

Abstract— This paper presents a novel paradigm for a
spiking neural network to forecast temporal sequences.
The key to the approach is a new model of a spiking
neuron that can make multi-step predictions, using
learnable temporal delays at both dendrites and axons.
This model is able to learn the temporal structure of
space-time events, adaptable to multiple scales, with the
neurons able to function asynchronously to predict future
events in a video sequence. This approach contrasts with
conventional neural network approaches that use fixed
time steps and iterative prediction. Simulations were
conducted to compare the new model to a conventional
iterative paradigm on motion sequences from a
frame-free event-driven Dynamic Vision Sensor
(DVS128, 16k pixels), showing that the new approach
consistently has a low prediction error while the iterative
paradigm is affected by propagated errors.

spiking neural networks; transmission delays; delay learning;
spike-delay-variance learning; dynamic vision sensor

I. INTRODUCTION

PIKING neural networks (SNNs) are beginning to be
investigated in engineering for use as bio-inspired

computational devices, adding temporal precision to the
power of rate-coded neural networks [1]. SNNs differ from
traditional neural networks in that spikes are typically
modeled with instantaneous responses, no temporal duration,
and binary states; enabling a high level of temporal precision
and complex dynamics [2]. However, SNNs have primarily
been used for modeling neural dynamics rather than as
computational devices. In this paper, we address problems in
forecasting sensory sequences, by extending SNN modeling
to incorporate learnable delays on dendrites and axons (§3).

Sensory data may show little change in the input for a
period, followed by rapidly presented dense event streams of
new information. For example, in vision, an unchanging
scene, such as a white wall, a stationary image, or darkness,
can all carry little new information for long periods of time,
and can then be followed by rapid scene changes. Such data is
amenable to representation as an event steam, which is a list
of events ordered temporally. Each event indicates a change
in state [3], localized in time. Durations between events can
vary, enabling an event stream to represent multi-scale
phenomena. Event-based sensors are beginning to be
developed in neuromorphic engineering, with benefits of low

All authors are with the School ITEE, Uni of Queensland, QLD, 4072
Australia (corresponding author J Wiles: j.wiles@uq.edu.au). This work was
supported by an APA to TG and AOARD Grant FA2386-12-1-4050.

bandwidth, low power, and the ability to span orders of
magnitude in temporal precision. The inherently multi-scale
nature of event sequences presents a challenge in prediction,
especially in forecasting not only what events will occur in
the future but also when they will occur.

Artificial neural networks (ANNs) have had considerable
success in time series prediction with results comparable to
and in some cases better than classical statistical models
[4]-[6], making them good candidates for modeling event
sequences. However, consistent with conventional time series
prediction paradigms, most ANNs sample time series data at
fixed temporal resolutions [7] with the states of their neurons
updated synchronously at every simulated time step, and
prediction at fixed discrete future time steps. If such ANNs
are used with event sequences, the input stream first needs to
be converted to a time series with uniform time bins. The
resulting series can become large and sparse due to long
durations between events; greatly increasing computational
cost. Prolonged exposure to an absence of inputs (or
unchanging values) while neuron states are iteratively
updated can also affect prediction accuracy. Additionally, the
sampling time resolution limits the fastest temporal dynamics
that can be learnt from the input sequence [8], and updating
every part of the network at the same pace increases the
difficulty of learning multiple temporal dynamics, especially
slow and long-term dynamics.

To predict asynchronous event streams effectively, we
consider that a new SNN framework that supports variable
durations and event-based processing is needed, based on
viewing a sequence of spikes as an event stream. The
remainder of this section reviews prediction paradigms in
rate-coded ANNs (§1.1), then describes SNN architectures
with delays (§1.2). The event-based data used in this study is
derived from a 128x128 pixel Dynamic Vision Sensor
(DVS128, described in §2). The novel SNN model with
learnable delays is described in §3; with simulation results in
§4. The paper finishes with a discussion of the model for
event-based computation (§5) and conclusions (§6).

A. Neural network architectures for prediction
Traditional neural networks for prediction include Elman’s

simple recurrent network [9] and Jordan’s [10]
output-to-hidden recurrent network. Both models are
three-layer recurrent networks, with input, hidden and output
layers of rate-coded neurons, which process one input at each
time step and predict the next input. Elman’s architecture has
recurrent connections at the hidden layer, which is connected
both to the input and to a copy of itself delayed by one time
step. Jordan’s network has recurrent connections from the
output layer to the hidden layer, also delayed by one time

Predicting Temporal Sequences Using an Event-based Spiking
Neural Network Incorporating Learnable Delays

Tingting (Amy) Gibson, James A. Henderson, and Janet Wiles, member

S

2014 International Joint Conference on Neural Networks (IJCNN)
July 6-11, 2014, Beijing, China

978-1-4799-1484-5/14/$31.00 ©2014 IEEE 3213

step. Other architectures, such as time-delay neural networks
(TDNNs) [11], use multiple past inputs at each time step to
predict the next value.

