
 

  

Abstract— This paper presents a novel paradigm for a 
spiking neural network to forecast temporal sequences. 
The key to the approach is a new model of a spiking 
neuron that can make multi-step predictions, using 
learnable temporal delays at both dendrites and axons. 
This model is able to learn the temporal structure of 
space-time events, adaptable to multiple scales, with the 
neurons able to function asynchronously to predict future 
events in a video sequence. This approach contrasts with 
conventional neural network approaches that use fixed 
time steps and iterative prediction. Simulations were 
conducted to compare the new model to a conventional 
iterative paradigm on motion sequences from a 
frame-free event-driven Dynamic Vision Sensor 
(DVS128, 16k pixels), showing that the new approach 
consistently has a low prediction error while the iterative 
paradigm is affected by propagated errors. 
 

spiking neural networks; transmission delays; delay learning; 
spike-delay-variance learning; dynamic vision sensor 

I. INTRODUCTION 

PIKING neural networks (SNNs) are beginning to be 
investigated in engineering for use as bio-inspired 

computational devices, adding temporal precision to the 
power of rate-coded neural networks [1]. SNNs differ from 
traditional neural networks in that spikes are typically 
modeled with instantaneous responses, no temporal duration, 
and binary states; enabling a high level of temporal precision 
and complex dynamics [2]. However, SNNs have primarily 
been used for modeling neural dynamics rather than as 
computational devices. In this paper, we address problems in 
forecasting sensory sequences, by extending SNN modeling 
to incorporate learnable delays on dendrites and axons (§3).  

Sensory data may show little change in the input for a 
period, followed by rapidly presented dense event streams of 
new information. For example, in vision, an unchanging 
scene, such as a white wall, a stationary image, or darkness, 
can all carry little new information for long periods of time, 
and can then be followed by rapid scene changes. Such data is 
amenable to representation as an event steam, which is a list 
of events ordered temporally. Each event indicates a change 
in state [3], localized in time. Durations between events can 
vary, enabling an event stream to represent multi-scale 
phenomena. Event-based sensors are beginning to be 
developed in neuromorphic engineering, with benefits of low 
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bandwidth, low power, and the ability to span orders of 
magnitude in temporal precision. The inherently multi-scale 
nature of event sequences presents a challenge in prediction, 
especially in forecasting not only what events will occur in 
the future but also when they will occur. 

Artificial neural networks (ANNs) have had considerable 
success in time series prediction with results comparable to 
and in some cases better than classical statistical models 
[4]-[6], making them good candidates for modeling event 
sequences. However, consistent with conventional time series 
prediction paradigms, most ANNs sample time series data at 
fixed temporal resolutions [7] with the states of their neurons 
updated synchronously at every simulated time step, and 
prediction at fixed discrete future time steps. If such ANNs 
are used with event sequences, the input stream first needs to 
be converted to a time series with uniform time bins. The 
resulting series can become large and sparse due to long 
durations between events; greatly increasing computational 
cost. Prolonged exposure to an absence of inputs (or 
unchanging values) while neuron states are iteratively 
updated can also affect prediction accuracy. Additionally, the 
sampling time resolution limits the fastest temporal dynamics 
that can be learnt from the input sequence [8], and updating 
every part of the network at the same pace increases the 
difficulty of learning multiple temporal dynamics, especially 
slow and long-term dynamics.  

To predict asynchronous event streams effectively, we 
consider that a new SNN framework that supports variable 
durations and event-based processing is needed, based on 
viewing a sequence of spikes as an event stream. The 
remainder of this section reviews prediction paradigms in 
rate-coded ANNs (§1.1), then describes SNN architectures 
with delays (§1.2). The event-based data used in this study is 
derived from a 128x128 pixel Dynamic Vision Sensor 
(DVS128, described in §2). The novel SNN model with 
learnable delays is described in §3; with simulation results in 
§4. The paper finishes with a discussion of the model for 
event-based computation (§5) and conclusions (§6). 

