
Intelligent Visual Servoing for Nonholonomic Mobile Robots

Carlos López-Franco1, Michel López-Franco2, Edgar N. Sanchez2 and Alma Y. Alanis1

Abstract— In this work the authors present a visual servoing
approach based on particle swarm optimization (PSO-PBVS).
The PSO-PBVS algorithm overcomes the traditional PBVS
approach by keeping the target features inside the image plane
during the servoing. The PSO-PBVS approach allows to define
the 3D trajectory in the task space, in the same way as the
PBVS approach. In addition, an intelligent control is used to
estimate the currents for each motor, and ensure that the motors
provide the desired velocities.

I. INTRODUCTION

Visual servoing refers to the use of computer vision
information to control the motion of a robot. In this work, the
vision information is obtained from a vision sensor mounted
on the robot. There are two main approaches in visual
servoing, the image based visual servoing (IBVS) which
computes the robot velocity directly from the image features,
and the position based visual servoing (PBVS) which uses
3D features, in this paper we use a PBVS approach [1]. The
advantage of the PBVS with respect to the IBVS is that a
3D trajectory can be defined in the task space. However, one
of the problems of PBVS is that the image features can be
lost, and if the minimum required features are lost then the
visual servoing task will fail.

To overcome the problems of PBVS we propose the use of
particle swarm optimization (PSO) combined with the PBVS,
we call this approach PSO-PBVS. The objective of the PSO-
PBVS is to minimize the distance of the current camera pose
to a desired camera pose by estimating the angular velocity
ω that drives the robot to the desired pose.

The main contribution of the proposed approach is a
visual servoing algorithm where the control reference can
be defined in the Cartesian space, similarly to PBVS, but
without its disadvantages. The proposed approach does not
uses a Jacobian matrix (which requires inversion), and also
thanks to the PSO algorithm the proposed approach will not
loose the target features.

Once that the velocities v, ω of the robot are known, we
require to convert them to corresponding motor current. This
task will be solved by an intelligent controller, which is im-
plemented using a recurrent neural network. The intelligent
controller guarantees that the desired velocities (v, ω) are
provided by the motors of the robot.

This work is organized as follows: section II presents
an introduction to the visual servoing problem. Section III
gives a brief introduction to the particle swarm optimization.
Section IV introduces the proposed PBVS approach based

1CUCEI, Universidad de Guadalajara, e-mail: car-
los.lopez@cucei.udg.mx, almayalanis@gmail.com

2CINVESTAV, Unidad Guadalajara, Jalisco 45015, Mxico.
sanchez@gdl.cinvestav.mx

on PSO. In section V the neural control of the mobile robot
is presented. The simulations and experimental results are
presented in sections VI and VII respectively. Finally, the
conclusions are given in section VIII.

II. VISUAL BASED CONTROL

The use of visual feedback to control a robot is commonly
termed visual servoing or visual control [1], [2]. In this work
the visual data is acquired from a stereo vision system that is
mounted directly on the mobile robot, in which case motion
of the robot induces camera motion.

The visual control objective is to minimize an error e(t)
defined as [3]

e(t) = s(t)− s∗ (1)

where s(t) denote the features extracted from the current
pose, and s∗ denote the features extracted from the desired
pose.

In this paper we consider a nonholonomic mobile robot
moving on a plane. The kinematic model of the unicycle
robot is

⎡

⎣

ẋ
ẏ

θ̇

⎤

⎦ =

⎡

⎣

cos θ
sin θ
0

⎤

⎦ v +

⎡

⎣

0
0
1

⎤

⎦ω (2)

where the inputs v and ω represent the driving velocity and
the steering velocity respectively.

The objective of visual servoing is estimate the inputs v
and ω from the current pose to the desired pose using a vision
sensor.

III. PARTICLE SWARM OPTIMIZATION

Particle swarm optimization (PSO) is a bio-inspired opti-
mization technique introduced by Kennedy and Eberhart [4].
PSO is inspired by the collective behaviors of animals (such
as birds) and it is widely applied to continuous and discrete
optimization problems.