To predict more than one step ahead, two main approaches
have been proposed: direct prediction and indirect prediction
[12]. Both approaches receive multiple inputs at each time
step. The direct approach simultaneously predicts multiple
time steps: The simplest network predicts a single output at a
desired prediction horizon [13]-[15]; multiple versions of this
network each with a different prediction horizon can be
combined to form an ensemble to predict multiple steps in the
future [16]. A more complex variation is a direct
multi-input-multi-output architecture in which a sequence of
outputs at predetermined future time steps can be
simultaneously predicted [17]. The indirect prediction
approach utilizes an iterative prediction mechanism similar to
a Jordan network, in which each output is fed back into the
network as an input for the next time step [18]. This paradigm
has been used in a wide range of time series including chaos
[19], macroeconomics [20], traffic [21], wind speed and
power [22].

Each method has advantages and disadvantages: Direct
prediction has been claimed to be more accurate under some
conditions [12] but training multi-level networks can be
difficult because all levels must be optimized simultaneously
[16]; Indirect prediction can be optimized at each level, but
prediction errors propagate to future states and errors
accumulate over long periods with no input.

B. SNNs and modeling of delay times
Of the few SNNs that have been designed for prediction,

the majority use one-step-ahead prediction. Berthouze and
Tijsseling [23] utilized a spiking network architecture akin to
Elman’s simple recurrent network [9] to predict
context-dependent sequences. Object trajectories have also
been tracked via a spiking one-step prediction network [24],
[25].

Event-based SNN simulators (not for prediction) have also
been developed using queues of events and asynchronous
updating of neurons [26]-[29]. While these packages enable
simulation of spiking neurons with event-based mechanisms,
they were not designed for engineering functional tasks.

An open question in neuroscience is how timing and
temporal delays are represented in the brain. The majority of
models use implicit methods for incorporating temporal
properties using neural dynamics, with synaptic weights that
have an indirect relationship to delay times. An alternative is
to explicitly represent delays, which provides opportunities
for more effective and efficient learning algorithms.
Temporal delays have been used to encode information [30]
and used as temporary memory [31]. Delays can regulate the
synchrony of information processing [32], aid pattern
recognition [33] and handle long-term dependencies [34]. In a
previous project, our group developed a learning algorithm
for SNNs with explicitly tunable input delays and variances,
called Spike Delay Variance Learning (SDVL), presented at a
previous IJCNN [35]. This approach introduced learnable
delays at dendrites, but only predicted a single future time
point. These methods are yet to be tested on sensory event

data such as that produced by DVS128.

II. DATA: FRAME-FREE VISUAL DATA STREAM

The development of new SNN architectures for cognitive
systems requires new ways of representing input/output data
based on the principle of spikes as asynchronous events,
rather than time-locked to uniform sampling. Visual and
auditory neuromorphic systems have pioneered this new way
of representing sensory stimuli [36], [37]. The DVS128 is a
frame-free visual sensor. As noted in the introduction, it has a
128x128 array of pixels (16k pixels), each corresponding to
an independent sensor with fast latencies in the microsecond
range. Unlike conventional frame-based image sensors, the
DVS128 transmits information asynchronously whenever the
illumination of a pixel changes more than a threshold amount.
This communication is event-based, and results in bandwidth
only being used by active pixels. The DVS128 data stream
can be accumulated over a period of time in order to
approximate frames to any level of temporal resolution. The
data stream can also be intensity-coded to enable static
images to represent pixel motion (see Fig. 1).

A variety of datasets from the DVS128 have been
developed for open access, including a moving version of
MNIST postcode data [38]. Our lab has developed a range of
benchmark datasets including that of laser pointers drawing
on a screen, object motion and whole-of-field motion
generated by the DVS128 camera mounted on a robot moving
through space [39].

A. Laser dot dataset and prediction task
 For this study, we used the DVS128 to capture the

movement of a spot of light on a plain wall created by a laser
pointer oscillating horizontally at approximately 0.44
cycles/sec. The use of a laser dot enables clear visualization
of the data over time (see Fig. 2). Over the course of 48s, 21
cycles (moving left then right) were recorded, generating
204,195 events (104,391 positive and 99,804 negative).

DVS128-based studies to date have used classification
paradigms [40], [41]; feature recognition based on laser line
extraction [42]; particle tracking [43]; and optic flow [44].
Our approach contrasts with these, predicting movement at
multiple future time points, and over a range of time scales.

B. Multi-scale representations of DVS128 data
 The DVS128 data is represented in raw form as individual

Fig. 1. Image of a rolling ball, created by accumulating DVS128 data
stream. White pixels indicate increases in luminosity, black pixels
indicate decreases, with intensity indicating the event’s recency –
whiter pixels indicate more recent positive events and blacker pixels
indicate more recent negative events.

3214

spikes at microsecond resolution. However, many visual
tasks of interest require aggregation over large regions of time
and space. For example, a cognitive system may need to track
a single object moving over time. The variables of interest can
be represented by the centroid of the object, rather than an
explicit representation of its boundaries. (Note that this is not
a universal format: In other tasks, the motion of the
boundaries may be the variables of interest, and other
representations will be more appropriate.)

