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Abstract—The Local Binary Pattern (LBP) and its variants 
have been widely investigated in image processing and 
computer vision applications, e.g., texture classification due to 
their powerful ability to capture image features and 
computational simplicity. However, owing to the simple 
selection strategy of the threshold, the original LBP descriptor 
is sensitive to noise and illumination variations and tends to 
characterize different local patterns with the same binary code. 
Recently, the Completed Robust Local Binary Pattern 
(CRLBP) has been introduced to overcome these demerits, in 
which the Weighted Local Gray Level (WLG) is introduced to 
replace the traditional gray value of the center pixel, but the 
improvement is not significant and one additional parameter 
has to be tuned. To address these difficulties effectively, this 
paper proposes a hybrid framework of LBP, called Completed 
Hybrid Local Binary Pattern (CHLBP), in which a first order 
derivative and a second order derivative are combined to 
represent local patterns. In order to make CHLBP more 
robust and stable, more relationship information among pixels 
in the local region is exploited, that is, the Average Local Gray 
Level (ALG) is adopted to take place of the traditional gray 
value of the center pixel as well as the neighbor pixels. The 
results obtained from two representative texture databases 
show that the proposed method is robust to illuminant 
variations and viewpoint variations and can achieve impressive 
classification accuracy. The proposed model improves the 
classification results from 96.95% to 98.78% on the Outex 
database, and from 91.85% to 94.56% on the UIUC database 
as compared with the Completed Local Binary Pattern 
(CLBP), which is the benchmark method of LBP-based 
models. 

Keywords—Local Binary Pattern (LBP); Completed Local 
Binary Pattern (CLBP); Order-based Center-Symmetric Local 
Binary Pattern (OCS-LBP); Hybrid Local Binary Pattern 
(HLBP); Completed Hybrid Local Binary Pattern (CHLBP) 

I. INTRODUCTION 
Texture classification is an active research topic in 

pattern recognition and computer vision and has been used in 
many applications, such as biomedical image analysis [26], 
face recognition [22], and image recognition and retrieval 
[21]. Generally, texture images captured in the real-world 
may have obvious orientation variations. Therefore, Rotation 

invariant texture analysis is immensely needed from both the 
theoretical and practical viewpoint. 

In recent years, numerous approaches for texture feature 
extraction have been proposed to extract texture features that 
are rotation and illumination invariant and robust to noise 
[1]. Davis [2] introduced polarograms and generalized co-
occurrence matrices to obtain rotation invariant statistical 
features. Duvernoy [3] exploited Fourier descriptors to 
extract the rotation invariant texture feature on the spectrum 
domain. Goyal et al. [4] presented a method based on texel 
property histogram. Eichmann and Kasparis [5] developed 
topologically invariant texture descriptors by using line 
structures extracted by Hough transform. Kashyap and 
Khotanzad [6] addressed rotation invariant by proposing a 
circular simultaneous autoregressive (CSAR) model. Cohen 
et al. [7] described texture as Gaussian Markov random 
fields and estimated rotation angles by using the maximum 
likelihood estimation. Chen and Kundu [8] exploited 
multichannel sub-bands decomposition and Hidden Markov 
Model (HMM) to address rotation invariant. Porter and 
Canagarajah [9] applied the wavelet transform to texture 
classification by using the Daubechies four-tap wavelet filter 
coefficients. 

These aforementioned methods have been proven to be 
rotation invariant, however, they are not very robust to 
illumination variations. In [10], Ojala et al. proposed the 
Local Binary Pattern (LBP) to address rotation invariant 
texture classification. As shown in Fig. 2, LBP code is 
computed by comparing a pixel with its neighbors. A 
histogram will be built to represent the texture image after 
the LBP code of each pixel in the image is defined. LBP is a 
simple yet efficient operator to represent local texture and 
invariant to monotonic gray scale transformations. 

