λ TD is confirmed by the comparative study 
performed by [12]. In summary, those advantages are 
recapitulated by: acquiring better or comparable performance 
with less training and parameters changes and with less 
execution time. In other word, the conjugate variable λ TD is 
more efficient than fixed λ TD. What is more, using variable λ 
TD has a biological justification of varying the level of 
learning readiness (attentiveness) from a situation to another, 
depending on previous experience and other internal factors, 
e.g. attention. Also it can be related to varying the deepness of 
thinking, where it is not always beneficial to propagate deeply 
through past experience in every coming situation; some 
situations need shallow thinking for the best interest of the 
animal. 

Results from [12] confirms that fixing λ to force the 
learning process to take advantage of the longest possible past 
experience is not always the right approach. It is argued that 
doing so can exhaust the organ without apparent advantages. 
Whereas, varying the deepness of the eligibility traces, 
although might initially be thought to have inferior 
performance, has been proved to achieve a comparable, if not 
better, results than forcing the agent to think always to the 
deepest possible extent. 

We think that this is an interesting and important 
proposition and it worth to bring the attention to it by 
presenting a model that employs it successfully. This paper 
presents a comprehensive biologically-inspired model for robot 
navigation that uses variable λ TD to achieve autonomy in 
learning to visually navigate towards a pre-specified goal 
location. To the best knowledge of the author variable λ TD 
has not been used before in robot navigation by other 
researchers. 

B. TD-Conj Methods 

In general TD is a reinforcement learning method that tries 
to calculate or approximate the expected future accumulated 
rewards/cost due to following some policy  . A policy is a 

mapping between a states and actions that specifies what the 
agent should do in a certain state s . It guides this process 

through the TD error t  which is defined as: 

)()( 11 tttttt sVsVr      (1) 

Where value function )( tt sV is the expected future 

accumulated rewards, ts  denotes a state at time step t, r is for 

the reward/cost and is a decay factor.  )( tt sV  can be 

approximated through a linear approximation of parameters 
t
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In this case an update rule for fixed λ TD can be written as: 

ttttt e

  1    (3) 

ttt ee 


 1    (4) 

Here 
te


is the eligibility trace that specifies how deep the 

blame is to be for the current cost. While the update rules for 

conjugate variable λ TD can be written as: 

 
)(

1

conj

ttttt e


 
    (5) 

t

conj

t

conj

t

conj

t ee 


 

)(

1

)()(     (6) 
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t can be given in any of the following forms: 
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Since ]1,0[  then )(conj

t  should satisfy that ]1,0[)( conj

t . 

From an application point of view, it suffices to reset )(conj

t  

value to the boundaries of this condition whenever its value 
goes beyond those boundaries1.  

C. Biological Interpretation of )(conj

t  

It can be realized that both 
t  and 

1t  are involved in the 

calculations of eligibility traces. This means that the relative 
rate-of-changes between consequent steps of TD error plays an 
important role in changing )(conj

t . For simplicity we discuss the 

second form of )(conj

t  which involves two terms; the first is the 

rate of change of TD error 
1/ tt  and the second is the rate of 

change of the norm of current and previous feature vectors 
2

1

2

/ tt 


. Both has a biological interpretation and )(conj

t  

tries to strike a good balance between both. The 
1/ tt  term 

implies that if we compared the current and previous errors and 
found that the previous error is bigger it means that we should 
allow future steps to blame the decision made at the previous 
step. While, if we found that  the current error is bigger than 
the previous error it means that we need to allow future steps to 
blame the current step mainly without propagating the error to 
previous steps as they are guiltless of the current error. 
Cognitively, it means either that “I must have done a mistake in 
past states so in the future I will blame those estimates”, or “it 
seems that I am doing some mistakes in the current state so in 
the future I will blame this state estimate”. Also the second 
term is more problem specific. It expresses that, if there are 
more features present in the current state than the previous, 

                                                           
1 Any method that depends on TD updates such as Sarsa or Q-learning 

can take advantage of the more efficient and more biologically-plausible 
update rules of conjugate variable λ TD 
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then this state is more important and it should undergo more 
learning in the future than the previous state, and vice versa. 