A. Neural network architectures for prediction 
Traditional neural networks for prediction include Elman’s 

simple recurrent network [9] and Jordan’s [10] 
output-to-hidden recurrent network. Both models are 
three-layer recurrent networks, with input, hidden and output 
layers of rate-coded neurons, which process one input at each 
time step and predict the next input. Elman’s architecture has 
recurrent connections at the hidden layer, which is connected 
both to the input and to a copy of itself delayed by one time 
step. Jordan’s network has recurrent connections from the 
output layer to the hidden layer, also delayed by one time 
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step. Other architectures, such as time-delay neural networks 
(TDNNs) [11], use multiple past inputs at each time step to 
predict the next value. 

To predict more than one step ahead, two main approaches 
have been proposed: direct prediction and indirect prediction 
[12]. Both approaches receive multiple inputs at each time 
step. The direct approach simultaneously predicts multiple 
time steps: The simplest network predicts a single output at a 
desired prediction horizon [13]-[15]; multiple versions of this 
network each with a different prediction horizon can be 
combined to form an ensemble to predict multiple steps in the 
future [16]. A more complex variation is a direct 
multi-input-multi-output architecture in which a sequence of 
outputs at predetermined future time steps can be 
simultaneously predicted [17]. The indirect prediction 
approach utilizes an iterative prediction mechanism similar to 
a Jordan network, in which each output is fed back into the 
network as an input for the next time step [18]. This paradigm 
has been used in a wide range of time series including chaos 
[19], macroeconomics [20], traffic [21], wind speed and 
power [22]. 

Each method has advantages and disadvantages: Direct 
prediction has been claimed to be more accurate under some 
conditions [12] but training multi-level networks can be 
difficult because all levels must be optimized simultaneously 
[16]; Indirect prediction can be optimized at each level, but 
prediction errors propagate to future states and errors 
accumulate over long periods with no input. 

B. SNNs and modeling of delay times 
Of the few SNNs that have been designed for prediction, 

the majority use one-step-ahead prediction. Berthouze and 
Tijsseling [23] utilized a spiking network architecture akin to 
Elman’s simple recurrent network [9] to predict 
context-dependent sequences. Object trajectories have also 
been tracked via a spiking one-step prediction network [24], 
[25]. 

Event-based SNN simulators (not for prediction) have also 
been developed using queues of events and asynchronous 
updating of neurons [26]-[29]. While these packages enable 
simulation of spiking neurons with event-based mechanisms, 
they were not designed for engineering functional tasks. 

An open question in neuroscience is how timing and 
temporal delays are represented in the brain. The majority of 
models use implicit methods for incorporating temporal 
properties using neural dynamics, with synaptic weights that 
have an indirect relationship to delay times. An alternative is 
to explicitly represent delays, which provides opportunities 
for more effective and efficient learning algorithms. 
Temporal delays have been used to encode information [30] 
and used as temporary memory [31]. Delays can regulate the 
synchrony of information processing [32], aid pattern 
recognition [33] and handle long-term dependencies [34]. In a 
previous project, our group developed a learning algorithm 
for SNNs with explicitly tunable input delays and variances, 
called Spike Delay Variance Learning (SDVL), presented at a 
previous IJCNN [35]. This approach introduced learnable 
delays at dendrites, but only predicted a single future time 
point. These methods are yet to be tested on sensory event 

data such as that produced by DVS128. 

II. DATA: FRAME-FREE VISUAL DATA STREAM 

The development of new SNN architectures for cognitive 
systems requires new ways of representing input/output data 
based on the principle of spikes as asynchronous events, 
rather than time-locked to uniform sampling. Visual and 
auditory neuromorphic systems have pioneered this new way 
of representing sensory stimuli [36], [37]. The DVS128 is a 
frame-free visual sensor. As noted in the introduction, it has a 
128x128 array of pixels (16k pixels), each corresponding to 
an independent sensor with fast latencies in the microsecond 
range. Unlike conventional frame-based image sensors, the 
DVS128 transmits information asynchronously whenever the 
illumination of a pixel changes more than a threshold amount. 
This communication is event-based, and results in bandwidth 
only being used by active pixels. The DVS128 data stream 
can be accumulated over a period of time in order to 
approximate frames to any level of temporal resolution. The 
data stream can also be intensity-coded to enable static 
images to represent pixel motion (see Fig. 1). 

