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Abstract— As it is confronted to inherent neural delays, how
does the visual system create a coherent representation of a
rapidly changing environment? In this paper, we investigate
the role of motion-based prediction in estimating motion tra-
jectories compensating for delayed information sampling. In
particular, we investigate how anisotropic diffusion of informa-
tion may explain the development of anticipatory response as
recorded in a neural populations to an approaching stimulus.
We validate this using an abstract probabilistic framework and
a spiking neural network (SNN) model. Inspired by a mecha-
nism proposed by Nijhawan [1], we first use a Bayesian par-
ticle filter framework and introduce a diagonal motion-based
prediction model which extrapolates the estimated response to
a delayed stimulus in the direction of the trajectory. In the
SNN implementation, we have used this pattern of anisotropic,
recurrent connections between excitatory cells as mechanism for
motion-extrapolation. Consistent with recent experimental data
collected in extracellular recordings of macaque primary visual
cortex [2], we have simulated different trajectory lengths and
have explored how anticipatory responses may be dependent
on the information accumulated along the trajectory. We
show that both our probabilistic framework and the SNN
model can replicate the experimental data qualitatively. Most
importantly, we highlight requirements for the development of
a trajectory-dependent anticipatory response, and in particular
the anisotropic nature of the connectivity pattern which leads
to the motion extrapolation mechanism.

I. INTRODUCTION

A. Neural signature: motion anticipation, neural delays and
pre-development of responses to predictable trajectories

A smooth visual motion generates a continuous stimulation
of the classical receptive fields (CRFs) corresponding to the
retinotopic representations of the trajectory in the primary
visual cortex. Classically, it is believed there exists a facilita-
tion of the neural activity following this trajectory of motion.
This facilitation is thought to be favoring smooth, predictable
trajectories compared to a flashed stimulus, unpredictable
one, see [3] for a review. This difference is a potential
mechanism for the flash-lag effect (FLE): Indeed, the FLE
is a well investigated illusion that highlights the differences
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Fig. 1. Problem statement: correct localization of a ball despite neural
delays. This picture illustrates the restrictive effect of delays at sensory and
motor levels. We define a simplified but realistic setting where the time
needed for the retinal image to reach the visual areas implicated in motion
detection is equal to τs. A further axonal time τm is required to reach the
oculomotor muscles. Note that the red dotted line indicates the position of
the ball when its image formed in the retina reaches the visual system, while
the gaze of the player is directed to its actual position in an anticipatory
fashion (red solid line). In addition, the player should make a suitable motor
command (direction of racket, black dashed line) to match the expected
position of the ball at the future point in time of the hit (red dashed line).

associated with position coding of stationary flashed and
moving stimuli [4], [5]. There is a lively debate surrounding
the question which neural mechanisms correlate with the
FLE.

Furthermore, these perceptual phenomena seem closely
linked with the mechanisms compensating for axonal and
processing delays in the visual system. A prototypical ex-
ample is the problem faced by a tennis player (see Fig 1):
the time needed for the neural signal to transfer motion
information of the ball to the responsible areas in the cortex
is around 50 ms [4]. If the ball is moving at 20 m · s−1,
it will travel approximately one meter. Considering this,
one could first imagine that motion information arriving in
cortex may represent the position of the ball as it comes
in, that is corresponding to about 50 ms back in the past.
Nevertheless, the near-prefect performance of the tennis
player in locating the target —as can be suggested by the
direction of his gaze— suggests the existence of a more
precise representation of sensory information corresponding
to the actual, present position of the ball. Both the FLE
and this simplified example of a tennis player highlight that
information accumulated from the motion trajectory may
contribute in the development of an anticipatory response
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in the neural populations which have their CRF stimulated
by an approaching stimulus.