Since Ojala's work, lots of variants of LBP have been 
proposed. Instead of comparing neighbors with the center 
pixel, Heikkila et al. [11] presented Center-Symmetric LBP 
(CS-LBP) by comparing center-symmetric pairs of pixels. 
Liao et al. [12] proposed Dominant LBP (DLBP) for texture 
classification. Tan and Triggs [13] presented Local Ternary 
Pattern (LTP), extending the conventional LBP to 3-valued 
codes. However, LTP is no longer strictly invariant to gray-
level transformations due to the simple strategy on the *Corresponding author. 
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selection of the threshold. Motivated by the order derivative 
of the LBP, Zhang et al. [14] proposed Local Derivative 
Pattern (LDP) to capture more detailed information by 
introducing high order derivatives. However, if the order is 
greater than three, LDP is more sensitive to noise than LBP. 
Guo et al. [15] proposed Completed LBP (CLBP) by 
combining the original LBP with the measures of local 
intensity difference and central pixel gray-level. 

Although these aforementioned LBPs mentioned above 
achieve impressive classification accuracy by considering the 
micro-structure, the micro-structure is not absolutely 
invariant to rotation under the huge illumination changes as 
discussed in [16]. Therefore, Zhao et al. [16] proposed a 
novel local pattern, that is, the Local Binary Count (LBC), to 
address rotation invariant texture classification by totally 
discarding the micro-structure. Although the local structure 
information is abandoned, LBC obtains the same 
performance as LBP in rotation invariant cases. LBC (or 
LBP) is sensitive to random noise and quantization noise in 
the near-uniform regions, as the LBC (or LBP) threshold is 
the value of the central pixel in [13]. Besides, CLBP and 
CLBC do not consider a comprehensive relationship among 
all of the pixels in the local region as mentioned in [17]. 
Zhao et al. [18] presented Completed Robust Local Binary 
Pattern (CRLBP) for texture classification to address noise 
by modifying the center pixel gray-level to improve the LBP, 
but the improvement is subtle and a more parameter has to 
be tuned. 

Motivated by the center-symmetric strategy introduced in 
[11], the high order derivative presented in [14], the limited 
relationship information among the pixels in the local binary 
region discussed in [17], and the weighted gray local level 
trick introduced in [18], this paper tries to address these 
potential difficulties by proposing a hybrid framework of 
LBP, called Completed Hybrid Local Binary Pattern 
(CHLBP). In CHLBP, a second order derivative is 
introduced and a strategy is presented to combine the first 
order derivative with the second order derivative. To make 
the proposed model more robust and stable, the value of each 
center pixel in a 3 ൈ 3 local region is replaced by its average 
local gray level and the value of each neighbor pixels are 
also modified. Compared to gray value, the average local 
gray level is more robust to noise, illumination variants and 
view point variants. Experimental results show that CHLBP 
achieves higher classification rates than other variants of 
LBP and is less sensitive to noise, illumination variations and 
viewpoint variations. 

The remainder of this paper is organized as follows. 
Section II briefly reviews LBP, CS-LBP and CLBP. Section 
III presents the framework of CHLBP. Section IV reports 
experimental results and Section V concludes the whole 
paper. 

II. RELATED WORK 
As we have pointed out above, the original LBP 

descriptor has some demerits. For example, LBP is sensitive 
to illumination variations, and sometimes it tends to describe 
different local patterns with the same binary code, which will 
reduce its discriminability inevitably. In the past years, to 
improve the original LBP, several new improved version of 

LBP have been proposed. In this section, we will briefly 
introduce two demerits of LBP and its two improved 
versions, i.e., the Center-Symmetric LBP (CS-LBP) [11] and 
the Completed Local Binary Pattern (CLBP) [15]. 