A variety of datasets from the DVS128 have been 
developed for open access, including a moving version of 
MNIST postcode data [38]. Our lab has developed a range of 
benchmark datasets including that of laser pointers drawing 
on a screen, object motion and whole-of-field motion 
generated by the DVS128 camera mounted on a robot moving 
through space [39]. 

A. Laser dot dataset and prediction task 
 For this study, we used the DVS128 to capture the 

movement of a spot of light on a plain wall created by a laser 
pointer oscillating horizontally at approximately 0.44 
cycles/sec. The use of a laser dot enables clear visualization 
of the data over time (see Fig. 2). Over the course of 48s, 21 
cycles (moving left then right) were recorded, generating 
204,195 events (104,391 positive and 99,804 negative).  

DVS128-based studies to date have used classification 
paradigms [40], [41]; feature recognition based on laser line 
extraction [42]; particle tracking [43]; and optic flow [44]. 
Our approach contrasts with these, predicting movement at 
multiple future time points, and over a range of time scales. 

B. Multi-scale representations of DVS128 data 
 The DVS128 data is represented in raw form as individual 

 
Fig. 1.  Image of a rolling ball, created by accumulating DVS128 data 
stream. White pixels indicate increases in luminosity, black pixels 
indicate decreases, with intensity indicating the event’s recency – 
whiter pixels indicate more recent positive events and blacker pixels 
indicate more recent negative events. 
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spikes at microsecond resolution. However, many visual 
tasks of interest require aggregation over large regions of time 
and space. For example, a cognitive system may need to track 
a single object moving over time. The variables of interest can 
be represented by the centroid of the object, rather than an 
explicit representation of its boundaries. (Note that this is not 
a universal format: In other tasks, the motion of the 
boundaries may be the variables of interest, and other 
representations will be more appropriate.) 

In this study, we are interested in predicting the movement 
of the laser dot over time, so the important feature in the input 
stream is the change of the position of the centroid of the laser 
dot. As the raw data stream includes events for all changes in 
illumination at any pixel over the course of the recording, 
there is no labelled information about which events 
correspond to the movement of the laser dot. We assume 
events that correspond to the laser dot are spatially and 
temporally close to each other, and determine the position of 
the laser dot by finding clusters of events that match these 
criteria. If the object to be tracked is of a complex shape, or if 
there is more than one object to be tracked, multiple clusters 
over space and time will be needed. In this study, the laser dot 
is the only object in the recording and it has very minor 
movement along the y axis; we cluster the events based on 
time, covering the whole x axis and the section of the y axis 
that contains the laser dot, with each cluster encapsulating 
200 events.  

Representing clusters by centroids provides sufficient 
information for tracking movement, but loses information 
about variance. To track the distribution of events, a Gaussian 
is fit to each cluster (see Fig. 3). Theoretically any 
distribution could be used to describe these clusters; 
Gaussians were chosen for computational tractability and 
simplicity. 

In summary, the raw data stream was re-represented by a 
sequence of clusters, each specified by a Gaussian N with 
mean m indicating the space-time centroid (<x, y, t> in pixel 
coordinates, x, y, and time since the start of the video, t) and 
the covariance matrix C is the 3x3 covariance matrix <σxx, 
σxy, σxt, …, σtt>. 

 

ܰሺ, ሻܥ ൌ ݔ݁  ቂെଵଶሺ࢞ െ ࢞ଵሺିܥሻ்ܕ െ  ሻቃ         ሺ1ሻܕ
 
where x is the location vector <x,y, t> of a data point. 

This representation format has several advantages: the 
sequence of Gaussians forms an event stream in its own right; 
it can be tailored to any level of down-sampling in space, time 
or both (in our study, the event stream size reduced from an 
initial 104,391 positive events to 435 Gaussian events); it is 
grid-free and scale-free as each Gaussian can represent a 
region of any shape and size; and it can be used as a scalable 
data structure in algorithms with a mixture of widely varying 
spatial scales.  