Herein, we focus on primates’ primary visual cortex.
Indeed, about a quarter of cells in this area are significantly
sensitive to motion (speed or direction) [6]. To validate the
hypothesis of Nijhawan [3], we study their potential role of
the representation of the position of a moving dot in a system
confronted with an inherent axonal delay. In that direction,
experimental data recorded in V1 of macaque monkey [2]
supports the hypothesis that neural populations develop an
anticipatory response depending on the trajectory length
before the arrival of the stimulus at the recorded CRF (see
Fig 2). We will therefore use this neural signature throughout
this study and compare this experimental data qualitatively
with models of motion-based prediction. These models were
introduced in our previous studies, at an abstract, Bayesian
scale [8] and as spiking neural network (SNN) [9].

B. Experimental protocol of neuronal signature

The neural signature associated with this study is extracted
from extra-cellular recordings of neurones from area V1 in
the macaque monkey [2], while a smoothly moving stimulus
is approaching the CRF that was mapped for each neuron.
The stimulation protocol includes three stimuli with different
trajectory lengths between the start point of motion and
the CRF. The recordings show a dynamic build up of an
anticipatory response before the arrival of the stimulus at the
CRF. This anticipatory response is systematically dependent
on the length of trajectory (see Fig 2).

To investigate the trajectory dependent anticipatory re-
sponse, we have conducted equivalent experiments in our
modeling framework. In the electrophysiological protocol the
recorded population is fixed and there are three different
trajectory lengths. In our model experiments, we have studied
the estimated position of the stimulus at three successive
points along the same the trajectory. Thus, both electrophys-
iological protocol and simulated model aim at studying the
importance of the trajectory length in the temporal profile of
neural responses.

C. Hypothesis: Temporal coherence of motion and internal
representation of predictable trajectories

Prior information on regularities of the world is essential
for optimal performance of sensory processing. In the par-
ticular case of detecting visual motion, the prior knowledge
on the temporal coherence of motion may facilitate the
estimation of predictable trajectories and contribute to the
compensation of neural transfer delays.

D. Model: motion-based prediction

Based on such prior information, we propose a generic
Bayesian modeling framework to implement anisotropic dif-
fusion of the estimated motion information. This framework
may serve as an internal predictive representation of motion
trajectories to overcome neural delays. In the model, we aim
to asses the role of prediction in the dynamical development
of such a neural activity at, or before, the arrival of the

Fig. 2. (Top) Experiment: a smoothly moving stimulus (tilted bar) is
approaching the classical receptive field (CRF) mapped from a V1 neuron.
The activity is recorded for different length of the trajectory before it enters
the CRF. (Bottom) Extracellular spiking response (in spikes per second)
averaged over a population of macaque monkey V1 neurons. This shows an
anticipation of the response with respect to the trajectory length (adapted
from Benvenuti et al [2])

sensory stimulus. To explore if such diffusive predictive
mechanisms could explain neurophysiological recordings we
simulated similar experiments in our model by using two
different configurations of the model: MBP (Motion-based
prediction), in which model holds an internal representation
of the motion trajectory by predicting the position and veloc-
ity of the stimulus and PBP (position-based prediction) in
which the model holds an internal representation of motion
trajectory by predicting only its position.

E. Motion-based prediction with spiking neurons

In our previous study [9], we have shown that motion-
based prediction can be implemented in a SNN through
anisotropic connectivity. Anisotropic connectivity can be
seen as an essential mechanism to diffuse information neural
networks so that local motion-information is integrated to a
coherent percept, allowing the prediction of the trajectory of
a moving stimulus. Here, we use this model to study the role
of connection delays and focus on the anticipatory response
reflected in the spike activity of the network.