III. 3. NAVIGATION VARIABLE Λ SARSA MODEL 

For visual navigation it is assumed that the image at each 
time step represents the current state, and the state space S is 
the set of all images, or views, that can be taken for any 
location (with specific orientation) in the environment. This 
complex state space has two problems. Firstly, each state is of 
high dimensionality, i.e. it is represented by a large number of 
pixels. Secondly, the state space is huge, and a policy cannot be 
learned directly for each state. Instead, a feature representation 
of the states is used to reduce the high-dimensionality of the 
state space and to gain the advantages of coding that allows a 
parameterized representation to be used for the value function 
[3]. In turn, parameterization permits learning a value function 
representation that can easily accommodate new unvisited 
states by generalization. Eventually, this helps to solve the 
second problem of having to deal with a huge state space. 

The feature representation can reduce the high-
dimensionality problem simply by reducing the number of 
components needed to represent the views. Hence, reducing 
dimensionality is normally carried out at the cost of less 
distinctiveness for states belonging to a huge space. Therefore, 
the features representation of the state space should strike a 
good balance between distinctiveness of states and reduced 
dimensionality. This assumption is of importance towards the 
realization of any RL model with a high-dimensional states 
problem. 

In a previous work done by the author three snapshots has 
been taken by the agent for the goal in order to accommodate 
for the different angles in which the robot can come towards 
the goal which worked well. However, this has expanded the 
features vectors and contributed to a more ambiguous ways of 
specifying the similarity threshold through trial and error. This 
is because the other two angle snapshots were acting as 
dissimulators for the goal when the agent is coming from the 
third angle and has made the best positions features less similar 
to the goal. It was thought that such processing is redundant 
and unnecessary if a better approach can be found which 
should allow the agent to use one snapshot for the goal. The 
idea is to compare the current image with one direct snapshot 
only, but at the same time find a parameterized specification 
for the similarity threshold. Here we are referring to the 
threshold that specify whether the current image is similar 
enough with the goal to issue a stopping command for the 
agent declaring that it reaches the goal and achieved the current 
episodic learning to move to the next episode. 

A. State representation and home information 

One representation that maintains an acceptable level of 
distinctiveness and reduces the high-dimensionality of images 
is the histogram. A histogram of an image is a vector of 
components, each of which contains the number of pixels that 
belong to a certain range of intensity values. This effectively 
encodes the input state space into a coarser feature space. 
Therefore, for a coloured image, the histogram of each colour 

channel is a vector of components; each component contains 
the number of pixels that lie in the component's interval (bin).  

 
Fig. 1. Sample of a stored view taken for a goal location with its associated 

histograms in a simulated environment. 

A histogram does not preserve the distinctiveness of the 
image, i.e. two different images can have the same histogram, 
especially when low granularity bin intervals are chosen. 
Nevertheless, histograms have been found to be widely 
acceptable and useful in image processing and image retrieval 
applications [4].  

The histogram alone does not give a direct indication of the 
distance to the goal location. Although the assumption that the 
goal location is always in the robot's field of view will not be 
made, by comparing the current view with the goal view(s) the 
properties of distinctiveness, distance and orientation can be 
embodied to an extent in the RL model. Since the home 
location can be approached from different directions, the 
recognition of the home from different angles must be 
accommodated either by different snapshots from different 
angles or by the similarity measure itself that is able to tell 
whether a goal was reached form an angle. In this work the 
latter approach has been taken. One snapshot of the home 
location is taken before the learning stage. This snapshot 
defines the goal location and is the only information required to 
allow the agent to learn to reach its goal location starting from 
any arbitrary position in the environment (including those from 
which it cannot see the home, i.e. the agent should be able to 
reach a hidden goal location). Figure  1 shows a sample of a 
stored view of a goal location and its associated histogram 
taken in a simulated environment. 

B. Features vectors and differential radial basis 

representation 

The difference between a histogram of each channel of the 
current view and those of the stored views is taken and passed 
through a radial basis function (RBF) component. Hence it is 
called differential radial basis representation. This provides the 

features space nS  : representation (9) which is used 

with the Sarsa algorithm, described later: 
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Index t stands for the time step, j for the jth stored view, and 
c is the index of the channel, where the RGB representation of 
images is used. Accordingly, ),( jcv  is the channel c of the jth 
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stored view,  ),( jcvhi
 is histogram bin i of channel ),( jcv , 

and  )(csh ti
 is histogram bin i of channel c of the current 

view. The number of bins will have an effect on the structure 
and richness of this representation and hence on the model.  