III. METHODS 

A. Spiking neuron model and network architecture 
The goal of the new SNN is to learn temporal patterns from 

an input event stream and predict future event sequences. The 
network architecture consists of a single layer of hidden 
spiking neurons that process the input stream and predict an 
output stream.  

The input event stream is presented to the network event by 
event. Each event, i, can be viewed as approximating the 
distribution of a region of the DVS space-time data, defined 
by a Gaussian, Ni (mi, Ci), with mean, mi, and covariance 
matrix, Ci, (encoding 3 mean and 9 covariance values as 
described in §2). Each hidden neuron has multiple dendrites 
sampling different input events and an axonal tree with 
branches predicting different future event distributions (see 
Fig. 4). The distribution of each dendrite, j, is summarized by 
a Gaussian, Nj (mj, Cj), with mean, mj, and covariance matrix, 
Cj. The number of dendrites per neuron is fixed throughout 
training but the number of axonal branches changes via 
recruitment and pruning. Hidden neurons are recruited 
incrementally throughout training, in proportion to the 
number of patterns recognized in the input.  

When an event is input to the network, all dendrites 
calculate their match to the event, and all neuron states are 
updated. Unlike the dendrites in conventional neuron models 
which passively conduct current to the soma (cell body of the 
neuron), in our model, dendrites take their inspiration from 
the growing field of dendritic computation, and are capable of 
processing the input events with appropriate temporal delays, 

 
 
Fig. 3. Scale-free representation of the first 500ms of the moving laser 
data using Gaussians (boundaries show 1 standard deviation).

 
 
Fig. 2.  Raw event stream generated by the DVS128 camera, capturing 
a laser dot oscillating horizontally (x-axis) over 10s (z-axis). Each dot 
represents a change of luminosity (red is positive, black is negative), 
with a temporal resolution of 15µs. 
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enabling them to represent and match space-time 
distributions of DVS data. Each branch calculates the match 
between the input, Ni, and its own distribution, Nj, resulting in 
a new Gaussian Np with mean mp and covariance matrix Cp:  

 ܰ൫݉, ൯ܥ ൌ ܰሺ, ሻܥ ܰ൫, ൯                                 ሺ2ሻ                        ൌܥ ,,൫ݍ , ,,൯ ܰ,൫ܥܥ  ,൯ܥ
where ݍ, ൌ ݔ݁ ቂെଵଶ൫ െ ܥ൯்൫  ൯ିଵ൫ܥ െ ൯ቃ , , ൌ ൫ܥି ଵ  ିܥ ଵ൯ିଵ൫ܥି ଵ  ିܥ ଵ൯, and ܥ, ൌ ൫ܥି ଵ  ିܥ ଵ൯ିଵ.  

 
The signal, s, from the dendrite to the soma is calculated as 

the normalized integral of Np over space and time:  
ݏ  ൌ   ܰ൫, ஶିஶݐ݀ݕ݀ݔ൯݀ܥ ܰ൫, ൯ଶஶିஶܥ ݐ݀ݕ݀ݔ݀                         ሺ3ሻ 

 
Although all dendrites are presented with input events 

simultaneously, calculation of s depends on each dendrite’s 
time delay, t (the time mean of the dendrite’s Gaussian 
parameters). For computational efficiency, the following 
process is used in our model: When an input is available, all 
dendrites with no time delay immediately process the input 
event. For dendrites with a non-zero time delay, the input 
event is added to a queue associated with the dendrite. As the 

network is an event-based system without a global clock, the 
dendrites only continue processing when the next event 
arrives. As each input event is presented, the delays for all 
queued events are updated relative to the most recent event. 
When an event has been delayed to a time that matches or 
exceeds the time delay associated with the dendrite, the input 
is processed and the result propagated to the soma. 