We have chosen to use a SNN and not used a rate-based
or mean-field description for the neural network for several
reasons. First, SNN models are biologically more plausible as
they can capture temporal behavior close to their biologically
counterpart. Second, our study aims to provide computational
models for neuromorphic platforms designed for SNN [11],
[12]. Third, SNN have the advantage that network commu-
nication is required only when spikes occur in contrast to
rate-based model which require continuous communication
between nodes and hence have scaling limitations.
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Fig. 3. (Left) Diagonal model of motion-based prediction: considering τ as neural delay, there is no measurement at t = 0 and ultimate state estimation
at any time step is z(t). Diagonal scheme of motion estimation includes two steps: first, the motion state zt−τ is estimated based on smoothness constraint
and delayed sensory information It−τ , then according to a prior knowledge on late arrival of sensory information, the response is extrapolated for a period
of a “virtual blank” of duration τ , without any sensory measurement. (Right) Neural implementation of the diagonal model. We represent the connection
from neuron i (bottom layer) to neuron j (upper layer) knowing its latency τij and the preferred position of neuron j (horizontal axis xj ) and speed
(vertical axis vj ). To implement motion-based prediction, each neuron favors input which is coherent with a smooth trajectory, collecting information from
neurons with a similar preferred speed around vi = vj but at a position which is predicted to be around xi = xj − vj · .τij .

II. MODEL: MOTION-BASED PREDICTION WITH AXONAL
DELAYS

As mentioned before, this paper aims to study the role
of predictability of trajectory on development of early re-
sponse in neural populations, possibly distant from cortical
position of stimulus. Predictability of stimulus is modeled
in a Bayesian framework by a probabilistic representation of
motion. The motion of an object in the planar visual space at
a given time is fully described by the probability distribution
of its position and velocity. In such a framework, Bayesian
inference optimally integrates sensory information coming
from the scene (the likelihood) with what is suggested
by the internal model, the priors defining for instance the
smoothness of the trajectory. Finally, Bayes rule allows to
infer the posterior estimation. To study the effect of delays,
our Bayesian framework integrates sensory information from
the recent past by integrating the knowledge of this fixed
delay within the internal model.

A. Diagonal model and delayed access to sensory input

Considering neural delays, predictive position coding can
be implemented by pushing the population response forward
in the direction of motion. Our model uses the motion
signal including position and velocity of a moving object to
extrapolate the trajectory which is most likely to be covered
by the stimulus. As illustrated in Fig 3, a classical Markov
chain for state estimation of the stimulus can be redrawn in
a diagonal fashion.

This diagonal scheme of motion states illustrates the
dependence of the extrapolated state zt = {xt, yt, ut, vt} to
the state suggested by the delayed motion information zt−τ ,
where τ is the value of the delay in terms of frame number
(in our simulations each frame has been arbitrarily mapped
to 10 ms of biological time). In this way, the earliest part of
any trajectory would be missed, because motion estimation
starts at t = δt−τ > 0 and there is no sensory information at

t = 0. The next states are realistic estimations of the actual
position of the stimulus and trajectory prediction overcomes
the restrictive effect of delay. The diagonal model of motion
extrapolation was originally proposed by Nijhawan [1] to
explain the detailed mechanism of motion extrapolation by
retinal ganglion cells. Here, we use this idea as an abstract
rule for predictive motion estimation. Considering delayed
access to sensory input in diagonal model (see Fig 3), master
equations of model can be written as below: Considering the
delayed access to sensory input in diagonal model (see Fig 3),
master equations of the model can be written as below:

Estimation:

p(zt−τ |I0:t−τ ) ∝ p(It−τ |zt−τ ) · p(zt−τ |I0:t−τ−δt) (1)

Prediction:

p(zt−τ |I0:t−τ−δt) = (2)∫
dzt−δt·p(zt−τ |zt−τ−δt) · p(zt−τ−δt|I0:t−τ−δt)

Extrapolation:

p(zt|I0:t−τ ) ∝ p(zt|zt−τ ) · p(zt−τ |I0:t−τ ) (3)