In this study, we are interested in predicting the movement
of the laser dot over time, so the important feature in the input
stream is the change of the position of the centroid of the laser
dot. As the raw data stream includes events for all changes in
illumination at any pixel over the course of the recording,
there is no labelled information about which events
correspond to the movement of the laser dot. We assume
events that correspond to the laser dot are spatially and
temporally close to each other, and determine the position of
the laser dot by finding clusters of events that match these
criteria. If the object to be tracked is of a complex shape, or if
there is more than one object to be tracked, multiple clusters
over space and time will be needed. In this study, the laser dot
is the only object in the recording and it has very minor
movement along the y axis; we cluster the events based on
time, covering the whole x axis and the section of the y axis
that contains the laser dot, with each cluster encapsulating
200 events.

Representing clusters by centroids provides sufficient
information for tracking movement, but loses information
about variance. To track the distribution of events, a Gaussian
is fit to each cluster (see Fig. 3). Theoretically any
distribution could be used to describe these clusters;
Gaussians were chosen for computational tractability and
simplicity.

In summary, the raw data stream was re-represented by a
sequence of clusters, each specified by a Gaussian N with
mean m indicating the space-time centroid (<x, y, t> in pixel
coordinates, x, y, and time since the start of the video, t) and
the covariance matrix C is the 3x3 covariance matrix <σxx,
σxy, σxt, …, σtt>.

ܰሺ, ሻܥ ൌ ݔ݁ ቂെଵଶሺ࢞ െ ࢞ଵሺିܥሻ்ܕ െ ሻቃ ሺ1ሻܕ

where x is the location vector <x,y, t> of a data point.

This representation format has several advantages: the
sequence of Gaussians forms an event stream in its own right;
it can be tailored to any level of down-sampling in space, time
or both (in our study, the event stream size reduced from an
initial 104,391 positive events to 435 Gaussian events); it is
grid-free and scale-free as each Gaussian can represent a
region of any shape and size; and it can be used as a scalable
data structure in algorithms with a mixture of widely varying
spatial scales.

III. METHODS

A. Spiking neuron model and network architecture
The goal of the new SNN is to learn temporal patterns from

an input event stream and predict future event sequences. The
network architecture consists of a single layer of hidden
spiking neurons that process the input stream and predict an
output stream.

The input event stream is presented to the network event by
event. Each event, i, can be viewed as approximating the
distribution of a region of the DVS space-time data, defined
by a Gaussian, Ni (mi, Ci), with mean, mi, and covariance
matrix, Ci, (encoding 3 mean and 9 covariance values as
described in §2). Each hidden neuron has multiple dendrites
sampling different input events and an axonal tree with
branches predicting different future event distributions (see
Fig. 4). The distribution of each dendrite, j, is summarized by
a Gaussian, Nj (mj, Cj), with mean, mj, and covariance matrix,
Cj. The number of dendrites per neuron is fixed throughout
training but the number of axonal branches changes via
recruitment and pruning. Hidden neurons are recruited
incrementally throughout training, in proportion to the
number of patterns recognized in the input.

When an event is input to the network, all dendrites
calculate their match to the event, and all neuron states are
updated. Unlike the dendrites in conventional neuron models
which passively conduct current to the soma (cell body of the
neuron), in our model, dendrites take their inspiration from
the growing field of dendritic computation, and are capable of
processing the input events with appropriate temporal delays,

Fig. 3. Scale-free representation of the first 500ms of the moving laser
data using Gaussians (boundaries show 1 standard deviation).

Fig. 2. Raw event stream generated by the DVS128 camera, capturing
a laser dot oscillating horizontally (x-axis) over 10s (z-axis). Each dot
represents a change of luminosity (red is positive, black is negative),
with a temporal resolution of 15µs.

3215

enabling them to represent and match space-time
distributions of DVS data. Each branch calculates the match
between the input, Ni, and its own distribution, Nj, resulting in
a new Gaussian Np with mean mp and covariance matrix Cp:

 ܰ൫݉, ൯ܥ ൌ ܰሺ, ሻܥ ܰ൫, ൯ ሺ2ሻ ൌܥ ,,൫ݍ , ,,൯ ܰ,൫ܥܥ ,൯ܥ
where ݍ, ൌ ݔ݁ ቂെଵଶ൫ െ ܥ൯்൫ ൯ିଵ൫ܥ െ ൯ቃ , , ൌ ൫ܥି ଵ ିܥ ଵ൯ିଵ൫ܥି ଵ ିܥ ଵ൯, and ܥ, ൌ ൫ܥି ଵ ିܥ ଵ൯ିଵ.

The signal, s, from the dendrite to the soma is calculated as

the normalized integral of Np over space and time:
ݏ ൌ ܰ൫, ஶିஶݐ݀ݕ݀ݔ൯݀ܥ ܰ൫, ൯ଶஶିஶܥ ݐ݀ݕ݀ݔ݀ ሺ3ሻ

Although all dendrites are presented with input events

simultaneously, calculation of s depends on each dendrite’s
time delay, t (the time mean of the dendrite’s Gaussian
parameters). For computational efficiency, the following
process is used in our model: When an input is available, all
dendrites with no time delay immediately process the input
event. For dendrites with a non-zero time delay, the input
event is added to a queue associated with the dendrite. As the

network is an event-based system without a global clock, the
dendrites only continue processing when the next event
arrives. As each input event is presented, the delays for all
queued events are updated relative to the most recent event.
When an event has been delayed to a time that matches or
exceeds the time delay associated with the dendrite, the input
is processed and the result propagated to the soma.

