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Abstract—Most existing approaches for the data stream 
classification focus on single-label data in non-stationary 
environment. In these methods, each instance can only be 
tagged with one label. However, in many realistic 
applications, each instance should be tagged with more than 
one label. To address the challenge of classifying multi-label 
stream in evolving environment, we propose a novel Multi-
Label Dynamic Ensemble (MLDE) approach.  The proposed 
MLDE integrates a number of Multi-Label Cluster-based 
Classifiers (MLCCs). MLDE includes an adaptive ensemble 
method and an ensemble voting method with two important 
weights, subset accuracy weight and similarity weight. 
Experimental results reveal that MLDE achieves better 
performance than state-of-the-art multi-label stream 
classification algorithms. 

Keywords—Ensemble learning; Concept drift; Multi-label 
classification;  Data stream classification 

I. INTRODUCTION  
Nowadays, data is generated at an ever increasing rate 

from emails, publishing blogs, providing chatting rooms 
and forums. Real-time analysis of these data streams is 
becoming a realistic and challenging area of data mining 
research. Many classification researches from single-label 
data streams have been proposed, such as the incremental 
learning algorithms and ensemble learning algorithms [2]. 
However, in many emerging applications, data streams 
contain multi-label instances. For example, news on 
explanations of national defense policies belongs to both 
political news and military news.  Therefore it is necessary 
to design multi-label classification approaches to 
accurately and dynamically classify instances into multiple 
classes. 

 Multi-label data stream classification has become a 
problem because of three important characters of the 
stream [14]: the infinite length of the stream, the concept 
drift environment and multiple classes of instances. 
Concept drift is the character of data stream, which is the 
change in the class distribution or the label of instances 
over the time [1][3]. The concept drift includes sudden 
drift, gradual drift and recurring drift. Sudden drift has 
occurred when the distribution of data abruptly changes. If 
the distribution changes during a period of time, it referred 

to as a gradual drift. The recurring concepts are the 
previous concepts which reappear some time later. In any 
case, the challenge in concept-drifting environment is to 
build a classifier that is consistent with the current concept. 
Multi-label is another particularly challenging of the 
stream classification. Compared with single-label 
classification, the challenge of multi-label stream 
classification is that each instance belongs to a set of 
labels. The possible label sets may be extremely large even 
with a small number of labels [17]. 

In our paper, Multi-label Dynamic Ensemble (MLDE) 
approach is proposed to deal with multi-label stream 
classification. Ensemble learning integrates several 
individual predictions of base classifiers to form a final 
prediction [1]. As an ensemble learning, MLDE could find 
a reasonable and adaptive method to gather base 
classifiers. A new multi-label cluster-based classifier 
(MLCC) algorithm is used as a base classifier to deal with 
multi-label problem. We then automatically combine a 
suitable number of MLCCs by an adaptive ensemble 
method to accomplish the optimal prediction result. To 
measure whether the base classifier is suitable for 
classifying a new concept, a dynamic threshold is defined 
according to the subset accuracy weight, rather than using 
the random prediction accuracy in most existing 
approaches [6][7]. In the ensemble voting method, a 
similarity weight is defined for each testing instance. This 
similarity weight relies on the similarity between the 
testing instance and the center of the cluster that this 
testing instance belongs to. The performance of MLDE is 
experimented on several multi-label stream datasets in 
comparison to other four state-of-the-art ensemble 
approaches, including IBR Dynamic Ensemble (IDE), 
Majority Voting Ensemble (MVE), MLOzaBagAdwin 
[19], and MajorityLabelset. The   MLOzaBagAdwin 
algorithm and the MajorityLabelset algorithm are based on 
Massive Online Analysis (MOA) platform [8]. 
Experimental results show that MLDE delivers promising 
performance in term of four evaluation measures: subset 
accuracy, Hamming loss, example-based F-measure, and 
micro-average F-measure. 