In the diagonal model, the motion state zt−τ is estimated
based on delayed sensory input It−τ and the smoothness of
motion. δt is the step size of estimation and τ represents
the imposed delay. Equation 1 calculates the probability of a
desired motion state, using the likelihood of that state (mea-
sured by delayed sensory information), and the predicted
state given by Eq 2. In the next step, estimated motion is
extrapolated for a period of “virtual blank” of duration τ
during which there is no sensory measurement. Thus, the
extrapolative step shown by equation 3 is purely predictive,
using the smoothness constraint and prior information of the
value of delay τ .
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Fig. 4. Anticipation mechanism: the anticipated position of the stimulus (a small dot moving horizontally with constant velocity) is illustrated for
τ = 100 ms. The stimulus is moving from -1 to 0 (shown by dashed black lines, the white line representing the delayed position) and position estimations
are illustrated as histograms composed of 400 positional bins. Color from blue to red represent the probability (from low to high) in each time bin. Sensory
drive begins after a delay τ = 100 ms and the integration of motion estimates builds up gradually. Note that before that time, information is distributed
uniformly over all positions. (Left) In the PBP model, a positional error occurs and the estimated position lags behind the actual position of the stimulus
(probability distribution is centered around the dashed white line). (Right) In the MBP model, an anticipatory response develops gradually and the actual
position of stimulus is accurately represented and approaches the dashed black line.

B. Motion-based prediction

The internal predictive representation favors smooth tra-
jectories in two steps: First, temporal coherency of motion
at each step (represented by p(zt−τ |zt−τ−δt) in equation 2)
is implemented by following equations:

xt−τ = x(t−τ−δt) + u(t−τ−δt) · (δt) + νx

yt−τ = y(t−τ−δt) + v(t−τ−δt) · (δt) + νy (4)
ut−τ = γ · u(t−τ−δt) + νu

vt−τ = γ · v(t−τ−δt) + νv (5)

νx, νy ∝ N (x, y; 0, DX · δt) (6)

νu, νv ∝ N (u, v; 0, (σ−2
p +D−1

V )−1 · δt) (7)

The noise terms νx, νy are drawn from Gaussian distribu-
tions: Position is blurred with diffusion parameter DX ·δt and
sampled at each time step. Blurring of velocity is done simi-
larly with νu and νv by sampling from Gaussian distributions
with variance (σ−2

p +D−1
V )−1 · δt. Here, γ = (1 +

D2
V

σ2
p
)−1

is the damping factor introduced by the prior information
on slowness of motion and γ ≈ 1 for a high value of
σp. As defined in [14], prior information in slowness and
smoothness of motion can be parameterized by the variance
(σ−2
p + D−1

V )−1 · τ on velocity. The noise terms νx, νy
are drawn from Gaussian distributions: Position is blurred
with diffusion parameter DX · δt and sampled at each time
step. Blurring of velocity is done similarly with νu and
νv by sampling from Gaussian distributions with variance
(σ−2
p +D−1

V )−1 · δt. Here, γ = (1 +
D2

V

σ2
p
)−1 is the damping

factor introduced by the prior and γ ≈ 1 for a high value
of σp. As defined in [14], prior information in slowness and
smoothness of motion can be parameterized by the variance
(σ−2
p + D−1

V )−1 · τ on velocity. The update rule (see [10]

for a derivation) assumes independence of the prior on slow
speeds with respect to predictive prior on smooth trajectories.

Second, estimated motion is extrapolated forward, for the
duration of τ and based on the knowledge from trajectory
and a prior knowledge on the fixed delay τ . As we assume
the noise to be independent, this step can be computed with
p(zt|zt−τ ) in equation 3 and simply defined by equations
similar to equations 4-5:

xt = xt−τ + ut−τ · (τ) + ωx

yt = yt−τ + vt−τ · (τ) + ωy (8)
ut = γ · ut−τ + νu

vt = γ · vt−τ + νv (9)

ωx, ωy ∝ N (x, y; 0, DX · τ) (10)

ωu, ωv ∝ N (u, v; 0, (σ−2
p +D−1

V )−1 · τ) (11)

This Bayesian motion estimation has been implemented in a
particle filtering framework.