Consider a general unconstrained optimization problem,
with the following objective function

f(x1, x2, . . . , xN) (3)

where f : RN → [R], and N is the dimensionality of the
search space.

The PSO algorithm starts with a population of candidate
solutions encoded as particles in the search space. Particles
move on the search space according to rules inspired by a
flock of birds. The particle i is represented as a vector �xi =
(x1, x2, . . . , xN). The velocity of a particle is represented

2014 International Joint Conference on Neural Networks (IJCNN)
July 6-11, 2014, Beijing, China

978-1-4799-1484-5/14/$31.00 ©2014 IEEE 1488

as �vi = (v1, v2, . . . , vN). Then PSO searches for the optimal
solution by updating the position and velocity of each particle
according to the following equations

�vi(t+ 1) = η�vi(t) + φ1ρ1(�pi(t)− �xi(t))

+φ2ρ2(�pg(t)− �xi(t)) (4)

�xi(t+ 1) = �xi(t) + �vi(t+ 1) (5)

The parameter η represents the inertia weight [5], and
it determines how much percentage of the velocity should
be retained from the previous step to the next step. The
parameter η can be found using an adaptive algorithm [6].
The parameters φ1 and φ2 are two constant values, the
parameters ρ1 and ρ2 are two random values, uniformly
distributed in [0,1].

For each iteration �pi is the best position found by particle
i, which is computed using the objective function. The �pg is
the best position found by the global population.

IV. POSITION BASED VISUAL SERVOING USING

PARTICLE SWARM OPTIMIZATION

There are two classical approaches of visual servoing,
IBVS and PBVS. Where in the former the control inputs
are expressed in the image space, and in the later the control
inputs are expressed in the Cartesian space. The advantage
of IBVS is that the target remains on the field of view, the
disadvantage is that a Cartesian trajectory can not be defined,
and therefore we are unable to define a trajectory in the task
space only on the image space. In contrast PBVS, allows to
define the Cartesian trajectory, and therefore the control is
achieved in the task space, however since there is no control
in the image, it is impossible to ensure that the target will
always remain in the camera field of view during the servoing
[7].

The motivation of using PSO is to overcome the PBVS
problems, but with its advantages over IBVS.

A. PBVS model formulation

In this section we describe the PBVS task, which will be
solved using the PSO algorithm.

The pose is represented using a transformation matrix
given by

aTb =

[

aRb
atb

0� 1

]

(6)

The homogeneous matrices can be composed as

aTc =
a Tb

bTc (7)

A 3D point x = [x, y, z]� is defined as X = [x, y, z, 1]�

in homogeneous coordinates. A point X relative to frame
Fb, can be defined with respect to another frame Fa with

aX =a Tb
bX (8)

In our approach we define the following frames the robot
frame Fr, the current camera frame Fc, the desired camera

frame F∗
c and the object frame Fo. These frames will be

related with the following homogeneous matrices wTr, wTc,
wT∗

c and wT∗
o , which relate the world frame with the camera

frame, desired camera frame, object frame respectively. We
also define the transformation of the camera frame with
respect to the robot frame cTr, which is constant since the
camera is fixed to the robot.

z

x

y

z

x

y

z

x

y

x

z

z

x
y

z

xy

z

x
y

y

x

z

Fw
Fc

FoF∗
c

Fci

Fr Fri
F∗
r

Fig. 1. Visual servoing task

At the beginning of the task we move the robot to the
desired pose, and then we take the desired image, in this
pose the features are

c∗X∗ =w T−1
c∗

wX (9)

Then the robot is moved to an initial pose, the 3D features
are defined with respect to the current camera as

cX =w T−1
c

wX (10)

Using the features c∗X and cX we can compute the
transformation between them, that is

cX∗ =c Tc∗ c∗X∗ (11)

B. PSO-PBVS

The unicycle robot requires two velocities v and ω, which
are the linear and angular velocities. The velocity v is set
to a constant, which can decrease proportionally to the
desired target. The velocity ω is estimated using the proposed
algorithm. In the PSO algorithm each particle contains a
feasible ω value.