The rest of the paper is organized as follows. In Section 
II, we summary the previous works related to our study. In 
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Section III, we introduce the background information of 
the multi-label stream classification. In Section IV, we 
present the framework of our approach. We propose the 
MLCC in Section V. The adaptive ensemble method and 
ensemble voting method are proposed in Section VI. 
Experimental results are presented in Section VII. In 
Section VIII, we conclude the whole paper and give 
suggestions on future work propositions. 

II. RELATED WORK 

A. The Ensemble Approaches to Mining Data Stream 
with Concept Drift 
Ensemble learning approach is a promising approach 

for data streaming mining, because: it seems more natural 
to use different parts of a stream to train base classifiers; it 
is proved that the ensemble approach can achieve the 
higher prediction accuracy, if the base classifiers are 
different from each other. In data stream classification, it is 
easy to construct an ensemble classifier. As the data stream 
is divided into unrelated chunks over time, these chunks 
should guarantee the diversity of base classifiers. 

There are two kinds of ensemble approaches in existing 
ensemble algorithms. The first one is called racing 
approach [15], such as weighted majority algorithm [18], 
winnow, and mixture of experts. This approach only 
updates the weight of base classifiers by frequently 
verifying each base classifier. The weight is accumulated 
by all verified races. However, these races may represent 
both new concepts and old concepts that a stream contains. 
Moreover, old base learners may not be discarded even if 
they have become too unwieldy to cope with new 
concepts. 

Another approach aims at changing the structure of 
ensemble approaches by discarding unsuitable base 
classifiers. Accuracy Weight Ensemble (AWE) has been 
proposed by Wang et al. [6]. This algorithm integrates a 
fixed number of base classifiers to classifying testing 
instances. Another ensemble method, Accuracy Update 
Ensemble (AUE) [16], relies on both base classifiers’ 
weights and the current feature distributions. But it is also 
a fixed-window ensemble method. 

B. Multi-label Data Stream Classification 
Despite the value and significance, there is very limited 

research on multi-label data stream classification problem. 
Some of the existing solutions focus on extending single-
label stream classifiers to multi-label cases [17], without 
addressing some special challenges in multi-label data 
streams. Reference [17] based on ensemble learning adopts 
stacked binary relevance model to handle label correlations 
among multiple labels. This algorithm focuses on the class 
imbalance and concept drift problems. Binary relevance 
model is adopted with KNN as the base learner. And an 
ensemble of fading random trees is proposed in [17] to 
handle multi-label stream classification. This model can 
efficiently process high-speed multi-label stream data with 
concept drifts. Another research on multi-label data stream 
classifier [2] modifies single-label data stream 
classification approach. Multi-label Hoeffding Tree [2] is 
trained by building a batch multi-label classifier on each 
leaf node.  

MLDE is proposed to deal with multi-label streams. 
Our approach is different with other existing ensemble 

approaches from the following aspects: (1) In order to 
process multi-label data classification, Multi-label Cluster-
based Classifiers (MLCC) are used as base classifiers since 
MLCC performs well on multi-label data. Moreover, we 
can easily track the centroid of the clusters to help us 
computing the similarity weight in MLCCs. (2) Compared 
with most existing approaches with fixed-window, we 
propose an adaptive ensemble method in which the 
number of selected base classifiers is changed in according 
to whether the concept drifts or not. If the concept is not 
changed, the number of base classifiers increases for 
higher accuracy. When a concept drift is occurred, the 
number of base classifiers decreases automatically. To 
accomplish this, we have defined a new subset accuracy 
weight for the selection of base classifiers. (3) MLDE 
utilizes more information from the testing data by 
introducing a similarity weight. In theory, a classifier has 
different discriminative capabilities for certain parts of a 
data space. According to this theory, we have defined a 
similarity weight to reflect whether a base classifier is 
credible for classifying the current testing sample or not. 