Further, the variance of each bin will be substituted by an 
average of the variances of those bins: 
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where T is the total number of time steps.  

To normalize the feature representation the scaled 

histogram bins   Hcsh ti /)(  are used where we have that: 
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assuming that n is the number of features. It can be realized 

that H  is a constant and is equal to the number of all pixels 
taken for a view. Consequently, the final feature calculation 
takes the form: 
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It should be noted that this feature representation has the 
advantage of being in the interval [0 1], which will be 
beneficial for the reasons discussed in the next section. 

The feature vector of the current view (state) is a union of 
all of the features for three channels and each stored view, as 
follows: 

  ),,,,(),()( 1

1

3

11

niti

B

ic
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j
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where m is the number of stored views for the goal 
location, and B is the number of bins to be considered. A value 
in the range of [0 255] will be used for each pixel, hence the 
dimension of the feature space is given by: 

m
b

roundmBn  )1)
256

((33     (14) 

Where b is the bin’s size. Different bin sizes give different 
dimensions, which in turn give different numbers of 

parameters


that will be used to approximate the value 

function.  

C. NRB similarity measure and the termination condition 

To measure the similarity between two images, the sum of 
all the Normalized Radial Basis (NRB) features defined above 
can be taken and then divided by the feature dimension. The 
resultant quantity is scaled to 1 and it expresses the overall 
belief that the two images are identical:  

  nssNRB
n

i tit  


1
)(    (15) 

D. Action space and cyclic learning 

In order to avoid the complexity of dealing with a set of 
actions each with infinite speed values (which in effect turns 
into an infinite number of actions), the two differential wheel 
speeds of the agent are assumed to be set to particular values, 
so that a set of three actions with fixed values is obtained. The 
set of actions is A = [Left_Forward, Right_Forward, 
Go_Forward]. By using actions with a small differential speed 
( i.e. small thrust rotation angle) the model can still get the 
effect of continuous rotation by repeating the same action as 
needed. This is done at the cost of more action steps.  

On the other hand, an episode describes the collective 
(action, reward, state) learning steps an agent needs to navigate 
from any starting location in the environment until it reaches 
the goal location. The agent is assumed to finish an episode and 
be in the goal location (final state) if its similarity measure 
indicates with high certainty that its current view is similar to 
one of the stored views. This specifies the episode termination 

condition of the model.  uppertsNRBIf )(  Terminate 

Episode. Similarly, the agent is assumed to be in the 
neighbourhood of the home location with the desired 

orientation
lowertsNRBIf )( where 

lowerupper    this 

situation is called goal-at-perspective.  

E. Setting the reward/cost signal 

Each time step the robot spend without finding the goal 
location has a cost of -1/t. The position signal, expressed by the 

current similarity
tNRB , is added to the reward/cost signal. 

Thus, as the current location differs less from the home 
location, the reward will increase. The third signal is the 
increase/decrease in similarity between the current step and the 
previous step, which we call the approaching reward. This 

signal is defined as
1 tt NRBNRB . Hence, the reward can be 

rewritten in the following form: 

12/1  tt NRBNRBtr   (16) 

The two additional reward components above will be 
considered only if the similarity of t and t-1 steps are both 

beyond the threshold lower to ensure that home-at-perspective 

is satisfied in both steps. This threshold is empirically 
determined, and is introduced merely to enhance the 
performance. 