For each hidden neuron, the membrane potential, v, at the
presentation of each new input event is calculated by
summing the signals from its dendrites:

ݒ ൌ ∑ ݏ (4)

where j indexes the neuron’s dendrites.

All neurons whose membrane potentials exceed their
thresholds (see Table 1 for numerical details) have the
potential to fire. To force neurons to learn different input
patterns, k-winner-take-all is used to restrict the number of
neurons firing for each input event, with the winners based on
the highest membrane potentials (for this study, k = 1).

When a neuron fires, it generates a spike which propagates
along its axonal tree. The axonal tree comprises multiple
axonal branches, each associated with a Gaussian distribution
parameterized similarly to the dendrites. The time, t, of these
parameters indicates the delay from the firing of the hidden
neuron to a predicted output event. The future output stream
is estimated by summing the predicted events from all
neurons over all time (see Fig. 5).

B. Learning Rules

The model uses online, self-supervised learning. The
learnable variables are the Gaussian parameters of the event
distributions associated with the dendrites and axonal
branches. At the beginning of training, the network has a pool
of embryonic hidden neurons, each with a fixed number of
dendrites and an allocation of axonal branches not yet
associated with event distributions. When a new input event
is fed to the network and no hidden neurons fire in response to
the input, an embryonic neuron is recruited to one-shot-learn

Fig. 4. The architecture of the SNN. Dendrites of the hidden neurons
sample the input stream and axonal branches predict the output stream.
Each of these branches is summarized by a set of parameters describing
a Gaussian distribution. Each dendrite processes a queued event at the
appropriate time delay (see text for details), by computing the
similarity between its associated Gaussian and the input event, which is
integrated at the soma. If a hidden neuron fires, it sends a spike along
the axonal branches, which cast predictions based on their learnt
Gaussian parameters.

TABLE I
NETWORK PARAMETERS

 Direct network Iterative network
 Initial After

training
Initial After

training
No. of hidden neurons 0 23 0 50
No. of
dendrites/neuron 10 10 10 10

No. of axonal
branches/neuron 20 avg 15 1 1

Threshold 2 varies 9 varies
- adjustment rules 1.1 when the neuron fires

0.9 when the neuron does not fire
Direct network only parameters

Prediction confidence Initialized to 1
- adjustment rules 1.01 if the prediction does not add new axon

0.9 if the prediction adds new axon
1 if result is greater than 1

- for axon pruning 0.9
Distance for adding
new axon 20 bits in information loss

3216

this input pattern; its dendrites are initialized to match the
input distributions (means and covariance values of the
nearest events in the past) and its axonal branches are
initialized to a subset of randomly chosen future events within
a given time range (5s).

Learning occurs at dendrites and axons only if their
associated hidden neuron fires. When a hidden neuron fires in
response to an input sequence, its dendrites adjust their
distribution parameters closer to those of the input event. The
distribution that best matches their estimation is found using
the Kullback–Leibler divergence DKL (also known as relative
entropy). DKL measures the information lost when the normal
distribution of an input event ܰ (normalized Ni) is
approximated by that of a dendrite ܰ:

 ܰሺ, ሻܥ ൌ ሺ1 ඥሺ2ߨሻଷ detሺܥሻሻ⁄ ܰሺ, ሻ (5)ܥ
ሺܦ ܰ|| ܰሻ ൌ ଵଶ ቌ ൫ െ ିܥ൯் ଵ൫ െ ିܥ൫ݎݐ൯ ଵܥ൯ െ ݇ െ ln ൬ୢୣ୲ሺሻୢୣ୲൫ೕ൯൰ቍ ሺ6ሻ

where mi, mj, Ci and Cj are the means and covariances of the
normal distributions ܰ and ܰ, and k is the dimension of the
distribution. For computational tractability, after a dendrite
has identified the best-matched input event, its parameters are
updated numerically as follows: A new distribution is
calculated by generating d1 data samples from the dendrite’s
old Gaussian distribution, and d2 data samples from the input
event to be learnt. The ratio d1:d2 is given by

 (1 െ ሻݎ/1 (7) ݎ/1

where r is the number of times the hidden neuron has fired
since the beginning of training. This adjustment ensures that a
frequently firing neuron becomes more stable over time.

 Axonal branches of the hidden neurons learn using a
similar algorithm to the dendrites. After prediction of a future
event, the nearest event from the real data source is matched
(using Eqn 6). If the match is close (this study used an
information loss of 20bits, calculated by ܦሺ ܰ|| ܰሻ/log 2), the axonal branch learns as described for the dendrites.
Otherwise, a new axonal branch is added with parameters
matching the targeted prediction. Each of the axonal branches
is also associated with a confidence value (see Table 1 for
implementation values), which is increased when the branch
matches an input, and decreased when not. After training,
axonal branches with low prediction confidences are pruned
(see Table 1 for values).

When a neuron fires, its threshold is increased to make it
harder to fire in response to other patterns in the future. This
mechanism forces the neuron to specialize in its learned
pattern. If a neuron does not fire over a period of time, its
threshold is reduced to aid generalization (see Table 1 for
adjustment rules).