Notation Description 

ijx  The jth instance of the ith chunk in the data stream 

{ }ilΩ =  All candidate labels 

{ }ij

k
ijY y=  The true label set of ijx  

{ }ij

k
ijL l=  The prediction label set of ijx  

{ }E
if f=  The current ensemble classifiers 

maxM  The maximum number of Ef  

{ }iN N=  The set of nodes in the MLCC 

III. MULTI-LABEL STREAM CLASSIFICATION 
In this section, for clarity, we introduce the definitions 

of multi-label stream and multi-label data stream 
classification. 

A multi-label data stream with multiple label concepts 
is an unbounded ordered sequence of instances [17]. It is 
impossible and unnecessary to process and store all the 
data in a stream. Only useful data should be processed and 
stored, while instances will be discarded when they 
become irrelevant or even harmful to current concepts. The 
relationship between different concepts usually appears in 
the stream, such as pairwise relationship.   

In our paper, multi-label stream is represented by 
sequential chunks. Suppose that an incoming data stream is 
partitioned into a series of chunks with fixed size N in a 
chronological order, 1 2(D ,D D , )t" " , where Dt  is the 
data chunk at the t-th time stamp. Let χ denote the feature 
space of instances, and { }1 2l l lΩΩ = "  be the set 
including all the candidate labels. So the data chunk is 
represented as ( )1 1 2 2,Y , ,Y , , ,Yt t t t t tn tnD = x x x" , where 

ijx  is the feature vector of the jth instance in the ith data 
chunk, ijx χ⊆ . ijx is assigned with a set of labels ijY ⊆ Ω . 
This label vector is represented 

as { }1 2 Yij

ij ij ijijY y y y= " .  
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Multi-label stream classification aims to train a (set of) 
classifier(s) based on both historical and current instances 
(chunks) in the stream to predict the label sets of incoming 
instances.  

IV. FRAMEWORK OF MULTI-LABEL DYNAMIC 
ENSEMBLE CLASSIFIER (MLDE) 

In this paper, we design MLDE for classifying a data 
stream with concept drift. Fig. 1 gives an overview of our 
framework. It includes three sections: 

• A training section, which is to learn a base learner 
and build the original multi-label ensemble model; 

• A verifying section, which is to adaptively select a 
certain number of base learners from original multi-
label ensemble model; 

• A testing section, which is to identify the label set 
of the incoming testing instance based on a voting 
method. 

For clarity, we summarize the framework of MLDE as 
follows (the details of MLDE are shown in Algorithm 1): 

• Classify testing instances by current MLDE (Step 
2-7). We firstly compute the similarity weight for 
the testing instance (Step 5). We then obtain the 
global prediction result using a voting method.  

• Build base classifiers for the original MLDE (Step 
8-12). According to the assumption that only the 
newest base classifiers are useful for classifying 
current testing instances, “old enough” base 
classifiers should be discarded.  

• Adaptively select the base classifiers to construct 
the optimal MLDE (Step 13). To accomplish the 
optimal MLDE, a subset accuracy weight of each 
base classifier is computed. We then combine the 
base classifiers based on an adaptive ensemble 
method to achieve the optimal MLDE. 

Algorithm 1 Multi-label Dynamic Ensemble Classifier (MLDE)

Output: ijL , con
il
 

Input:   
i

testD , 
i

trainD , maxM  

1:  for each time stamp t-th do 
2:   for 

i

test
ijx D∀ ∈ do 

3:    for E
kf f∀ ∈ do 

4:     ( , con )
ij li

k kL ← PREDICT( ijx )i  

5:     OBTAIN( (x , f )sim ij kW ) 

6:    VOTE( kf )  

7:    ( , con )
ij li

L ← ENSEMBLEPREDICT ( ijx )  

8:   BUILD( tf ) using tD   

9:   if maxt M≤ then 

10:   E E
tf f f← ∪  

11:  elseif maxt M> then 

12:   
max 1

E
t M tf f f− +← ∪"∪  

13:  UPDATE( Ef ) 