F. Variable action eligibility traces and TD update rules 

An eligibility trace constitutes a mechanism for temporal 
credit assignment. It marks the memory parameters associated 
with the action as being eligible for undergoing learning 
changes [6]. For the visual homing application, the eligibility 
trace for the current action a is constructed from the feature 
vectors encountered so far. More specifically, it is the 
discounted sum of the feature vectors of the images that the 
robot has seen each time the same action a had been taken. The 
eligibility trace for other actions which have not been taken 
while in the current state is simply its previous trace but 
discounted, i.e. those actions are now less accredited, as 
demonstrated in the following equation. 
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)(conj

t  is conjugate variable discount rate for eligibility 

traces 
)(

1

conj

te


of action a. It is given in (8).  is the rewards 

discount rate . The eligibility trace components do not comply 
with the unit interval i.e. each component can be more than 1. 
The reward function also does not comply with the unit 
interval. The update rule that uses the action eligibility trace 
and the episodically changed learning rate  is as follows: 

ttttt aaa   )()()( eθθ


   (18) 

G. The learning algorithm 

Figure 2 shows the model learning algorithm. The basis of 
the model learning algorithm is the Sarsa(λ) control algorithm 
with linear function approximation [6]. However, this 

algorithm was changed to use the TD(
)(conj

t ) instead of the 

TD(λ) update rules. Hence, it was denoted as Sarsa(
)(conj

t ). 

The benefit of using TD( )(conj

t ) update is to optimize the 

learning process (in terms of speed and performance) by 
optimizing the depth of the credit assignment process 
according to the conjugate directions, purely through 
automatically varying λ in each time step instead of assigning a 
fixed value to λ manually for the duration of the learning 

process. )(conj

t  can be calculated using any of the three forms 

of (8) although the algorithm shows )(2 conj

t . 

Sarsa is an on-policy bootstrapping algorithm that has the 
properties of (a) being suitable for control, (b) providing 
function approximation capabilities to deal with huge state 
space, and (c) applying on-line learning. These three properties 
are considered ideal for the robot visual navigation problem. 
(a) The ultimate goal for solving this problem is to control the 
robot to reach the goal location using vision sensor, (b) the 
state space is huge because of the visual input, and (c) on-line 
learning is preferred because of its higher practicality and 
usability in real world situations than off-line learning. 

An action-value function ),( asQ , is similar to the value 

function )(sV but is confined to a certain action. It calculates 

the expected future accumulated rewards stemming from: 
applying action a when agent in state s then following some 
policy . It is primarily used to take advantage of the policy 
improvement theorem. This theorem states that the policy can 
be improved by increasing the probability of selecting the 

action with the highest ),( asQ .  

The algorithm learns on-line through interaction with 
software modules that feed it with the robot visual sensors. The 
algorithm coded as a controller returns the chosen action to be 
taken by the robot, and updates its policy through updating its 
set of parameters used to approximate the action-value function 
Q. Three linear networks are used to approximate the action-

value function for the three actions. 
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The current image was passed through an RBF layer, which 

provides the feature vector ),,()( 1 nits  


φ . The robot 

was left to run through several episodes. After each episode the 
learning rate was decreased, and the policy was improved 
further. 
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Fig. 2. Algorithm of conjugate variable λ Sarsa control, with RBF features 

extraction, linear action-value function approximation and dynamic 

exploration policy. 

H. Stopping Thresholds and von Mises Distribution 

Directional or circular statistics provide a comprehensive 
framework that deals with the orientation data. It deals with 
directions and rotation in multidimensional spaces. 
Probabilities that are defined to deal with lines or variable that 
can increase to infinity is not suitable to deal with data that 
repeat itself intervaly such as robot orientation. Images taken in 
this way varies in a behaviour that is not suitable to be 
described by normal statistics, it must be addressed through 
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directional statistics. von Mises distribution can be used as an 
approximation for a warped normal distribution for the normal 
distribution. Gauss defined the standard normal as having 
variance σ2 = 1/2. However other alternative definitions exist, 
for example Stephen Stigler defined the standard normal 
distribution with variance   212  , in this case the standard 

distribution will be defined as
2

)( xexf  . This definition is 

more appealing as it simplify the function itself of course on 
the account of making the variance more complicated, one can 
also define  22 21   . Similarly, wrapped normal distribution 

can be defined through different variances if it is desired to be 
localized further around its mean. We used a multiplier of 1/π 
to specify the variance which in turn specifies the boundaries 
of the confidence interval for our similarity measure which is 
the mean of the features. We will construct our threshold by 
assuming that we are fitting a uniformed warped normal 
distribution around the maximum similarity measure 
NRBmax=1, which can be assigned a variance σ = 1/multiples 
of π to recognise its rotational behaviour. Hence, one can 
construct the following confidence interval 