For each particle i a feasible pose is estimated using the
corresponding ωi, with

cTci(v, ω) =
c Tr

rTri(v, ω)
cT−1

r (12)

where cTr relates the camera coordinate frame with the robot
frame, and since the camera is fixed to the robot then this
transformation is constant. The transformation rTri(v, ωi)
computes the new robot pose based on the velocity v and
the particle velocity ωi with

rTri =

[

Rz(ωi) R−1
z (ωi)p(v, ωi)

0� 1

]

(13)

1489

where Rz(ωi) is a rotation about the z-axis with an angle of
ωi, and the vector p(v, ωi) = (v cosωi, v sinωi, 0)

�.
For each feasible pose cTci the 3D features are projected

into the image plane to test if the image features ui are
inside the boundaries of the image. The image features can
be computed with

ui =
[

K 03×1

]c
T−1
ci

cX (14)

If the features ui are outside the valid boundaries then the
proposed pose is discarded. On the contrary, if the features ui
are valid image features then the particle can be considered
as a valid pose. The fitness function is defined as

f(ωi) = ‖cTci(v, ωi)X0 −c Tc∗X0‖ (15)

where X0 = (0, 0, 0, 1)�. The previous equation minimize
the Euclidean distance between the proposed robot pose and
the desired pose, the PSO algorithm will choose the best
angular velocity ωi that minimizes it.

We can note that PSO-PBVS does not require the inversion
of any matrix (e.g. Jacobian or iteraction matrix), and there-
fore it does not have singularities as conventional PBVS.

V. NEURAL CONTROL OF THE MOBILE ROBOT

The mobile robot has two actuated wheels, and its dynam-
ics can be expressed in the following state-space model [17],
[18], [19]

χ̇1 = J (χ1)χ2

χ̇2 = M−1 (−C(χ̇1)χ2 −Dχ2 − τd +NKTχ3)

χ̇3 = L−1
a (u−Raχ3 −NKEχ2) (16)

where each subsystem is defined as

χ1 = [χ11, χ12, χ13]
T

χ2 = [χ21, χ22]
T

χ3 = [χ31, χ32]
T

with

J(χ1) = 0.5r

⎡

⎣

cos(χ13) cos(χ13)
sin(χ13) sin(χ13)
R−1 −R−1

⎤

⎦

M =

[

m11 m12

m12 m11

]

C(χ) = 0.5R−1r2mcd

[

0 χ̇13

−χ̇13 0

]

D =

[

d11 0
0 d22

]

m11 = 0.25R−2r2(mR2 + I) + Iw

m12 = 0.25R−2r2(mR2 − I)

m = mc + 2mw

I = mcd
2 + 2mwR

2 + Ic + 2Im

τ = [τ1, τ2]
T

τd = [τd1, τd2]
T

where χ11 = x, χ12 = y are the coordinates of P0 and
χ13 = θ is the heading angle of the mobile robot, χ21 = v1,
χ22 = v2 represent the angular velocities of right and left
wheels, respectively and χ31 = ia1, χ32 = ia2 represent
motor currents of right and left wheels, respectively. R is
half of the width of the mobile robot and r is the radius
of the wheel, d is the distance from the center of mass
Pc of the mobile robot to the middle point P0 between the
right and left driving wheels. mc and mw are the mass of
the body and the wheel with a motor, respectively. Ic, Iw ,
and Im are the moment of inertia of the body about the
vertical axis through Pc, the wheel with a motor about the
wheel axis, and the wheel with a motor about the wheel
diameter, respectively. The positive terms dii, i = 1, 2, are
the damping coefficients. τ ε R2 is the control torque applied
to the wheels of the robot. τd ε R2 is a vector of disturbances
including unmodeled dynamics. KT = diag[kt1 , kt2] is the
motor torque constant, ia =[ia1 , ia2] is the motor current
vector, u ε R

2 is the input voltage, Ra = diag[ra1 , ra2] is
the resistance, La = diag[la1 , la2] is the inductance, KE =
diag[ke1 , ke2] is the back electromotive force coefficient and
N = diag[n1, n2] is the gear ratio. Here, diag[·] denotes the
diagonal matrix. Model (16) is discretized using the Euler
methodology.