 

Train

Original Model fE 

Verify

MLDE 

Adaptive Selection 

SubsetAccuracy 
Weight

Classify

Dtest

Label by fi
Lij

Ensemble Vote

Ensemble Label 
Lj

Di

Similarity Weight

SubsetAccuracy 
Weight

 
Fig. 1. The process of MLDE 

λ

λ

λ

2simW

3simW

 

Fig. 2. An example of MLDE 

For clarity, we give an example to illustrate the above-
mentioned framework. Distributions of 1D , 2D and 3D  are 
shown in Fig. 2. The solid line is the decision boundary of 
the true data distribution between Label-set 1 and Label-set 
2 (marked by triangles and cycles, respectively). At the 3t  
time stamp, we first built the base classifier 3f  based on 
data chunk 3D . Suppose that MLCC 1f , 2f  and 3f  are the 
three latest classifiers ( max 3M = ). Then three classifiers 
are verified using 3D , and acquire the subset accuracy 
weight 1λ , 2λ  and 3λ , respectively. As the subset accuracy 
weight 1 θλ λ< (that means many instances in 3D are 
misclassified by 1f ), the MLCC 1f  is discarded. At the 

4t time stamp, the arrival of the testing instance x should 
be classified. We first obtain the two predictions of the 
testing instance by two base classifiers, 2f  and 3f . Then 
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the similarity weights 2simW  and 3simW of 2f  and 3f  
should be compute. The global prediction is acquired 
based on ensemble voting method. 

V. MULTI-LABEL CLUSTER-BASED CLASSIFIER 
(MLCC) 

In order to deal with a multi-label data stream, we 
choose a multi-label cluster-based classifier (MLCC) based 
on [5] as the base classifier of MLDE. The MLCC 
algorithm combines the decision tree and the clustering 
algorithm. A typical training process of MLCC is 
described as following: a training chunk is clustered into 
several clusters by a clustering algorithm; continue to split 
nodes if the class-purity of a cluster is not higher than a 
predefined threshold. Testing samples are classified by the 
Nearest Neighbor (NN) rule. More details can be found in 
[5]. Purity and the label set of the node iN  in MLCCs are 
described below. 

Definition 1: (Purity) Let x belonging to a certain node 
(cluster i) be an instance having class label set 

{ }1 2 YY y y y= " . The purity of the node is the 

maximum sample-frequent for label set in the node [4][5]. 
Formally, we define   

( ,Y)

( ,Y)max
i

x Ni

Y x N
i

Y
pur

x
∈

∈= ,                            (1) 

where 
( ,Y)x Ni

x
∈

is the total number of instances in the node.  

Definition 2: (Label Set of Node) Label set of a node 
iN relies on the maximum sample-frequent. It is formally 

defined by: 

( ,Y)arg max
i i

N Y x NL Y ∈= .                        (2) 

VI. HANDLING CONCEPT DRIFTS 
We focus on the useful information of historical 

(training) instances and incoming (testing) instances to 
handle concept drifts. To deal with historical instances, we 
propose the adaptive ensemble method to integrate a 
certain number of “good enough” MLCCs. We present the 
similarity weight to make full use of incoming instances 
which represent the current concept. 

A. Subset Accuracy Weight and Similarity Weight 
Subset accuracy is used to select the useful MLCCs 

and give the ensemble voting prediction result of MLDE. 
We use the following equation to compute the subset 
accuracy weight iλ of each MLCC: 

=1

-
=

( - )

i
i M

i
i

SA

SA

θ

θ

λλ
λ∑

,                              (3) 

where iSA  is the subset accuracy of each MLCC and the 
threshold θλ  is used to decide whether each MLCC is 
discarded or not. The threshold θλ  is given by 

= i i

i

MinSA SA MinSA
SA SA MinSAθ

ελ
ε

⎧ − ≤⎪
⎨ − >⎪⎩

.                  (4) 

In the subset accuracy weight, the number of MLCCs 
changes adaptively according to different conditions (with 
concept drift and without concept drift). Moreover, we use 
the threshold θλ  to discard the MLCCs with lower 
accuracies and to select the MLCCs that are more efficient 
for classification. 