    ]1,1[
5.05.0 

  mm . Of course half of this interval is 

impossible to achieve as it exceeds the maximum similarity, 
however the first half is where we are interested which 
specifies the upper threshold   ]1,1[

5.0
 m . Another thing to 

realize is that if the multiple is assumed to be the square root of 
another integer then one can specify an easy way to vary the 
interval with slow increments, which is suitable for the 
problem in hand, hence another empirical interval is 

]1,1[ 5.01  m . Figure 3 show the change rate of both ways of 

specifying the threshold. It should be noted that the second is 
more desirable as it will make the difference between ψupper and 
ψlower easily achieved by decrementing the multiplier by 1. 
Equation (19) gives a rule of setting the stopping threshold. 

    11

11,1


 multmult lowerupper   (19) 

We chose multipliers 11 and 12 (through trial and error) that 
yields the values 0.904 0.908 respectively to represents the 
max and min similarities (ψupper, ψlower) that specify the 
termination conditions for our robot. It should be noted that 
changing the multiplier is much easier to tune the model 
instead of changing continues values such as ψupper, ψlower. 

 

Fig. 3. Change rate of different settings for the Threshold ψupper 

I. Dynamic exploration policy 

The action-value function was used to express the policy, 
and control the robot accordingly. The policy model has two 
components: An exponential component that takes the action-
value as input. This component has been scaled first to avoid 

the problem of raising large number to a power to get a 
softmax effect.   
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The second component is a greedy scheme also participated 
in the action selection process: 
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An important thing to note here is that ε is passed as an 
argument for the ε-greedy component. i.e. ε has been varied 
during learning. Early episode had a large ε to encourage the 
agent to explore its environment more, while late episode had 
less exploration tendency. Same applies for τ for early and late 
episodes. This makes our policy a dynamic exploration policy, 
something to that distinguishes our model. It should be noted 
that convergence for such dynamic policies has not been 
confirmed before, and this paper dose not study this 
convergence form theoretical point of view, instead it show 
that such dynamic policy model can still converges to an 
optimal policy. The Gibbs exponential distribution has some 
important properties which helped in realizing the 
convergence. According to [7] it helps the TD error to lie in 
accordance with the natural gradient. Both ε (exploration rate) 
and α (learning rate) have been exponentially reduced form one 
episode to another according to the following decrease rate [8]: 

)()1(_ 00 episodeepepratedecreas    (23) 

Where ep0 is the initial episode that specifies how quickly 
to decrease both entities.  

IV. EXPERIMENTS AND MODEL SETTINGS 

 

        

Fig. 4. A snapshot of the realistic simulated environment. 

The model was applied using a simulated Khepera 
(Floreano and Mondada, 1998) robot in Webots™ (Michel, 
2004) simulation software. The real Khepera is a miniature 
robot, 70 mm in diameter and 30 mm in height, and is provided 
with 8 infra-red sensors for reactive behaviour, as well as a 
colour camera extension. 

Khepera robot in its starting location 

 

Target locations 
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A (1.15 m x 1 m) simulated environment has been used as a 
test bed for our model. The task is to learn to navigate from any 
location in the environment to a home location (without using 
any specific object or landmark). For training, the robot always 
starts from the same location, where it cannot see the target 
location, and the end state is the target location. After learning, 
the robot can be placed in any part of the environment and can 
find the home location. Figure 4 shows the environment used. 

The home is assumed to be in front of the television set. A 
cone and ball of different colours are included to enrich and 
add more texture to the home location. It should be re-
emphasized that no object recognition techniques were used, 
only the whole image measure. This allows the model to be 
applied to any environment with no constraints and with 
minimal prior information about the home. The controller was 
developed using a combination of C++ code and Matlab 
Engine code.  

The robot starts by taking three (m=1) snapshots for the 
goal location. It then undergoes a specific number (EP) of 
episodes that are collectively called a run-set or simply a run. 
In each episode the robot starts from a specific location and is 
left to navigate until it reaches the home location. The robot 
starts with a random policy, and should finish a run set with an 
optimised learned policy.  