For each hidden neuron, the membrane potential, v, at the 
presentation of each new input event is calculated by 
summing the signals from its dendrites: 

ݒ  ൌ ∑ ݏ            (4) 
 
where j indexes the neuron’s dendrites.  

All neurons whose membrane potentials exceed their 
thresholds (see Table 1 for numerical details) have the 
potential to fire. To force neurons to learn different input 
patterns, k-winner-take-all is used to restrict the number of 
neurons firing for each input event, with the winners based on 
the highest membrane potentials (for this study, k = 1).  

When a neuron fires, it generates a spike which propagates 
along its axonal tree. The axonal tree comprises multiple 
axonal branches, each associated with a Gaussian distribution 
parameterized similarly to the dendrites. The time, t, of these 
parameters indicates the delay from the firing of the hidden 
neuron to a predicted output event. The future output stream 
is estimated by summing the predicted events from all 
neurons over all time (see Fig. 5).  

B. Learning Rules 

The model uses online, self-supervised learning. The 
learnable variables are the Gaussian parameters of the event 
distributions associated with the dendrites and axonal 
branches. At the beginning of training, the network has a pool 
of embryonic hidden neurons, each with a fixed number of 
dendrites and an allocation of axonal branches not yet 
associated with event distributions. When a new input event 
is fed to the network and no hidden neurons fire in response to 
the input, an embryonic neuron is recruited to one-shot-learn 

 
 
Fig. 4. The architecture of the SNN. Dendrites of the hidden neurons 
sample the input stream and axonal branches predict the output stream. 
Each of these branches is summarized by a set of parameters describing 
a Gaussian distribution. Each dendrite processes a queued event at the 
appropriate time delay (see text for details), by computing the 
similarity between its associated Gaussian and the input event, which is 
integrated at the soma. If a hidden neuron fires, it sends a spike along 
the axonal branches, which cast predictions based on their learnt 
Gaussian parameters. 

TABLE I 
NETWORK PARAMETERS 

 Direct network Iterative network 
 Initial After 

training 
Initial After 

training 
No. of hidden neurons 0 23 0 50 
No. of 
dendrites/neuron 10 10 10 10 

No. of axonal 
branches/neuron 20 avg 15  1 1 

Threshold 2 varies 9 varies 
- adjustment rules 1.1 when the neuron fires 

0.9 when the neuron does not fire 
Direct network only parameters 

Prediction  confidence Initialized to 1 
-  adjustment rules 1.01 if the prediction does not add new axon 

0.9 if the prediction adds new axon 
1 if result is greater than 1 

-  for axon pruning 0.9 
Distance for adding  
new axon 20 bits in information loss 
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this input pattern; its dendrites are initialized to match the 
input distributions (means and covariance values of the 
nearest events in the past) and its axonal branches are 
initialized to a subset of randomly chosen future events within 
a given time range (5s).  

Learning occurs at dendrites and axons only if their 
associated hidden neuron fires. When a hidden neuron fires in 
response to an input sequence, its dendrites adjust their 
distribution parameters closer to those of the input event. The 
distribution that best matches their estimation is found using 
the Kullback–Leibler divergence DKL (also known as relative 
entropy). DKL measures the information lost when the normal 
distribution of an input event ܰ (normalized Ni) is 
approximated by that of a dendrite ܰ: 

 ܰሺ, ሻܥ ൌ ሺ1 ඥሺ2ߨሻଷ detሺܥሻሻ⁄ ܰሺ,  ሻ      (5)ܥ
ሺܦ  ܰ|| ܰሻ ൌ ଵଶ ቌ ൫ െ ିܥ൯் ଵ൫ െ ିܥ൫ݎݐ൯ ଵܥ൯ െ  ݇ െ ln ൬ୢୣ୲ሺሻୢୣ୲൫ೕ൯൰ቍ    ሺ6ሻ     

 
where mi, mj, Ci and Cj are the means and covariances of the 
normal distributions ܰ and ܰ, and k is the dimension of the 
distribution. For computational tractability, after a dendrite 
has identified the best-matched input event, its parameters are 
updated numerically as follows: A new distribution is 
calculated by generating d1 data samples from the dendrite’s 
old Gaussian distribution, and d2 data samples from the input 
event to be learnt. The ratio d1:d2 is given by 
 
        (1 െ ሻݎ/1   (7)         ݎ/1 
 
where r is the number of times the hidden neuron has fired 
since the beginning of training. This adjustment ensures that a 
frequently firing neuron becomes more stable over time.  