In MLDE, testing data in a stream can be fully utilized 
to construct the training model. Similarity weight is 
defined relying on the similarity between a testing instance 
and the centroid of leaf node that this instance belongs to. 
Unlike subset accuracy weight, which may become less 
useful when concept drift occurs, similarity weight using 
current instances seems to measures the credible level of a 
MLCC, especially in non-stationary environment.  

For the i-th MLCC, a similarity weight (x , f )sim ij kW of 
the testing instance xij  is calculated as   

               N

N
1

(x , N )
(x , f )

(x , N )

ij k

ij k

ij k L L
sim ij k M

ij k L L
k

sim
W

sim

=

=
=

=

∑
,          (5)                    

where M is the number of the MLCCs, (x , N )ij ksim is the 
similarity between the instance x ij and the node Nk  of 
MLCC kf ( k kN f∈ ). 

B. Adaptive Ensemble Method 
Adaptive ensemble method in our framework is used to 

select “good enough” MLCCs. At each time stamp, we 
compute the subset accuracy weight of each MLCC. If 
the value of this weight is above a certain threshold, this 
MLCC is regarded as the useful base classifier to predict 
the testing instances. The number of MLCCs increases if 
the concept drift does not occur. Algorithm 2 illustrates the 
selection method in MLDE. When a new chunk arrives, we 
build a new MLCC by this chunk and add this MLCC to 
the original MLDE. It is worth noting that the original 
MLDE contains the latest M MLCCs. We then estimate 
the subset accuracy of all the MLCCs by this new data 
chunk. After achieving the subset accuracy weight, we use 
all the selected MLCCs to classify the testing instance. 

C. Ensemble Voting Method 
The process of ensemble voting algorithms is seen in 

algorithm 2. A voting weight for the testing instance ijx  is 
calculated as 

                       (x , f ) (x , f )ij k k sim ij kW Wλ= .                  (6) 

The ensemble prediction label set ijL  can be set to the 

maximum value of ensemble function ( )E
ijf x , i.e., 

1

1

arg max ( )

arg max ( ) ( )

arg max (x ,f ) ( )

ij

ij

ij

E
ij L ij

M

L k ij k ij
k
M

L k sim ij k k ij
k

L f

v f

W fλ

=

=

=

=

=

∑

∑

x

x x

x

.     (7) 
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Algorithm 2 Voting Method 
Output: ijL , con

il
 

Input:    
i

testD , 
i

trainD , maxM  

//Adaptive select steps: 
1: for each time stamp t-th do 
2:  OBTAIN( Ef ) 

3:  for E
kf f∀ ∈ do 

4:   ESTIMATE( kACC ) 

5:   COMPUTE( kλ ) 

6:  if 0kλ < then 

7:    REMOVE( kf ) 

8:    UPDATE(
Ef ) 

//Voting steps 
9: for each time stamp (t+1)-th do 
10: OBTAIN( Ef ) 

11: for 
i

test
ijx D∀ ∈ do 

12:    for E
kf f∀ ∈ do 

13:     ( , con )
ij li

k kL ← PREDICT( ijx )i  

14:      OBTAIN( (x , f )sim ij kW ) 

15:     for ijL∀ ∈ Ω  by each kf  do 

16:      COMPUTE( (x , f , )ij k ijW L ) 

17:     OBTAIN( max (x , f , )ij k ijW L ) 

18:    
( ,con )

( , con ) arg max (x , f , )
ij li ij li

ij k ijL
L W L←  

 