A. Neural Identification Design

To obtain a discrete-time neural model for the electrically
driven nonholonomic mobile robot (16) we employ the
identifier developed in [7], with n = 7 (the number of states)
and trained with EKF, and is defined as follows

x1,k+1 = w11,kS(χ11,k) + w12,kS(χ12,k) +

w′
111χ3 + w′

112χ4

x2,k+1 = w21,kS(χ11,k) + w22,kS(χ12,k) +

w′
121χ3 + w′

122χ4

x3,k+1 = w31,kS(χ11,k) + w32,kS(χ12,k) +

w′
131χ3 + w′

131χ4 (17)

x4,k+1 = w41,kS(χ11,k) + w42,kS(χ12,k) +

w43,kS(χ21,k) + w44,kS(χ31,k) + w′
2χ6

x5,k+1 = w51,kS(χ11,k) + w52,kS(χ12,k) +

w53,kS(χ22,k) + w54,kS(χ32,k) + w′
2χ7

x6,k+1 = w61,kS(χ11,k) + w62,kS(χ12,k) +

w63,kS(χ21,k) + w64,kS(χ31,k) + w′
3u11

x7,k+1 = w71,kS(χ11,k) + w72,kS(χ12,k) +

w73,kS(χ22,k) + w74,kS(χ32,k) + w′
3u12

where x1 and x2 identify the x and y coordinates, respec-
tively; x3 identifies the robot angle; x4 and x5 identify
the angular velocities of right and left wheels, respectively;
finally, x6 and x7 identify the motor currents, respectively.
The NN training is performed on-line, and all of its states
are initialized in a random way. The RHONN parameters are
heuristically selected as:

1490

P1 (0) = 1× 108 R1 (0) = 1× 104 Q1 (0) = 5× 105

P2 (0) = 1× 102 R2 (0) = 5× 104 Q2 (0) = 5× 105

P3 (0) = 1× 108 R3 (0) = 1× 104 Q3 (0) = 5× 105

P4 (0) = 1× 102 R4 (0) = 1× 101 Q4 (0) = 1× 101

P5 (0) = 1× 102 R5 (0) = 1× 101 Q5 (0) = 1× 101

P6 (0) = 1× 102 R6 (0) = 1× 103 Q6 (0) = 1× 103

P7 (0) = 1× 102 R7 (0) = 1× 103 Q7 (0) = 1× 103

It is important to consider that for the EKF-learning
algorithm the covariances are used as design parameters
[20], [21]. The neural network structure (17) is determined
heuristically in order to minimize the state estimation error.

B. Control Synthesis

In order to facilitate the controller synthesis, we rewrite
neural network (17) in a block structure form as

x1,k+1 =

⎡

⎣

x1,k+1

x2,k+1

x3,k+1

⎤

⎦ = w1,kϕ1(χ1,k) + w1,kχ2,k

x2,k+1 =

[

x4,k+1

x5,k+1

]

= w2,kϕ2(χ1,k, χ2,k) + w2,kχ3,k

x3,k+1 =

[

x6,k+1

x7,k+1

]

= w3,kϕ3(χ1,k, χ2,k, χ3,k) (18)

+w3,kuk

with χ1,k, χ2,k, χ3,k, ϕ1, ϕ2, ϕ3, w1,k, w2,k, w3,k, w1,k, w2,k

and w3,k of appropriated dimension according to (18).
The goal is to force the state x1,k to track a desired

reference signal χ1δ,k. This is achieved by designing a
control law as described in [7]. First the tracking error is
defined as

z1,k = x1,k − χ1δ,k

Then using (18) and introducing the desired dynamics for
z1,k results in

z1,k+1 = w1,kϕ1(χ1,k) + w1,kχ2,k − χ1δ,k+1

= K1z1,k (19)

where K1 = diag{k11 , k21 , k31} with |k11 |, |k21 |, |k31 | < 1.
The desired value χ2δ,k for the pseudo-control input χ2,k is
calculated from (19) as