In particular, the mapping between input and predictive
layers is anisotropic. For instance, in the case of rightward
motion, the predictive layer may be interpreted as a neural
population which gets stimulated by sensory information
received by neurons left of the target. Note that the diagonal
representation does not change fundamentally the motion-
based prediction model that we presented in [8]. By intro-
ducing a prior knowledge on delays τ this representation
provides distinct layers for demonstrating the delayed arrival
of stimulus related information and predictive neural activ-
ities. As a consequence, motion-based prediction explains
the anticipatory response of V1 neurons solely using the
hypothesis of predictive internal representation of motion. As
a control model we have used the PBP configuration which
does not predict the velocity of stimulus. The comparison
between two configurations reveals that having no prediction
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Fig. 5. Anticipatory response in the diagonal model with τ = 100 ms,
while a smoothly moving stimulus is approaching to three target points in
the trajectory. The relative position of points in the trajectory is shown in
the inset box and estimated position of stimulus by MBP and PBP models
at those locations is illustrated by the corresponding color. Responses are
averaged over 10 trials and centered at the time of the stimulus arrival at
the target position (white dotted line). The white dashed line indicates the
time at which the delayed stimulus information reaches each target position

for the stimulus velocity leads to a delayed and less localized
response.

C. Results

Results of the abstract motion estimation framework are
illustrated in Fig 4 and Fig 5. The stimulus is a horizontally
moving dot with constant speed. The estimated position has
been studied in the early part of the trajectory and results are
averaged over 10 trials.

Fig 4 includes histograms of the estimated stimulus posi-
tion by the diagonal MBP and the PBP model (τ = 100 ms).
In both models, motion estimation starts at time = τ , as soon
as the delayed motion information are detected by model.
The actual and delayed positions of stimulus are indicated
by black and white dashed lines, respectively. The probability
of position estimates is color coded ranging from zero to one
and is matched to the color range from dark blue to red. In
MBP model, despite the delayed arrival of motion informa-
tion, position estimation is accurate and match the actual
position of stimulus. The PBP model provides a delayed
and poor motion estimation, as reflected by the difference
between the dashed line and the center of estimated position.
By advancing in the trajectory, the MBP model corrects the
positional error caused by the delay (note the shift of peaks
toward zero in Fig 5), while the estimated position by PBP
model remains lagged. The dynamics of estimated position
by both models is illustrated in Fig 5. In order to simulate
the experimental protocol in V1 [2], three successive points
in the trajectory have been selected. The temporal profile of
the estimated positions are shown in a centered fashion, i.e.
the profiles are shifted by the stimulus arrival time.

In addition, the diagonal MBP model reproduces the de-
pendence of position coding on the trajectory length. In other

words, the positions located ahead of the current stimulus
position develop an anticipatory response before the arrival
of the stimulus. The temporal profile of the estimated position
by diagonal PBP model is not dependent to the relative
position of stimulus in the trajectory.

III. SPIKING NEURAL NETWORK (SNN)

The SNN used in this study is based on our previous
study [9] and aims at incorporating the mechanism for
delay compensation. The network in [9] consisted of one
population of excitatory neurons and one population of
inhibitory neurons with recurrent connections within each
population and between the two populations. Each neuron
was implemented as a leaky integrate-and-fire neuron with
conductance-based exponential synapses (for a full descrip-
tion, see [9]). Simulations were performed with PyNN [15]
as interface to the NEST simulator [16].

In contrast to the Bayesian framework described above,
we have implemented our SNN model in one dimension for
simplicity. Using a two dimensional description is equally
possible in the SNN (as shown in our previous study [9]), but
requires larger networks in order to get a sufficient coverage
of the tuning space and is computationally more costly to
simulate. In order to show that connectivity is sufficient
to implement delay compensation and that a trajectory-
dependent motion-anticipation signal emerges in the SNN
model, a one dimensional description is sufficient.