VII. EXPERIMENTS 

A.  Datasets 
Lacking of benchmark datasets is the problem of 

performance evaluation on multi-label stream. We choose 
Reuters21578-top10, Ohsumed and tmc2007 collection as 
basic datasets to simulate the multi-label streams. 
Reuters21578-top10 corpus consists of the 10 most 
frequent classes. After preprocessing, this corpus contains 
9034 instances with 500 attributes. Ohsumed corpus is a 
subset consisting of medical articles, labeled with disease 
categories. We select 6286 instances with 14527 attributes 
in this corpus. Tmc2007 corpus consists of 28596 
instances with 522 attributes (after preprocessing). These 
instances belong to 22 different categories.  

Four multi-label streams are used in our experiments. 
Two of them are synthetic multi-label streams on the 
gradual and sudden drifting environment, respectively. In 
the simulated gradual stream generated from Reuters 
(called Reuters Gradual stream), three concepts are formed 
in this stream. Part of each concept is gradually changed 
into another one over ten time stamps. Likewise, the 
sudden concept drifting is simulated based on tmc2007 
corpus (called Tmc Sudden stream). Two concepts are 
generated during 10 time stamps. At the 5-th time stamp 
where the sudden drift happens, one concept is changed 
into the other one. More detailed information about the 
synthetic streams is described in Table 1. 

We construct two multi-label streams by the Reuters, 
Ohsumed and Tmc collections.  The sigmoid function is 
used to formulate a weighted combination of two datasets 

in order to characterize the target concepts [8]. The first 
stream (called Reuters-Tmc stream) consists of 20000 
instances with 1031 attributes. 40 chunks are divided from 
Reuters-Tmc stream, and each chunk contains 500 
instances. The second stream (called Reuters-Oh stream) is 
generated by Reuters and Ohsumed collections, which still 
contains 20000 instances with 1031 attributes. But this 
stream is divided into 20 chunks, each chunk contains 
1000 instances. More detailed information on the above 
three streams are seen in Table 1. 

We arrange the training chunks and the testing chunks 
by the Interleaved Chunk method. According to this 
method, we first collect the instances to construct a testing 
chunk. After evaluating the base learners by this chunk, we 
train it again to update the training model.  

B. Evaluation Measures and Benchmark Methods 
Two kinds of evaluation measures are used in our 

paper. The first one is example-based measure, such as 
subset accuracy and example-based F measure. This kind 
of measures is evaluated based on the average differences 
of the true and the predicted sets of labels. Another one is 
called label-based measure, such as Hamming loss and 
micro-averaged F measure. To achieve the label-based 
evaluation, we first separately evaluate instances for each 
label, then average over all labels [20]. More details are 
shown in [19][20]. 

For comparison, our algorithm has been compared with 
four state-of-the-art ensemble algorithms, which are much 
related to our work. These algorithms are: 

• IBR Dynamic Ensemble (IDE) [2]: This approach 
is a fixed-window approach based on the 
assumption that “old enough” base classifiers 
should be discarded. Therefore, it always removes 
the oldest base classifier from the ensemble when 
updating. 

• Majority Voting Ensemble (MVE): This ensemble 
method is widely used in single-label streams with 
base classifiers sharing the same weight. The global 
prediction tends to the prediction of most base 
learners.  

• MLOzaBagAdwin [19]: This method uses the 
Adwin algorithm to detect and estimate the drift for 
providing the ensemble weights of the boosting 
method. 

• MajorityLabelset: Majority-class algorithm is 
widely used in single-class classification. 
MajorityLabelset is the multi-label version of 
majority-class.  