 Axonal branches of the hidden neurons learn using a 
similar algorithm to the dendrites. After prediction of a future 
event, the nearest event from the real data source is matched 
(using Eqn 6). If the match is close (this study used an 
information loss of 20bits, calculated by ܦሺ ܰ|| ܰሻ/log 2), the axonal branch learns as described for the dendrites. 
Otherwise, a new axonal branch is added with parameters 
matching the targeted prediction. Each of the axonal branches 
is also associated with a confidence value (see Table 1 for 
implementation values), which is increased when the branch 
matches an input, and decreased when not. After training, 
axonal branches with low prediction confidences are pruned 
(see Table 1 for values). 

When a neuron fires, its threshold is increased to make it 
harder to fire in response to other patterns in the future. This 
mechanism forces the neuron to specialize in its learned 
pattern. If a neuron does not fire over a period of time, its 
threshold is reduced to aid generalization (see Table 1 for 
adjustment rules).   

IV. RESULTS 

A. Directly predicting a sequence 
After training on 33 seconds of laser motion data (approx. 

15 oscillations of the laser pointer), the SNN reliably 
predicted the future movement of the laser dot for unseen data 
(tested for 5 seconds). Figure 6 provides a segment of this 
network output showing the shape of the predicted future 
sequence (red contours), the input events (blue contours) and 
the source data (black dots). The predicted trajectory closely 
follows the source data. 

B. Iterative prediction 
For comparison, a second network architecture was 

implemented based on the traditional time series approach of 
predicting the value of the next input. The technique uses a 
recurrent mechanism – iteratively feeding the prediction for 
the next time step into the input for the subsequent prediction. 
To compare the prediction performances of the SNN (direct) 
and iterative approaches, a traditional iterative prediction 
network was trained on the same laser pointer data. Iterative 

Fig. 5.  Diagrammatic view of delays on the dendrites and axons. The 
x-axis represents time. Shown are three neurons H1, H2, and H3 (one 
row per neuron) and the input sequence (grey distribution, bottom 
row). Each neuron fires after matching a particular part of the input 
(distributions shown in solid colours) and predicts a future sequence 
(stippled colours). To calculate the total predicted future event stream 
at the time point marked by the vertical dashed line, predictions are 
summed from all neurons that fired previously (resulting in the 
distribution shown by the black outline, bottom row). 

 
Fig. 6. Predicting future motion with spiking neurons. An SNN was 
trained on the moving laser pattern (see Fig. 2). Red contour lines: the 
shape of Gaussian predictions to 1 standard deviation. Blue contour 
lines: the shape of the input Gaussians to 1 standard deviation. Black 
dots: the actual spikes from the DVS128 recording.  
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networks are usually fixed time-step based, so the data was 
processed into frames by accumulating all spikes within 
100ms intervals. A Gaussian was then fitted to each frame, 
forming a frame sequence comparable to its event counterpart. 
The network was trained to predict the next time step in the 
form of a Gaussian. The learning mechanism for adapting the 
Gaussians was as described in §3B. During testing, at each 
time step the network predicted the next event, which then 
became part of the subsequent input sequence. This iterative 
prediction can be continued for as long as required. 

C. Error comparison 
 Both the direct and iterative SNNs were trained on 33 
seconds of the data (each network using its corresponding 
pre-processed inputs), then tested with 20 novel sequences, 
each consisting of 1.1 seconds of previously unseen input 
data and 5 seconds of forecasting data. Each neuron in the 
direct network was initialized with 10 dendrites and 20 axonal 
branches; while the iterative network was initialized with 10 
dendrites (equal to an input sequence of 10 frames), but only 
one axonal branch for predicting the next time step. (See 
Table 1 for network settings).  