IV. RESULTS

A. Directly predicting a sequence
After training on 33 seconds of laser motion data (approx.

15 oscillations of the laser pointer), the SNN reliably
predicted the future movement of the laser dot for unseen data
(tested for 5 seconds). Figure 6 provides a segment of this
network output showing the shape of the predicted future
sequence (red contours), the input events (blue contours) and
the source data (black dots). The predicted trajectory closely
follows the source data.

B. Iterative prediction
For comparison, a second network architecture was

implemented based on the traditional time series approach of
predicting the value of the next input. The technique uses a
recurrent mechanism – iteratively feeding the prediction for
the next time step into the input for the subsequent prediction.
To compare the prediction performances of the SNN (direct)
and iterative approaches, a traditional iterative prediction
network was trained on the same laser pointer data. Iterative

Fig. 5. Diagrammatic view of delays on the dendrites and axons. The
x-axis represents time. Shown are three neurons H1, H2, and H3 (one
row per neuron) and the input sequence (grey distribution, bottom
row). Each neuron fires after matching a particular part of the input
(distributions shown in solid colours) and predicts a future sequence
(stippled colours). To calculate the total predicted future event stream
at the time point marked by the vertical dashed line, predictions are
summed from all neurons that fired previously (resulting in the
distribution shown by the black outline, bottom row).

Fig. 6. Predicting future motion with spiking neurons. An SNN was
trained on the moving laser pattern (see Fig. 2). Red contour lines: the
shape of Gaussian predictions to 1 standard deviation. Blue contour
lines: the shape of the input Gaussians to 1 standard deviation. Black
dots: the actual spikes from the DVS128 recording.

3217

networks are usually fixed time-step based, so the data was
processed into frames by accumulating all spikes within
100ms intervals. A Gaussian was then fitted to each frame,
forming a frame sequence comparable to its event counterpart.
The network was trained to predict the next time step in the
form of a Gaussian. The learning mechanism for adapting the
Gaussians was as described in §3B. During testing, at each
time step the network predicted the next event, which then
became part of the subsequent input sequence. This iterative
prediction can be continued for as long as required.

C. Error comparison
 Both the direct and iterative SNNs were trained on 33
seconds of the data (each network using its corresponding
pre-processed inputs), then tested with 20 novel sequences,
each consisting of 1.1 seconds of previously unseen input
data and 5 seconds of forecasting data. Each neuron in the
direct network was initialized with 10 dendrites and 20 axonal
branches; while the iterative network was initialized with 10
dendrites (equal to an input sequence of 10 frames), but only
one axonal branch for predicting the next time step. (See
Table 1 for network settings).

For comparison with the source data stream, 10000 points
were sampled from each network’s predicted future
distributions. The sampled points and the raw data were
binned into discrete time bins of 200ms and discrete x
position bins of 8 pixels, forming a 25x16 grid (the variation
in the y axis was ignored as the laser dot motion was restricted
to x axis). Each cell in the grid was then represented by the
event count of that cell. The prediction error of a cell en,x,t, of
network model n at position bin x and time bin t, was
calculated as follows:
 ݁,௫,௧ ൌ ,௫,௧ ൫ݏܾܽ െ ,௫,௧ ൯ כ ,௫,௧ (8)ݓ

where pn,x,t is the normalised prediction results of the network
model m at cell (x,t); pa,x,t is that of the actual data events; and
w is the weight of the error of a cell, calculated as the ratio of
the normalised prediction results and that of the actual data:
,௫,௧ݓ ൌ max ሺ,௫,௧, ,,௫,௧,௫,௧ ሻ/min ሺ ,௫,௧ ሻ (9)

To prevent undue skew in the weights, the maximum weight
was capped at 50.

Prediction errors for both networks were calculated as a
function of time and averaged over the 20 test cases (see Fig.
7). The error of the direct model remained low and was
consistent over time; the iterative model showed comparable
performance over the first 200msec, but then consistently
increased with time. The contrast between direct and iterative
prediction paradigms illustrates the sensitivity of the iterative
paradigm to prediction error in earlier steps, with errors in
past predictions propagated to subsequent predictions. It also
shows the direct multi-step paradigm is consistent throughout
prediction. The slight downward trend of the prediction error
of the direct network is due to increasing sparsity of the
prediction at later times (the performance measure favours
sparse predictions over dense predictions that cover a large
area).

V. DISCUSSION
In this paper, we presented a new approach to forecasting

using SNNs with event-based inputs. It required rethinking
how to represent inputs, and augment spiking neurons with
learnable delays to enable processing of event streams. The
new designs have both benefits and costs, which we discuss in
the following sections.

A. Using distributions to represent raw input data
New types of neuromorphic sensors such as the DVS128,

require correspondingly new processing paradigms. In this
study we have developed an event-based scale-free data
structure involving Gaussians that can sample any degree of
precision in time and space, free from fixed step sizes of a
spatial or temporal grid.