A. Tuning properties

In order to transform the visual input into neural activity
we define tuning properties as follows. Each cell in the
excitatory population has two tuning properties, one pre-
ferred velocity vx and the position of the CRF x, i.e. the
stimulus position preferred by the cell. Preferred velocities
are distributed according to a distribution favoring low veloc-
ities [14], with a logarithmic scale for the speed according to
Weber’s law [13]. CRF centers are randomly distributed in
the interval (0, 1). For a stimulus at position xstim moving
with speed vstim we calculate the input spike rate for an
inhomogeneous Poisson process inserted into cell i as:

Li(t) = fmax · exp(−
‖xstim(t)− xi‖2

2β2
X

− ‖vstim − vi‖
2

2β2
V

)

(12)
where βX = 0.05 and βV = 0.05 describe how diffuse the
stimulus appears and fmax is the maximum input frequency
of 1000 Hz.

Each cell receives the input stimulus delayed by 100 ms.
As in the diagonal MBP model described above (see Fig 3),
we correct for this delay by predicting the past position of
the input specifically to each cell i:

xi,stim(t) = x0,stim + vstim · t− vi · τ (13)

where we set τ = 100ms in the MBP model to compensate
for the perceptual delays. Inhibitory cells do not have tuning
properties, but the model could be extended to allow for
anisotropic connectivity involving the inhibitory cells.
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B. Network connectivity

Similar to our previous study, we use the excitatory
cell’s tuning properties to calculate the recurrent connections
strengths within the excitatory population. Connections from
the excitatory to the inhibitory population (and vice versa)
and the recurrent inhibitory connections are set up according
to a distance dependent isotropic scheme with 2% probability
as described in [9]. For each excitatory source cell i we
calculate the connection strength pij to each possible target
neuron j according to Equation 14. Each excitatory neuron
connects to the 0.5% of all possible excitatory targets with
the highest strength, other connections are discarded.

pij = exp(−‖~x
∗
i − ~xj‖2
2 · σ2

X

) · exp(−‖~vi − ~vj‖
2

2 · σ2
V

) (14)

~x∗i = ~xi − ~vi · τij (15)

Where ~x∗i is the position where the source neuron i predicts
the stimulus to be after a certain time τij , see Fig 3.

This connection rule is valid both for the recurrent con-
nections and the mapping from the input to the excitatory
population. For lateral interactions, assuming a constant
propagation speed in the lateral interactions within the excita-
tory population, delay is proportional to the cortical distance.
In particular, we will use here for the MBP implementation
a fixed axonal delay from the sensory layer τ = 100 ms (and
corresponding to the physical axonal delay). For biological
plausibility but also to allow future implementation on neu-
romorphic chips, we used a fixed latency between neurons
in the excitatory layer τij = 5 ms and a cortical distance
proportional to the retinotopic one.

By pushing the motion information gathered at position
xi forward by ~vi · τij the connectivity becomes anisotropic
and the network is able to compensate for the neural and
perception delays. The parameters σX and σV in Eq 14
determine the effect of the tuning properties on the resulting
connectivity as in Eqs 5 and 11. In particular, the MBP model
corresponds to σV = 0.1 and σX = 0.1. The abstract PBP
model corresponds to σV → ∞, that is, where information
on speed is uniformly represented. As a consequence in the
PBP model, anisotropy only acts in the spatial dimension and
the prediction from Eq 14 becomes isotropic. The left part
in Figure 6 shows the outward connection strengths for one
example source cell for both setups.

IV. SIMULATION RESULTS

We have simulated networks with 20000 excitatory neu-
rons and 5000 inhibitory neurons using two different connec-
tivity patterns across the excitatory population with σV =
0.1 and σV = 100 corresponding to the PBP and MBP
models in the abstract framework, respectively. The network
is stimulated with a blurry dot moving at a constant speed
starting at position 0.1 and moving rightward with a speed
of 0.5 s−1.

In order to read out the motion information processed
in the SNN we have used the vector-averaging approach

described in [9]. In short, we have binned the output spike
trains in time bins of 25 ms and sorted them according to
the emitting cell’s tuning preference. Finally, we normalized
the output rate across the population to obtain a measure
for the confidence of the network prediction. Figure 7 shows
the readout of the network prediction for the two different
connectivities. The two color maps show the network’s
confidence about the motion information color coded for the
two different connectivity configurations.