A. Brief Review of Local Binary Pattern (LBP) 
In order to address gray-scale and rotation invariant 

texture classification, Ojala et al. [10] proposed a 
theoretically very simple, yet efficient, multiresolution 
approach based on local binary pattern. As shown in Fig. 1. 
Derived from a circularly symmetric neighbor set of pixels in 
a local neighborhood, the Local Binary Pattern (LBP) is 
invariant against any monotonic transformation of the gray 
scale and can be described by the following formula: 
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where ܲ is the size of the neighbor set of pixels in a local 
neighborhood, ܴ  is the radius of the local region, ݃௖ 
represents the gray value of the center pixel and ݃௣ ሺ݌ ൌ0, 1, … , ܲ െ 1ሻ  denotes the gray value of the neighbors. 
Suppose the coordinate of ݃௖ is ሺ0, 0ሻ, then the coordinates 
of ݃௣ are ሺܴ cosሺ2݌ߨ ܲ⁄ ሻ , ܴ sinሺ2݌ߨ ܲ⁄ ሻሻ. The gray values 
of neighbor pixels that are not in the image grids are 
estimated by bilinear interpolation. 

In [10], the rotation invariant LBP, denoted as LBP௉,ோ୰୧ , in 
which the superscript  ୰୧  refers to the rotation invariant 
patterns, is defined as: 

 ( ){ }ri
, , LBP min LBP ,   0, 1, ..., 1P R P RROR i i P= = −   (2) 

where ܲ and ܴ are defined as in (1), and ܴܱܴሺݔ, ݅ሻ performs 
a circular bit-wise shift right on the ܲ-bit number ݔ ݅ times. 

Furthermore, Ojala et al. [10] observed that certain 
patterns occupy the vast majority, sometimes over 90 percent 
among all LBP patterns. Based on this observation, a 
uniformity measure ܷ , the number of spatial transitions 
(bitwise 0/1 changes) of LBP pattern is defined as follows ܷሺݔሻ: 
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where ܰ is an positive integer, ݔ is an ܰ-bit binary integer, 
and ܾሺݔ, ݊ሻ  gets the value of the ݊-th  bit of ݔ . And ܷሺLBP௉,ோሻ can be calculated as follows: 
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And the uniform LBP patterns, named LBP௉,ோ୳ଶ , are the 
patterns which have limited transition in the circular binary 
presentation [10]. The rotation invariant forms of the 
uniform patterns are denoted as LBP௉,ோ୰୧୳ଶ , in which the 
superscript  ୰୧୳ଶ  refers to the rotation invariant uniform 
patterns. With the same notations used above, LBP௉,ோ୰୧୳ଶ  is 
defined as follows: 
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Fig. 1. Central pixel and its ܲ circularly and evenly spaced neighbors with 
radius ܴ [15] 

 

 

 

 

 
Fig. 2. Illustration of the LBP process. 

For a specific value ܲ, LBP௉,ோ, LBP௉,ோ୳ଶ  and LBP௉,ோ୰୧୳ଶ have  2௉ , ܲ כ ሺܲ െ 1ሻ ൅ 3  and ܲ ൅ 2  distinct coding values, 
respectively. The mapping from LBP௉,ோ to LBP௉,ோ୰୧ , LBP௉,ோ୳ଶ  or LBP௉,ோ୰୧୳ଶ can be easily implemented with a lookup table. As 
rotation invariant is very necessary for texture classification, 
we shall mainly discuss rotation invariant uniform LBP 
patterns in this paper. After the LBP௉,ோ୰୧୳ଶ code of each pixel is 
defined, a histogram will be constructed to represent the 
texture image. 

LBP is simple and efficient. However, a little change of 
the center pixel may greatly affects LBP code. For example, 
if the center pixel is shifted from 55 to 58 in Fig. 2, the 
coding values of LBP௉,ோ , LBP௉,ோ୰୧  and LBP௉,ோ୰୧୳ଶ  are changed 
from 102, 51 and 9 to 96, 3 and 2, respectively. Aiming at 
this demerit, Tan and Riggs [13] extended original LBP to 3-
valued LTP. Although LTP code are more robust to noise, it 
is no longer strictly invariant to monotonic gray scale 
transformations. 