χ2δ,k = (w1,k)
−1(−w1,kϕ1(χ1,k) + χ1δ,k+1

+K1z1,k) (20)

At the second step, we introduce a new variable as

z2 = x2,k − χ2δ,k

Then using (18) and introducing the desired dynamics for
z2,k results in

z2,k+1 = w2,kϕ2(χ1,k, χ2,k) + w2,kχ3,k − χ2δ,k+1

= K2z2,k (21)

where K2 = diag{k12, k22} with |k12 |, |k22 | < 1. The
desired value χ3δ,k for the pseudo-control input χ3,k is
calculated from (21) as

χ3δ,k = (w2,k)
−1(−w2,kϕ2(χ1,k, χ2,k) + χ2δ,k+1

+K2z2,k) (22)

At the third step, we introduce a new variable as

z3 = x3,k − χ3δ,k

Taking one step ahead, we have

z3,k+1 = w3,kϕ3(χ1,k, χ2,k, χ3,k)

+w3,kuk − χ3δ,k+1 (23)

where uk is defined as

uk = −1

2

(

R(zk) + gT (xk)Pg(zk)
)−1

×gT (xk)P (f(xk)− xδ,k+1) (24)

where the controllers parameters are selected heuristically as

w′
1,k =

⎡

⎣

cos(x3) cos(x3)
sin(x3) sin(x3)
R−1 R−1

⎤

⎦ ,

and where P , w′
2,k, w′

3,k are defined as 2 × 2 identity
matrices.

VI. SIMULATION RESULTS

This section presents the simulation results of the pro-
posed visual servoing scheme. The simulations have been
performed using Matlab-Simulink.

The physical parameters of the mobile robot in the simu-
lations were defined as

R = 0.75m Im = 0.0025kgm2

d = 0.3m Ra = diag[2.5, 2.5]Ω
r = 0.15m La = diag[0.048, 0.048]H
mc = 30kg KE = diag[0.02, 0.02]V/ (rad/s)
mw = 1kg N = diag[62.55, 62.55]
Ic = 15.625kgm2 KT = diag[0.2613, 0.2613]Nm/A
Iw = 0.005kgm2 dm1 = dm2 = 0.5N

In the simulation the robot moves under the action of the
proposed controller, the controller uses as references a linear
velocity v = 0.2m/s and the angular velocities estimated
by the PSO-PBVS algorithm. In the simulation the initial
pose of the robot is [0 0 0]�, and the desired pose is
[1.31560.4788 0.3491]�.

The sampling time of the simulation was T= 0.01s. Simu-
lations results are presented as follows: In Fig. 2 we present
the camera motion in the 3D space, computed by the pro-
posed PSO-PBVS approach. Fig. 3 shows the identification
performance for x-axis, y-axis and θ angle. Fig. 5 shows the
trajectory tracking results. In Fig. 5 we present the tracking
errors. In Fig. 6 we show the applied control signal for the
left and right wheels. Fig. 7 presents the current identification
for simulation in left and right wheels. Finally, Fig. 8 shows
the angular velocity identification for simulation in left and
right wheels.

1491

0
0.5

1
1.50

0.5

1

0

0.5

1

Desired
Pose

Initial
Pose

Features

Fig. 2. Camera motion estimated by the proposed PSO-PBVS approach.

0 10 20 30 40 50 60
−5

0

5

Time (s)

X
(
m
)

0 10 20 30 40 50 60
−1

0

1

Time (s)

Y
(
m
)

0 10 20 30 40 50 60
−0.5

0

0.5

Time (s)

(
r
a
d
)

Fig. 3. x-axis identification (top), y-axis identification (middle) and θ angle
(bottom), plant signal in solid line and neural signal in dashed line.

VII. EXPERIMENTAL RESULTS

We have accomplished the presented methods in our
mobile robot platform (9). The robot is equipped with a
Kinect sensor, which is a sensor that provides vision data,
i.e. an image, but it also provides the depth of this data.
Therefore, we can retrieve the features 3D pose with respect
to the current camera pose.