A. Practical settings of the model parameters 

Table 1 summarises the various constants and parameters 
used in the Sarsa( )(2 conj

t ) algorithm and their values/initial 

values and updates. Each run lasts for 20 episodes (EP=20), 
and the findings are averaged over 5 runs to insure validity of 
the results. The feature space parameters were chosen to be 
b=3, m=1.  

TABLE I.  THE MODEL PARAMETERS, THEIR VALUES AND THEIR 

DESCRIPTION 

Symbol Value Description 

EP 20 Number of episodes in each run 

α0     321

0 1025.1210   EP  Initial learning rate 

0  EP3.0  Initial exploration rate 

ep0 EP3.0  Start episode for decreasing α and ε 

γ 1 The reward discount factor 

m 1 Number of snapshots of the home 

b 3 Features histograms bin size 

ψupper, ψlower 0.904 0.908 Goal_at_perspective thresholds 

 

Hence, 258)1)3/256((3  roundn  features.  the value for 

b, which gives a medium feature size (and hence medium 
learning parameters dimension), together with the minimum 
number of stored views (m=1), were chosen mainly to the 
algorithms performance on average model settings. However, 
different setting could have been chosen. The initial learning 

rate was set to     321

0 1025.1210   EP  in accordance with 

the number of episodes. This is to divide the learning between 
all episodes to allow for good generalization and stochastic 
variations. The learning rate was decreased further from one 
episode to another, to facilitate learning and to prevent 

divergence of the policy parameters 


[9] (especially due to the 

fact that the policy exploration rate is changing). The discount 

constant was set to 1 , i.e. the rewards sum does not need 

to be discounted through time because it is bounded,  given that 
the task ends after reaching the final state at time T. 

V. RESULTS 

To show the path taken by the robot in each episode the 
Global Positioning System (GPS) was used to register the robot 
positions but not to aid the navigation process whatsoever. 
Figure 5. (c and d) shows the evident improvements that took 
place during the different learning episodes. Evidently, good 
performance was started to occur in early episodes (episode 9) 
but it was not always sustained because the agent had to keep 
looking for better policy, especially in early episodes. GPS 
gives a problem-specific assessment about the performance of 
the algorithm and have strong indication that the algorithms is 
working well for the problem (navigation). 

 
 

 

Fig. 5. TD(conj) algorithm’s performance performance using GPS, it can be 

seen that after learning the agent made a u-turn very efficently 

Figure 6. shows the learning plots for the TD( )(1 conj

t ). 

Convergence is evident by the decreased number of steps 
needed in each episode. In particular the cumulative rewards 
converged to an acceptable value. The steps plot resonates with 
the rewards plot, i.e. the agent attains gradually good 
performance in terms of cumulative rewards and steps-per-
episode. The cumulative changes made to the policy 
parameters have also a regular exponential shape, which 
suggests the minimization of required learning from one 
episode to another. It should be noted that although the learning 
rate is decreased through episodes, if the model were not 
converging then more learning would have occurred in later 

a 

b 
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episodes, which would deform the shape of the changes in the 
policy parameters plot. 

 
Fig. 6. TD-conj algorithm performance for the homing problem 

A. So why the model is faster? 

The better performance of this model can be attributed to the 
following enhancements. First Less number of initial 
snapshots, in fact only one snapshot has been taken for the goal 
from one angle (facing the goal). Better Termination condition 
as shown in previous section. Better calibration of Gibbs for 
the exploration/exploitation rate. Better and simpler reactive 
behavior. Learning is continued during reactive behaviour. 
Cost is changed to 1/t (t is time step) to penalize early steps 
more than latter steps as normally those will have more 
profound effect on the future than late steps for this benchmark 
problem. Finally, high penalty was set for wall hitting. Wall 
hitting is included in the learning process (in previous work 
[12] it was paused until the reactive behavior is finished) now 
reactive takes control but the neural network will be charged 
penalty during that time as long as the robot is hitting walls. 
This proved to be moderately effective in preventing costal 
behavior or blind walking where the robot hit two or three 
walls before reaching the target. 