The distribution of the events generated by the DVS128
can be viewed as a density function with a time resolution that
has microsecond precision. We re-represented this density
function as a set of Gaussians, which can be scaled from one
Gaussian per spike, at the most detailed level, to a single
Gaussian for the entire space-time stream, with any mixture
of Gaussians in between. These Gaussians can have varying
spatial and temporal scales, and the covariance of each
Gaussian can be parameterized differentially along the spatial
and temporal axes. Such re-represented data forms an event
stream in its own right, with the advantage of greatly reducing
the number of events and enabling mixtures of differentially
scaled space-time events.

B. An SNN that processes input distributions as events
The hidden neurons modeled in our network differ from

conventional spiking neurons by adding time delays to axonal
arbors as well as dendrites, enabling the simultaneous
prediction of multiple future events. The advantage of this
approach is that predictions are not required for all future time
steps, only those for which data is available. The Gaussian
parameters of the dendritic and axonal branches can be seen
as similar to synaptic weights in traditional neural networks:
they affect the signal received by the neurons and are learned
during training. One of these parameters, the time delay
variable, plays a key role in multiple time-scale prediction.

Fig. 7. Prediction errors over time for two contrasting paradigms
(average of 20 test cases). Direct prediction paradigm (blue): The
errors remain low throughout the entire prediction. Iterative prediction
paradigm (red): Initially good with increasing trend in time.

3218

C. Capturing temporal structures in time delays
The goal of this SNN model is to learn the temporal

structures of an event-based sequence and predict how
space-time events are related to each other. Temporal
information is represented in the time delays of the dendrites,
as each time delay encodes the temporal position of its
associated distribution in relation to other distributions in the
same dendritic tree. Each dendrite is free to encode the
temporal scale that best suits the events it is trained on. This
feature provides great flexibility in learning temporal
structures in a time step free environment.

In contrast to traditional models of dendrites as passive
structures, the main role of which is propagating signals, the
dendrites in this study have considerable computational
ability. In this model, active dendritic computation is
postulated as a temporo-spatial sequence memory. The time
delays of the dendrites are implemented as delays placed on
computation rather than transmission, contrasting with
conventional models [31]-[34]. Further studies are needed to
determine if this mechanism impacts on the quality of
prediction.

The axonal model used in this network is an extension of
dendritic computation, and to our knowledge has not been
studied in this form in neuroscience (see [45] for a review).
Combining the use of time delays with dendritic and axonal
computation is the key mechanism that makes learning
event-based multi-time-scale sequences possible and future
studies are needed to compare this axonal branching model
with other approaches.

D. Application to real data
When applied to real data recorded from the DVS128, this

model successfully predicted future events with high
accuracy. Comparison was made between the direct and
iterative predictions, with the former consistently more
accurate, as the latter was affected by propagated errors.

The data used in this study is very simple, consisting of a
single object with a simple oscillating trajectory. Although
not demonstrated, the network should be able to handle
multiple trajectories by training different sets of hidden
neurons to learn each trajectory. For complex real world
scenes with multiple objects, pre-processing the data with
multiple smaller Gaussians would more suitable to enable
segmenting individual objects and features of complex
objects. Smaller Gaussians could also help to identify
atmospheric noise which tends to be uncorrelated with other
motion in scenes.

The new SNN model is not limited to processing data from
the DVS camera. Any data that can be converted to a
space-time sequence of events could be processed.

E. Comparing this model to traditional ANNs
Many aspects of our network and prediction paradigm

differ from traditional time series predicting ANNs:
1) Our system is event-based and clock-free, learns and

predicts multiple time-scale data.
2) Events are represented as Gaussians as opposed to

single-valued inputs. These Gaussians represent the
distributions of events in space and time; and the

Gaussians associated with the dendrites and axons
indicate the temporo-spatial volume the branches sample
or predict. This is a different way of thinking about data
compared to traditional ANNs.

3) Our system incorporates dendritic computation and
axons with learnable delays contrasting with traditional
transmit-only connections.

F. Potential improvements to this model
This network shows promising results when predicting the

laser dot dataset. However, the model design is still at a
preliminary stage and there are many aspects that could be
improved and further explored:
1) The laser dot data was selected deliberately as a simple

demonstration of the Gaussian event-based network
model. Studies will be done with more complex data,
such as visual flow from self-motion, multiple moving
objects and other complex scenes.

2) Currently the dendrites learn the most recent sequences.
Future extensions should enable them to learn
subsequences sampled from multiple non-consecutive
time points. Growing, pruning and merging branches
based on the information encoded by each branch could
help to evolve a more elegant network structure.

3) In the current system, processing is updated with input
events, potentially causing mismatches with the learned
delays of the dendrites. Updating time points could be
dynamically generated to correspond to dendritic delays.

VI. CONCLUSIONS
Neuromorphic engineering is developing powerful

computational hardware for spiking networks. However,
paradigms that advance the theory of computation with spikes
have been slower to develop. This paper demonstrates how a
novel model of a spiking neuron with explicitly learnable
delays on both dendrites (inputs) and axons (outputs) can
efficiently and effectively connect pasts and futures
represented as event streams which have multiple scales.

The DVS128 datasets for this study are available as open
access data from http://www.itee.uq.edu.au/cis/.

ACKNOWLEDGMENTS
We thank students and colleagues in the Complex and

Intelligent Systems group at UQ, especially Rob Quinn,
David Tingley, Joshua Arnold and Tharun Sonti for the video
sequences used in these studies. The authors are grateful to
Tobi Delbrück for his valuable advice and for the jAER
software infrastructure.