The target object containts three circles which are seg-
mented using an hsv segmentation, then their centroids are
used as features for the the task. The transformation between
the current pose and the desired pose cTc∗, is computed

0 0.2 0.4 0.6 0.8 1 1.2 1.4
−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

X (m)

Y

(
m
)

Fig. 4. Trajectory tracking result for simulation (plant signal in solid line
and neural signal in dashed line).

0 10 20 30 40 50 60
−0.02

−0.015

−0.01

−0.005

0

Time (s)

X
(
m
)

0 10 20 30 40 50 60
0

2

4

6
x 10

−3

Time (s)

Y
(
m
)

0 10 20 30 40 50 60
−0.02

0

0.02

0.04

0.06

Time (s)

(
r
a
d
)

Fig. 5. Tracking errors, x-axis (top), y-axis (middle) and θ angle (bottom).

0 5 10 15 20 25 30
−10

−5

0

5

10

15

Time (s)

V
o
l
t
a
g
e

(
V
)

0 5 10 15 20 25 30
−10

−5

0

5

10

15

Time (s)
V
o
l
t
a
g
e

(
V
)

Fig. 6. Applied control signal for the left and right wheels respectively.

directly from the the features defined with respect to the
current pose cX and the features defined with respect to the
desired pose the c∗X, using [22]. The visual servoing task is
shown in Fig. 10, the figure shows the trajectory computed
with the proposed algorithms.

VIII. CONCLUSIONS

In this paper a new PBVS approach has been presented,
namely the PSO-PBVS algorithm. This approach uses par-
ticle swarm optimization (PSO) to solve the visual servoing
task. The PSO-PBVS allows to control the 3D trajectory of
the robot, while keeping the visibility of the 3D features. In

0 5 10 15 20 25 30
−2

−1

0

1

2

Time (s)

C
u
r
r
e
n
t

(
A
)

0 5 10 15 20 25 30
−1

−0.5

0

0.5

1

1.5

2

2.5

Time (s)

C
u
r
r
e
n
t

(
A
)

Fig. 7. Current identification for simulation in left and right wheels,
respectively (plant signal in solid line and neural signal in dashed line).

1492

0 5 10 15 20 25 30
−4

−2

0

2

4

6

Time (s)

(
r
a
d
/
s
)

0 5 10 15 20 25 30
−2

−1

0

1

2

3

4

5

Time (s)

(
r
a
d
/
s
)

Fig. 8. Angular velocity identification for simulation in left and right
wheels, respectively (plant signal in solid line and neural signal in dashed
line).

Fig. 9. Differential drive robot, with kinect sensor

addition, since the algorithm does not require the inversion
of any matrix (e.g. Jacobian or iteraction matrix), then it does
not have singularities as conventional PBVS.

With the linear velocity and the angular velocity estimated
by PSO-PBVS, an intelligent controller is used to estimate
the currents for each motor, and also to ensure that the mo-
tors provide the desired velocities. The intelligent controller
uses a discrete-time recurrent high order neural network
(RHONN), trained with an EKF algorithm.

ACKNOWLEDGMENT

The authors want to thank CONACYT for supporting this
work through projects CB-156567 and CB-103191.

Fig. 10. Trajectory of the robot during the experiment.

REFERENCES

[1] S. Hutchinson, G. Hager, and P. Corke, “A tutorial on visual servo
control,” IEEE Transactions on Robotics and Automation, vol. 12, pp.
651–670, 1996.

[2] B. Espiau, F. Chaumette, and P. Rives, “A new approach to visual
servoing in robotics,” Robotics and Automation, IEEE Transactions
on, vol. 8, no. 3, pp. 313–326, Jun. 1992.

[3] F. Chaumette and S. Hutchinson, “Visual servo control, part i: Basic
approaches,” IEEE Robotics and Automation Magazine, vol. 13, pp.
82–90, 2006.

[4] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Pro-
ceedings of the IEEE International Conference on Neural Networks,
1995, pp. 1942–1948.

[5] R. E. Y. Shi, “A modified particle swarm optimizer,” in Proceedings
of the IEEE International Conference on Evolutionary Computation,
1998, pp. 69–73.