For comparison with the source data stream, 10000 points 
were sampled from each network’s predicted future 
distributions. The sampled points and the raw data were 
binned into discrete time bins of 200ms and discrete x 
position bins of 8 pixels, forming a 25x16 grid (the variation 
in the y axis was ignored as the laser dot motion was restricted 
to x axis). Each cell in the grid was then represented by the 
event count of that cell. The prediction error of a cell en,x,t, of 
network model n at position bin x and time bin t, was 
calculated as follows: 
 ݁,௫,௧ ൌ ,௫,௧ ൫ݏܾܽ െ ,௫,௧ ൯ כ  ,௫,௧     (8)ݓ
 
where pn,x,t is the normalised prediction results of the network 
model m at cell (x,t); pa,x,t is that of the actual data events; and 
w is the weight of the error of a cell, calculated as the ratio of 
the normalised prediction results and  that of the actual data: 
,௫,௧ݓ  ൌ max ሺ,௫,௧, ,,௫,௧,௫,௧ ሻ/min ሺ  ,௫,௧ ሻ    (9)
 
To prevent undue skew in the weights, the maximum weight 
was capped at 50.   

Prediction errors for both networks were calculated as a 
function of time and averaged over the 20 test cases (see Fig. 
7). The error of the direct model remained low and was 
consistent over time; the iterative model showed comparable 
performance over the first 200msec, but then consistently 
increased with time. The contrast between direct and iterative 
prediction paradigms illustrates the sensitivity of the iterative 
paradigm to prediction error in earlier steps, with errors in 
past predictions propagated to subsequent predictions. It also 
shows the direct multi-step paradigm is consistent throughout 
prediction. The slight downward trend of the prediction error 
of the direct network is due to increasing sparsity of the 
prediction at later times (the performance measure favours 
sparse predictions over dense predictions that cover a large 
area).  

V. DISCUSSION 
In this paper, we presented a new approach to forecasting 

using SNNs with event-based inputs. It required rethinking 
how to represent inputs, and augment spiking neurons with 
learnable delays to enable processing of event streams. The 
new designs have both benefits and costs, which we discuss in 
the following sections. 

A. Using distributions to represent raw input data  
New types of neuromorphic sensors such as the DVS128, 

require correspondingly new processing paradigms. In this 
study we have developed an event-based scale-free data 
structure involving Gaussians that can sample any degree of 
precision in time and space, free from fixed step sizes of a 
spatial or temporal grid.  

The distribution of the events generated by the DVS128 
can be viewed as a density function with a time resolution that 
has microsecond precision. We re-represented this density 
function as a set of Gaussians, which can be scaled from one 
Gaussian per spike, at the most detailed level, to a single 
Gaussian for the entire space-time stream, with any mixture 
of Gaussians in between. These Gaussians can have varying 
spatial and temporal scales, and the covariance of each 
Gaussian can be parameterized differentially along the spatial 
and temporal axes. Such re-represented data forms an event 
stream in its own right, with the advantage of greatly reducing 
the number of events and enabling mixtures of differentially 
scaled space-time events. 

B. An SNN that processes input distributions as events  
The hidden neurons modeled in our network differ from 

conventional spiking neurons by adding time delays to axonal 
arbors as well as dendrites, enabling the simultaneous 
prediction of multiple future events. The advantage of this 
approach is that predictions are not required for all future time 
steps, only those for which data is available. The Gaussian 
parameters of the dendritic and axonal branches can be seen 
as similar to synaptic weights in traditional neural networks: 
they affect the signal received by the neurons and are learned 
during training. One of these parameters, the time delay 
variable, plays a key role in multiple time-scale prediction.   