In IDE and MVE method, MLKNN and Binary 
Relevance are used as the basic learners. The number of 
base classifies in these ensemble models are 5 in the 
Reuters-Gradual and Tmc-Sudden streams, and 10 in 
Reuters-Tmc and Reuters-Oh streams. 
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TABLE I.  THE PROPERTIES OF STREAMS 

 Reuters-
Gradual 

Tmc-
Sudden 

Reuters
-Tmc 

Reuters
-Oh 

Instances /chunk 900 5,600 500 1,000 
Attributes  500 522 1,031 1031 
Concept 3 2 -- -- 
Time stamp  30 10 40 20 
Total instances 27,000 56,000 20,000 20,000 
Label 10 22 10 10 

C. Results 
We experiment on four streams. In view of the overall 

performance, the best performance is delivered by MLDE 
with respects to subset accuracy, Hamming loss, example-
based F measure, and micro-average F measure. We 
summarize the results of different approaches in terms of 
the Hamming Loss for all the streams in Table 2. We also 
describe the subset accuracy of tested algorithms in Table 
3.  The bold numbers in Table 1 and Table 2 show the 
three algorithms which achieve the highest value of 
evaluation indexes. In order to better distinguish the 
performance of our MLDE and other algorithms and to 
clearly describe the trend of tested algorithms at each time 
stamp, we show the plotting indexes of our MLDE and the 
other best algorithm in Fig. 3-18. As observed from the 
experimental results, MLDE achieves the highest 
performance in comparison to all the algorithms in most of 
the streams.  

TABLE II.  HAMMING LOSS OF DIFFERENT ALGORITHMS ON 
ALL SCENARIOS 

 Reuters-
Gradual 

Tmc-
Sudden 

Reuters
-Tmc 

Reuters-Oh 

MLDE 0.0471 0.0199 0.0530 0.0449 
IDE-MLKNN 0.0572 0.0711 0.0772 0.0586 
IDE-BR 0.0686 0.0689 0.0703 0.0972 
MVE-MLKNN 0.0562 0.0678 0.0701 0.0465 
MVE-BR 0.0723 0.0705 0.0727 0.0966 
MLOzaBagAdwin 0.0268 0.0490 0.0337 0.0122 
MajorityLabelset 0.0334 0.0527 0.0178 0.0127 

 
Fig. 3-6 with the time stamps on the x-axis describe the 

results of MLDE and tested algorithms in Reuters-Gradual 
Stream regarding to Hamming loss, subset accuracy , 
example-based F measure, and micro-average F measure, 
respectively. Though the MajorityLabelset perform better 
with a respect to Hamming Lose, its subset accuracy is too 
low compared to other methods. But our MLDE achieve 
the better performance regarding to subset accuracy, 
example-based F measure, and micro-average F measure 
for the gradual drift stream generated from Reuters. Fig. 4 
shows the plotting subset accuracies of MLDE and IDE-
BR. When the gradual drift occurs at the 11-th and 21-th 
time stamps, all of the methods react to the changes with a 
great drop of plotting subset accuracy. After adjusting to 
the new concept, these algorithms produce the 
improvements of plotting subset accuracy gradually. But 
MLDE still outperforms the other method. In comparison 
to curve of IDE-BR, the curve of MLDE is still above it. 
During the periods with stable concepts, the plotting 
accuracies of MLDE are steady. Similar phenomenon is 
described in Fig. 5-6. 

 

 

 

TABLE III.  SUBSET ACCURACY OF DIFFERENT ALGORITHMS 
ON ALL SCENARIOS 

 Reuters-
Gradual 

Tmc-
Sudden 

Reuters-
Tmc 

Reuters
-Oh 

MLDE 0.7277 0.8184 0.7503 0.7801 
IDE-MLKNN 0.5010 0.3202 0.5229 0.5300 
IDE-BR 0.5754 0.2525 0.6065 0.6690 
MVE-MLKNN 0.5067 0.3211 0.5289 0.5355 
MVE-BR 0.5238 0.2305 0.5881 0.6605 
MLOzaBagAdwin 0.1240 0.0686 0 0 
MajorityLabelset 0.6470 0.0322 0.5585 0.1503 