VI. CONCLUSIONS 

This work presents a robot navigation model that employs a 
form of conjugate variable λ TD and a homing technique to 
realize full autonomous navigation. It utilizes a novel 
thresholding technique that uses von Mises distribution to 
reduce sensitivity to the goal orientation. Comparing to 
previous work this model achieved convergence in a small 
number of episodes (20) in comparison with previous model 
which had to go through hundreds of episodes. This makes this 
model appealing for industrial and home realistic application. 
We bring the attention to the capability of the proposed model 
which is not confined to homing in the conventional sense 
where the home is on sight. It goes beyond homing to 
navigating towards a hidden goal location autonomously. We 
would like also to point out that, after learning, robot learns to 
navigate towards the goal location starting from almost any 
location in the environment.  

The model learns to tackle the u-turn problem to reach a 
hidden goal without human intervention, no pre- or manual 
processing is required, and no a priori knowledge about the 
environment is needed (landmarks etc), with the added 
advantage of solving the robot abduction problem instantly. 
The only required information is in the form of three views of 
the goal location that the robot itself takes and stores 
automatically before starting the learning process. 

Therefore the proposed approach for learning to navigate 
towards a hidden-goal is extremely practical and portable, and 
depends entirely on automatic learning. If it can find its way to 
industry all what the operator would need to do is to show the 
robot its goal location then sit and watch it learning to reach the 
goal from anywhere in the environment. This approach is also 
interesting for the design of multi navigational tasks model 
where a robot can learn to reach each goal independently using 
a dedicated linear neural network. Then some prioritization 
technique can be used to switch between those inexpensive 
neural networks. This potential is what we intend to investigate 
in the future.  

References 

[1] S. Bhatnagar, R. S. Sutton, M. Ghavamzadeh, and M. Lee, 
"Incremental Natural Actor-Critic Algorithms," presented at 
Neural Information Processing Systems (NIPS19), 2007. 

[2] R. S. Sutton, "Learning to predict by the methods of temporal 
differences," Machine Learning, vol. 3, pp. 9–44, 1988. 

[3] L. C. Baird, "Residual Algorithms: Reinforcement Learning 
with Function Approximation," presented at International 
Conference on Machine Learning, proceedings of the Twelfth 
International Conference, San Francisco, CA, 1995. 

[4] R. Schoknecht and A. Merke, "TD(0) Converges Provably 
Faster than the Residual Gradient Algorithm," Machine 
Learning, vol. 20, pp. 680-687, 2003. 

[5] V. Konda and J. Tsitsiklis, "Actor-critic algorithms. ," presented 
at NIPS 12, 2000. 

[6] O. Ziv and N. Shimkin, "Multigrid Methods for Policy 
Evaluation and Reinforcement Learning," presented at IEEE 
International Symposium on Intelligent Control, Limassol, 2005. 

[7] C. Zhang, S. Abdallah, and V. Lesser, "Efficient multi-agent 
reinforcement learning through automated supervision," 
presented at International Conference on Autonomous Agents 
Estoril, Portugal, 2008. 

[8] T. Falas and A.-G. Stafylopatis, "Temporal differences learning 
with the conjugate gradient algorithm," presented at Neural 
Networks, 2001. Proceedings. IJCNN '01. International Joint 
Conference on, Washington, DC, USA, 2001. 

[9] T. Falas and A.-G. Stafylopatis, "Temporal differences learning 
with the scaled conjugate gradient algorithm," presented at 
Neural Information Processing ICONIP 2002, 2002. 

[10] T. Falas and A.-G. Stafylopatis, "Implementing Temporal-
Difference Learning with the Scaled Conjugate Gradient 
Algorithm," Neural Processing Letters, vol. 22, pp. 361 - 375, 
2005. 

[11] M. F. Møller, "A scaled conjugate gradient algorithm for 
supervised learning," Neural Networks, vol. 6, pp. 525-533, 
1993. 

[12] A. Altahhan, "A Robot Visual Homing Model that Traverses 
Conjugate Gradient TD to a Variable λ TD and Uses Radial 
Basis Features," in Advances in Reinforcement Learning, A. 
Mellouk, Ed. Vienna: InTech Education and Publishing, 2011, 
pp. 225-254. 

 

 

1541