REFERENCES
[1] H. Adeli and S. Ghosh-Dastidar, "Spiking neural networks,"

International Journal of Neural Systems, vol. 19, pp. 295-308, 2009.
[2] P. Stratton and J. Wiles, "Self-sustained non-periodic activity in

networks of spiking neurons: The contribution of local and long-range
connections and dynamic synapses," NeuroImage, vol. 52, pp.
1070-1079, 2010.

[3] K. M. Chandy, "Event-driven applications: costs, benefits and design
approaches," Presented at the Gartner Application Integration and Web
Services Summit, San Diego, CA, Jun. 2006.

3219

[4] T. Hill, M. O'Connor, and W. Remus, "Neural network models for time
series forecasts," Management Science, vol. 42, pp. 1082-1092, Jul.
1996.

[5] G. P. Zhang, B. E. Patuwo, and M. Y. Hu, "A simulation study of
artificial neural networks for nonlinear time-series forecasting,"
Computers & Operations Research, vol. 28, pp. 381-396, 2001.

[6] D. Chaturvedi, "Artificial neural network and supervised learning," in
Soft Computing. vol. 103, ed: Springer Berlin Heidelberg, 2008, pp.
23-50.

[7] E. Kayacan, B. Ulutas, and O. Kaynak, "Grey system theory-based
models in time series prediction," Expert Systems with Applications,
vol. 37, pp. 1784-1789, 2010.

[8] J. Reutimann, M. Giugliano, and S. Fusi, "Event-driven simulation of
spiking neurons with stochastic dynamics," Neural computation, vol.
15, pp. 811-830, Apr. 2003.

[9] J. L. Elman, "Finding structure in time," Cognitive science, vol. 14, pp.
179-211, 1990.

[10] M. I. Jordan, "Supervised learning and systems with excess degrees of
freedom," 1988.

[11] A. Waibel, T. Hanazawa, G. Hinton, K. Shikano, and K. J. Lang,
"Phoneme recognition using time-delay neural networks," Acoustics,
Speech and Signal Processing, IEEE Transactions on, vol. 37, pp.
328-339, 1989.

[12] C.-T. Cheng, J.-X. Xie, K.-W. Chau, and M. Layeghifard, "A new
indirect multi-step-ahead prediction model for a long-term hydrologic
prediction," Journal of Hydrology, vol. 361, pp. 118-130, 2008.

[13] A. Palmer, J. José Montaño, and A. Sesé, "Designing an artificial neural
network for forecasting tourism time series," Tourism Management,
vol. 27, pp. 781-790, 2006.

[14] F. A. Guerra and L. d. S. Coelho, "Multi-step ahead nonlinear
identification of Lorenz’s chaotic system using radial basis neural
network with learning by clustering and particle swarm optimization,"
Chaos, Solitons & Fractals, vol. 35, pp. 967-979, 2008.

[15] H.-T. Pao, "Forecasting electricity market pricing using artificial neural
networks," Energy Conversion and Management, vol. 48, pp. 907-912,
2007.

[16] F.-J. Chang, Y.-M. Chiang, and L.-C. Chang, "Multi-step-ahead neural
networks for flood forecasting," Hydrological Sciences Journal, vol.
52, pp. 114-130, Feb. 2007.

[17] M. Campolo, A. Soldati, and P. Andreussi, "Artificial neural network
approach to flood forecasting in the River Arno," Hydrological
Sciences Journal, vol. 48, pp. 381-398, Jun. 2003.

[18] R. Boné and M. Crucianu, "Multi-step-ahead prediction with neural
networks: a review," 9emes rencontres internationales: Approches
Connexionnistes en Sciences, vol. 2, pp. 97-106, 2002.

[19] H. Mirzaee, "Long-term prediction of chaotic time series with
multi-step prediction horizons by a neural network with
Levenberg–Marquardt learning algorithm," Chaos, Solitons & Fractals,
vol. 41, pp. 1975-1979, 2009.

[20] T. Teräsvirta, D. van Dijk, and M. C. Medeiros, "Linear models,
smooth transition autoregressions, and neural networks for forecasting
macroeconomic time series: a re-examination," International Journal of
Forecasting, vol. 21, pp. 755-774, 2005.

[21] J. M. P. Menezes Jr and G. A. Barreto, "Long-term time series
prediction with the NARX network: An empirical evaluation,"
Neurocomputing, vol. 71, pp. 3335-3343, 2008.

[22] T. G. Barbounis, J. B. Theocharis, M. C. Alexiadis, and P. S.
Dokopoulos, "Long-term wind speed and power forecasting using local
recurrent neural network models," Energy Conversion, IEEE
Transactions on, vol. 21, pp. 273-284, 2006.

[23] L. Berthouze and A. Tijsseling, "A neural model for context-dependent
sequence learning," Neural processing letters, vol. 23, pp. 27-45, Feb.
2006.

[24] C. Boucheny, R. Carrillo, E. Ros, and O. M. D. Coenen, "Real-time
spiking neural network: an adaptive cerebellar model," in
Computational Intelligence and Bioinspired Systems. vol. 3512, ed:
Springer Berlin Heidelberg, 2005, pp. 136-144.