Fig. 7. Prediction confidence in the SNN with MBP (Upper) and PBP
(Bottom) connectivity. Cells are sorted according to their CRF centers and
spike rates are time-binned and normalized over the number of cells to
derive the prediction confidence. The black dashed line indicates the actual
position of the stimulus and is ahead of the networks activation ’wave’. The
white dashed line shows the delayed position of the stimulus. In the network
with MBP connectivity the network follows the actual position more closely
compared to the network with PBP connectivity.

As Figure 7 shows, the PBP network is not able to
compensate for delays and information about the stimulus
speed is not diffused within the network due to the isotropic
connectivity, the readout lags behind the actual stimulus
movement. In contrast, the readout in MBP network follows
the real stimulus more closely.

A comparison of the two connectivity configurations,
regarding the activity and the derived confidence about
the stimulus position, shows that our SNN implementation
gives qualitatively equivalent results as shown in the ab-
stract framework and seen in physiological experiments. The
network with PBP connectivity does not compensate for
perceptual delays and loses information about the stimulus
speed as the connectivity is insensitive to the cells’ preferred
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Fig. 6. Connectivity profile in the SNN. Both figures show the outward connection probability for one example cell as color code. Excitatory cells
are displayed as black dots in the tuning space, the x-axis shows the center of the cells’ receptive fields, the y-axis shows the preferred speed. Realized
connections from the source cell (indicated by the yellow star) are shown as white circles with the relative connection strengths indicated by the radii of the
circles. The green diamond indicates the center of mass for all outward connections from the source cell. Left: PBP connectivity (σX = 0.1, σV = 100.).
As the connectivity is insensitive to preferred speeds, the connectivity is isotropic in the speed dimension. The bias of the network for slow speeds can
be seen in the denser distribution of cells around small preferred speeds. Right: The MBP connectivity pattern connects cells according to their preferred
speed and position (σV = 0.1, σX = 0.1). As the source cell codes for rightward motion the preferred projection site is shifted in the direction of the
motion for which the source codes. The center of mass for outgoing connections is only slightly shifted rightwards as connections are restricted to delays
in a biologically plausible range.

directions. The PBP network still shows some anticipatory
response, but as shown in Fig 7 and Fig 8 the confidence
peak occurs after the stimulus has passed the cells’ CRF
and lags behind the MBP prediction due to the diffusion
of outdated motion information. In contrast, the MBP model
integrates all relevant motion information along the trajectory
and diffuses it within the network which is necessary to build
up a trajectory dependent anticipatory response.

V. CONCLUSIONS

In this paper, we have studied position coding of a stimulus
moving in a coherent trajectory, with the hypothesis of
motion-based predictive coding and by taking neural delays
into account. We have modeled the anticipatory signature
of position coding in an abstract Bayesian model and a
SNN model and our results are consistent with experimental
evidence on trajectory dependent motion integration reported
in [2] and [7].
In the abstract model, implemented in a Bayesian framework
with a prior on coherency of trajectory, our main hypothesis
is based on the anisotropic diffusion of motion information
gained from trajectory of stimulus. Particularly, in this work
we have focused on the restrictive effect of neural transfer
delays and have proposed a diagonal motion estimation
framework which extrapolates the estimated position in the
direction of the trajectory to compensate for the delayed
arrival of sensory information. The diagonal motion extrap-
olation model proposed in this study, is a generalization of
a model proposed by Nijhawan [1] to explain the motion
extrapolation mechanism believed to occur in the retina.
Here, we suggest that there may be a general delay compen-
satory mechanism which can partly take place at any motion
processing area of the visual hierarchy.
We have implemented our model experiments in a similar