[6] K. Suresh, S. Ghosh, D. Kundu, A. Sen, S. Das, and A. Abra-
ham, “Inertia-adaptive particle swarm optimizer for improved global
search,” in Eight International Conference on Intelligent Systems
Design and Applications (ISDA), 2008.

[7] M. Lopez-Franco, E. Sanchez, A. Alanis, and C. Lopez-Franco, “Dis-
crete time neural control of a nonholonomic mobile robot integrating
stereo vision feedback,” in Neural Networks (IJCNN), The 2013
International Joint Conference on, Aug 2013, pp. 1–8.

[8] G. A. Rovithakis and M. A. Chistodoulou, Adaptive Control with
Recurrent High -Order Neural Networks. pringer Verlag, Berlin,
Germany, 2000.

[9] R. Grover and P. Y. C. Hwang, Introduction to Random Signals and
Applied Kalman Filtering. John Wiley and Sons N. Y., 1992.

[10] A. Y. Alanis, E. N. Sanchez, A. G. Loukianov, and G. Chen, “Discrete-
time output trajectory tracking by recurrent high-order neural network
control,” in Decision and Control, 2006 45th IEEE Conference on,
Dec 2006, pp. 6367–6372.

[11] R. J. Williams and D. Zipser, “A learning algorithm for continually
running fully recurrent neural networks,” 1989.

[12] D. E. Kirk, Optimal Control Theory: An Introduc-
tion. Dover Publications, Apr. 2004. [Online]. Avail-
able: http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-
20&path=ASIN/0486434842

[13] F. L. Lewis and V. L. Syrmos, Optimal Control, 1st ed. New York,
NY, USA: John Wiley & Sons, Inc., 1995.

[14] T. Basar and G. J. Olsder, Dynamic Noncooperative Game Theory,
2nd ed. New York, NY, USA: Academic Press, 1995.

[15] A. Al-Tamimi, F. Lewis, and M. Abu-Khalaf, “Discrete-time nonlinear
hjb solution using approximate dynamic programming: Convergence
proof,” Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE
Transactions on, vol. 38, no. 4, pp. 943 –949, aug. 2008.

[16] T. Ohsawa, A. Bloch, and M. Leok, “Discrete hamilton-jacobi theory
and discrete optimal control,” in Decision and Control (CDC), 2010
49th IEEE Conference on, dec. 2010, pp. 5438 –5443.

[17] T. Das and I. Kar, “Design and implementation of an adaptive fuzzy
logic-based controller for wheeled mobile robots,” Control Systems
Technology, IEEE Transactions on, vol. 14, no. 3, pp. 501 – 510, may
2006.

[18] K. Do, Z. Jiang, and J. Pan, “Simultaneous tracking and stabilization
of mobile robots: an adaptive approach,” Automatic Control, IEEE
Transactions on, vol. 49, no. 7, pp. 1147 – 1151, july 2004.

[19] B. S. Park, S. J. Yoo, J. B. Park, and Y. H. Choi, “A simple adaptive
control approach for trajectory tracking of electrically driven nonholo-
nomic mobile robots,” Control Systems Technology, IEEE Transactions
on, vol. 18, no. 5, pp. 1199 –1206, sept. 2010.

[20] L. A. Feldkamp, D. V. Prokhorov, and T. M. Feldkamp, “Simple and
conditioned adaptive behavior from kalman filter trained recurrent
networks,” Neural Netw., vol. 16, no. 5-6, pp. 683–689, Jun. 2003.
[Online]. Available: http://dx.doi.org/10.1016/S0893-6080(03)00127-8

[21] S. Haykin, Kalman Filtering and Neural Networks. John Wiley and
Sons N. Y., 2001.

[22] F. Lu and E. Milios, “Robot pose estimation in unknown environments
by matching 2d range scans,” in Computer Vision and Pattern Recog-
nition, 1994. Proceedings CVPR ’94., 1994 IEEE Computer Society
Conference on, jun 1994, pp. 935 –938.

1493