 
Fig. 7. Prediction errors over time for two contrasting paradigms 
(average of 20 test cases). Direct prediction paradigm (blue): The 
errors remain low throughout the entire prediction. Iterative prediction 
paradigm (red): Initially good with increasing trend in time.  
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C. Capturing temporal structures in time delays  
The goal of this SNN model is to learn the temporal 

structures of an event-based sequence and predict how 
space-time events are related to each other. Temporal 
information is represented in the time delays of the dendrites, 
as each time delay encodes the temporal position of its 
associated distribution in relation to other distributions in the 
same dendritic tree. Each dendrite is free to encode the 
temporal scale that best suits the events it is trained on. This 
feature provides great flexibility in learning temporal 
structures in a time step free environment.  

In contrast to traditional models of dendrites as passive 
structures, the main role of which is propagating signals, the 
dendrites in this study have considerable computational 
ability. In this model, active dendritic computation is 
postulated as a temporo-spatial sequence memory. The time 
delays of the dendrites are implemented as delays placed on 
computation rather than transmission, contrasting with 
conventional models [31]-[34]. Further studies are needed to 
determine if this mechanism impacts on the quality of 
prediction.  

The axonal model used in this network is an extension of 
dendritic computation, and to our knowledge has not been 
studied in this form in neuroscience (see [45] for a review). 
Combining the use of time delays with dendritic and axonal 
computation is the key mechanism that makes learning 
event-based multi-time-scale sequences possible and future 
studies are needed to compare this axonal branching model 
with other approaches.  

D. Application to real data  
When applied to real data recorded from the DVS128, this 

model successfully predicted future events with high 
accuracy. Comparison was made between the direct and 
iterative predictions, with the former consistently more 
accurate, as the latter was affected by propagated errors.  

The data used in this study is very simple, consisting of a 
single object with a simple oscillating trajectory. Although 
not demonstrated, the network should be able to handle 
multiple trajectories by training different sets of hidden 
neurons to learn each trajectory. For complex real world 
scenes with multiple objects, pre-processing the data with 
multiple smaller Gaussians would more suitable to enable 
segmenting individual objects and features of complex 
objects. Smaller Gaussians could also help to identify 
atmospheric noise which tends to be uncorrelated with other 
motion in scenes. 

The new SNN model is not limited to processing data from 
the DVS camera. Any data that can be converted to a 
space-time sequence of events could be processed.  

E. Comparing this model to traditional ANNs 
Many aspects of our network and prediction paradigm 

differ from traditional time series predicting ANNs:  
1) Our system is event-based and clock-free, learns and 

predicts multiple time-scale data. 
2) Events are represented as Gaussians as opposed to 

single-valued inputs. These Gaussians represent the 
distributions of events in space and time; and the 

Gaussians associated with the dendrites and axons 
indicate the temporo-spatial volume the branches sample 
or predict. This is a different way of thinking about data 
compared to traditional ANNs.    

3) Our system incorporates dendritic computation and 
axons with learnable delays contrasting with traditional 
transmit-only connections. 

F. Potential improvements to this model  
This network shows promising results when predicting the 

laser dot dataset. However, the model design is still at a 
preliminary stage and there are many aspects that could be 
improved and further explored: 
1) The laser dot data was selected deliberately as a simple 

demonstration of the Gaussian event-based network 
model. Studies will be done with more complex data, 
such as visual flow from self-motion, multiple moving 
objects and other complex scenes. 

2) Currently the dendrites learn the most recent sequences. 
Future extensions should enable them to learn 
subsequences sampled from multiple non-consecutive 
time points.  Growing, pruning and merging branches 
based on the information encoded by each branch could 
help to evolve a more elegant network structure. 

3) In the current system, processing is updated with input 
events, potentially causing mismatches with the learned 
delays of the dendrites. Updating time points could be 
dynamically generated to correspond to dendritic delays. 

VI. CONCLUSIONS 
Neuromorphic engineering is developing powerful 

computational hardware for spiking networks. However, 
paradigms that advance the theory of computation with spikes 
have been slower to develop. This paper demonstrates how a 
novel model of a spiking neuron with explicitly learnable 
delays on both dendrites (inputs) and axons (outputs) can 
efficiently and effectively connect pasts and futures 
represented as event streams which have multiple scales.  

The DVS128 datasets for this study are available as open 
access data from http://www.itee.uq.edu.au/cis/. 
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