fashion as the experimental protocol of a electrophysiological
study in macaque monkey [2]. In the abstract framework
we have implemented two configurations of model: motion-
based prediction (MBP) and position-based prediction (PBP).
In both configurations, the model receives sensory input
which codes the state of visual scene at some frames back in
time and the estimated motion is based on delayed stimulus
information.
Our results show that the MBP model can effectively extrap-
olate the motion trajectory and lead to a correct estimation
of the actual stimulus position, while the position estimated
by the PBP model corresponds to the delayed sensory infor-
mation with no delay compensation. In addition, unlike the
PBP model, the MBP model can also reproduce the trajectory
dependent nature of the anticipatory response. This means
that having integrated over a longer trajectory would lead to
a temporally more distributed estimated response.
Our implementation of the SNN shows qualitatively the same
results. Differences between the MBP and PBP configura-
tions of SNN model are entirely based on the different con-
nectivity patterns. The MBP implementation with anisotropic
connections for the input and recurrent connections makes
use of all relevant motion information (position and velocity)
and is able to build up an anticipatory response along the
trajectory. In contrast, the PBP model is isotropic in the
speed dimension of the tuning space and thereby can not
take advantage of this important motion information, which
leads to the delayed and trajectory independent response.
In addition the MBP model compensates for accumulated
delays by pushing the predicted position by sources cells
further in the direction coded by the cell, leading to an
anisotropic connectivity. In both modeling frameworks, PBP
configuration serves a control simulation, to highlight the
importance of velocity related sensory information in precise
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Fig. 8. Confidence traces derived from the spiking activity. The y-axis
shows the mean confidence averaged over a population 30 cells located at
different positions, the x-axis represent time in ms. Population responses
are aligned to the time when the stimulus arrives at the average position
of the recorded population. Spike activity was filtered with an exponential
function with 25 ms time constant and normalized across the network. The
gray dotted line (left) indicates stimulus arrival at the mean position of the
populations CRF. The gray dashed line (right) shows the delayed stimulus
arrival. The black traces correspond to a population with CRF centered early
in the trajectory, the red later and blue trace even later, respectively. Upper:
The confidence traces of the MBP network show a trajectory dependent
anticipatory signature, as the blue trace has its maximum at the time of
stimulus arrival, whereas the black trace peaks a bit later. Due to the delay
compensation mechanism, the response later in the trajectory matches the
actual stimulus position better and resembles the experimental signature
qualitatively (see Figure 2). Lower:) The network with the PBP does not
show a robust trajectory dependence response as all three traces are similar.
The responses lag behind the actual stimulus due to the lack of delay
compensation.

position coding. As we have shown before in [9], anisotropic
connectivity is crucial to implement motion-based prediction.
Here, we have shown that anisotropic connectivity can also
be used as a delay compensation mechanism.
There are extensive neural network studies dealing with
motion detection tasks based on various learning and de-
coding algorithms. A model proposed by Rao et al [17]
implements Bayesian inference of a hidden Markov model
by interpretation of recurrent feedforward weights as log
posteriors. In the current study we did not aim to build a
network with Bayesian architecture, instead we have high-
lighted that motion-based anisotropic connectivity pattern in
a SNN can produce results similar to an abstract Bayesian
motion estimation model, being consistent with evidences of
trajectory dependent motion integration in the visual cortex.
Furthermore, we have emphasized the diagonal delay com-
pensation mechanisms in our Bayesian model and suggested
that it can be achieved by anisotropic connectivity.
Our results suggest that in cortical areas with retinotopic

organization (like V1 and MT), motion prediction may be set
up via the anisotropic network connections. As a theoretical
insight, setting the network with stronger anisotropy, would
lead to capability of overcoming longer delays. While stress-
ing the sufficiency of static anisotropic connectivity patterns
to reproduce neural signatures of prediction, future work
needs to integrate learning in the formation of connectivity
for predictive coding through Bayesian learning rules [18].
Another perspective for extending our models can be ad-
dressing questions about predictive coding of smoothly
curved trajectories. In theory, one can include an acceleration
term for the speed and direction, in the internal model of
Bayesian framework. Equivalently, acceleration selectivity
can be added to the tuning properties of neurones in SNN
model, even though there is no clear experimental evidences
for existence of acceleration sensitive type of cells in the
visual cortex. This would increase the complexity and com-
putational cost of the model.
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