[25] H. Burgsteiner, M. Kröll, A. Leopold, and G. Steinbauer, "Movement
prediction from real-world images using a liquid state machine,"
Applied Intelligence, vol. 26, pp. 99-109, Apr. 2007.

[26] L. Watts, "Event-driven simulation of networks of spiking neurons,"
Advances in neural information processing systems, pp. 927-927, 1994.

[27] A. Delorme and S. J. Thorpe, "SpikeNET: an event-driven simulation
package for modelling large networks of spiking neurons," Network:
Computation in Neural Systems, vol. 14, pp. 613-627, Jan. 2003.

[28] S. J. Thorpe, R. Guyonneau, N. Guilbaud, J.-M. Allegraud, and R.
VanRullen, "SpikeNet: real-time visual processing with one spike per
neuron," Neurocomputing, vol. 58–60, pp. 857-864, 2004.

[29] M. Mattia and P. Del Giudice, "Efficient event-driven simulation of
large networks of spiking neurons and dynamical synapses," Neural
Computation, vol. 12, pp. 2305-2329, 2000.

[30] S. Tolnai, B. Englitz, J. Scholbach, J. Jost, and R. Rübsame, "Spike
transmission delay at the calyx of Held in vivo: rate dependence,
phenomenological modeling, and relevance for sound localization,"
Journal of neurophysiology, vol. 102, pp. 1206-1217, 2009.

[31] P. Sterne, "Information recall using relative spike timing in a spiking
neural network," Neural Computation, vol. 24, pp. 2053-2077, 2012.

[32] C. Panchev, "A spiking neural network model of multi-modal language
processing of robot instructions," in Biomimetic Neural Learning for
Intelligent Robots, ed: Springer, 2005, pp. 182-210.

[33] I. Sutskever, J. Martens, and G. E. Hinton, "Generating text with
recurrent neural networks," in Proceedings of the 28th International
Conference on Machine Learning (ICML-11), 2011, pp. 1017-1024.

[34] J. M. Brader, W. Senn, and S. Fusi, "Learning real-world stimuli in a
neural network with spike-driven synaptic dynamics," Neural
computation, vol. 19, pp. 2881-2912, 2007.

[35] P. W. Wright and J. Wiles, "Learning transmission delays in spiking
neural networks: A novel approach to sequence learning based on spike
delay variance," in Neural Networks (IJCNN), The 2012 International
Joint Conference on, 2012, pp. 1-8.

[36] P. Lichtsteiner, C. Posch, and T. Delbruck, "A 128x128 120 dB 15 μs
latency asynchronous temporal contrast vision sensor," Solid-State
Circuits, IEEE Journal of, vol. 43, pp. 566-576, 2008.

[37] L. Shih-Chii, A. Van Schaik, B. A. Minch, and T. Delbruck,
"Event-based 64-channel binaural silicon cochlea with Q enhancement
mechanisms," in Circuits and Systems (ISCAS), Proceedings of 2010
IEEE International Symposium on, 2010, pp. 2027-2030.

[38] T. Serrano-Gotarredona and B. Linares-Barranco. MNIST-DVS
Database [Online]. Available:
http://www2.imse-cnm.csic.es/caviar/MNISTDVS.html

[39] T. Gibson, S. Heath, R. P. Quinn, A. H. Lee, J. T. Arnold, T. S. Sonti,
A.Whalley, G. P. Shannon, B. T. Song, J. A. Henderson and J. Wiles,
“Event-based visual data sets for prediction tasks in spiking neural
network”, To appear in the Proceedings of the 2014 International
Conference on in Artificial Neural Networks (1CANN), 2014

[40] P. O'Connor, D. Neil, S.-C. Liu, T. Delbruck, and M. Pfeiffer,
"Real-time classification and sensor fusion with a spiking deep belief
network," Frontiers in neuroscience, vol. 7, Oct. 2013.

[41] A. Eun Yeong, L. Jun Haeng, T. Mullen, and J. Yen, "Dynamic vision
sensor camera based bare hand gesture recognition," in Computational
Intelligence for Multimedia, Signal and Vision Processing (CIMSIVP),
2011 IEEE Symposium on, 2011, pp. 52-59.

[42] C. Brandli, T. Mantel, M. Hutter, M. Höpflinger, R. Berner, R.
Siegwart, and T. Delbruck, "Adaptive pulsed laser line extraction for
terrain reconstruction using a dynamic vision sensor," Frontiers in
neuroscience, vol. 7, Jan. 2014.

[43] D. Drazen, P. Lichtsteiner, P. Häfliger, T. Delbrück, and A. Jensen,
"Toward real-time particle tracking using an event-based dynamic
vision sensor," Experiments in Fluids, vol. 51, pp. 1465-1469, Nov.
2011.

[44] F. Koeth, H. G. Marques, and T. Delbruck, "Self-organisation of
motion features with a temporal asynchronous dynamic vision sensor,"
Biologically Inspired Cognitive Architectures, vol. 6, pp. 8-11, 2013.

[45] D. Debanne, "Information processing in the axon," Nat Rev Neurosci,
vol. 5, pp. 304-316, 2004.

3220