 
Fig. 3. Hamming Loss of tested approaches in Reuters-Gradual stream 

   
Fig. 4. Subset accuracy of tested approaches in Reuters-Gradual stream  

 
Fig. 5. Example-based F measure of tested approaches in Reuters-
Gradual  

 
Fig. 6. Micro-average F measure of tested approaches in Reuters-
Gradual  

We analyze the ability of MLDE to cope with the 
sudden drift scenario in Tmc-Sudden stream. Fig. 7-10 
illustrate the results of different algorithms with Hamming 
loss, subset accuracy, example-based F measure, and 
micro-average F measure, respectively. From results, 
MLDE is still the best algorithm. In Fig. 8, all the methods 
respond to the concept change with a large decrement of 
the curve at the 5-th time stamp. In the period of rebuilding 
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models, the plotting subset accuracy obtained by MLDE 
increases gradually, because the method is reconstructed 
after adjusting to the new concept. We observe that MLDE 
obtains relatively stable plotting subset accuracy after 
concept drift happens. Thus, we can clearly distinguish the 
stability period from the drift period. 

  
Fig. 7. Hamming Loss of tested approaches in Tmc-Sudden stream 

 
Fig. 8. Subset Accuracy of tested approaches in Tmc-Sudden stream 

 
Fig. 9. Example-based F measure of tested approach in Tmc-Sudden  

 
Fig. 10. Micro-average F measure of tested approach in Tmc-Sudden  

In Reuters-Tmc stream (see Fig. 11-14), though the 
Hamming Loss of MLDE is a little higher than 
MajorityLabelset and MLOzaBagAdwin,  MLDE gains the 
great improvement for subset accuracy measure, example-
based F measure and micro-average F measure in 
comparison to the other 5 algorithms. It is noticed that 
MLDE accomplishes the better performance in term of the 
plotting subset accuracy and example-based F measure, as 
the fluctuation of curves in MLDE is smaller than that in 
the other methods as seen in Fig. 12-13. For example, we 
can observe that a concept changes during the period 
between the 6-th stamp and the 12nd stamp. MLDE keeps 
steady and performs slightly better if a relatively small 
change of a concept occurs. Likewise, MLDE delivers the 
best performance in the Reuters-Oh stream illustrated in 
Fig. 15-18 owing to the quick reaction of MLDE to drifts 
and keeps steadier in the rebuilding period. 
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Fig. 11. Hamming Loss of tested approach in Reuters-Tmc stream 
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Fig. 12. Subset accuracy of tested approach in Reuters-Tmc stream 
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Fig. 13. Example-based F measure of tested approach in Reuters-Tmc  
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Fig. 14. Micro-average F measure of tested approach in Reuters-Tmc  
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Fig. 15. Hamming Loss of tested approach in Reuters-Oh stream 
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Fig. 16. Subset accuracy of tested approach in Reuters-Oh stream 
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Fig. 17. Example-based F measure of tested approach in Reuters-Oh  
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Fig. 18. Micro-average F measure of tested approach in Reuters-Gradual  

VIII. CONCLUSION 
In this paper, a new ensemble approach, MLDE, is 

proposed to deal with the multi-label stream classification 
with concept drift. As an ensemble approach, we select the 
useful MLCCs by the adaptive ensemble method and 
combine them by voting method to achieve the better 
global prediction result. Experiments on both synthetic and 
real-world streams are carried out to evaluate the 
performances of MLDE, IDE, MVE, MLOzaBagAdwin 
and MajorityLabelset based on four evaluation measures. 
The experimental results demonstrate that our MLDE 
perform better than other algorithms. 

In the future work, we plan to further extend our work 
in several aspects. First, we will investigate how to design 
an ensemble model in a noisy stream environment. Second, 
we plan to further extend our approach to semi-supervised 
multi-label stream classification. All of these will be of 
great importance in applying the proposed MLDE to more 
real-world data streams. 
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