B. B. Brief review of Center-Symmetric Local Binary 
Pattern (CS-LBP) 
In order to describe interest regions, Heikkila et al. [11] 

presented Center-Symmetric LBP (CS-LBP) by comparing 
center-symmetric pairs of pixels instead of comparing 
neighbors with the center pixel, which produces more 
compact binary patterns. CS-LBP௉,ோ  only produces  2௉/ଶ 
different binary patterns, whereas for LBP௉,ோ  the number is 2௉. By applying a threshold with a small value ܶ to the gray-
level differences, robustness on flat image regions is 
obtained: 
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where ܲ, ܴ and ݃௣ are defined as in (1). 

For several applications, CS-LBP gives better results than 
LBP [11] due to the dimensionality and the fact that the CS-
LBP captures better the gradient information than the basic 
LBP. However, CS-LBP still suffers from performance 

reduction, as it ignores the center pixel, whose intensity 
value can contribute useful information [15]. 

C. Brief Review of Completed Local Binary Pattern (CLBP) 
The original LBP also suffers from the demerit that many 

different structural patterns may have the same LBP code. As 
illustrated in Fig. 3, pattern (a) and (b) have quite different 
local structure in spite of the same LBP code. 

Aiming to improve the discriminative capability of the 
local structure, the image local differences ( ݀௣ ) are 
decomposed into two complementary components [15], i.e., 
the signs (ݏ௣) and the magnitudes (݉௣), respectively: 
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where ܲ , ݃௣ , ݃௖  and ݏሺݔሻ  are defined as in (1). Two 
operators, CLBP-Sign (CLBP_S) and CLBP-Magnitude 
(CLBP_M) are proposed to encode them, in which CLBP_S 
is equivalent to the conventional LBP, and CLBP_M 
measures variance of magnitude. The CLBP_M can be 
defined as follows: 
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where threshold ݉ூ is set as the average value of ݉௣ of the 
whole image. Similar to CLBP_S, we can define the rotation 
invariant uniform patterns for CLBP_M, denoted as CLBP_M௉,ோ୰୧୳ଶ as follows: 
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where ݉௣ and ݉ூ are defined as in (8), and ܷሺݔሻ is defined 
as in (3). 

Based on the observation that the center pixel also 
capture discriminative information, Guo et al. [15] also 
defined an operator CLBP-Center (CLBP_C) to characterize 
the central information as follows: 

 ( ), CLBP_CP R c Is g c= −   (10) 

where ܲ, ܴ, ݃௖ and ݏሺݔሻ are defined as in (1), and threshold ܿூ  is set as the mean gray-level of the whole image. By 
combining the three operators of CLBP_S, CLBP_M and 
CLBP_C, denoted as CLBP_S/M/C , notable improvement is 
made for differentiating the confusing patterns. 

 

 

 

 

 
Fig. 3. An example that LBP represent different structural patterns with the 
same binary code 
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Although CLBP is superior to LBP as far as the ability to 
discriminate different structural patterns is concerned, CLBP 
may also assign the same coding value to structures that 
seems different to each other [18]. Besides, CLBP is also 
sensitive to noise as the center pixel gray level is used as the 
threshold directly. 

III. COMPLETED HYBRID LOCAL BINARY PATTERN 
(CHLBP) 

In order to address these aforementioned difficulties, in 
this section, we propose a hybrid framework of LBP which 
inherits the merits of CS-LBP and CLBP, but can overcome 
their flaws. 

A. Order-based Center-Symmetric Local Binary Pattern 
(OCS-LBP) 
LBP in nature represent a first order circular derivative 

pattern of images. However, the first order pattern fails to 
extract more detailed information in the texture image [14]. 
In fact, a high order operator can capture more detailed 
discriminative information. On the other hand, the high order 
derivative tends to be sensitive to noise.  

Aiming to exploit more detailed information, we propose 
the Order-based Center-Symmetric LBP (OCS-LBP) as a 
complementary to the original LBP. The OCS-LBP௉,ோ  is 
defined as follows:  
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where ܲ , ܴ , ݃௣ , ݃௖  and ݏሺݔሻ  are defined as in (1). It is 
obvious that ሺሺ݃௣ െ ݃௖ሻ െ ሺ݃௣ାሺ௉ ଶ⁄ ሻ െ ݃௖ሻሻ  is a second 
order derivative at the center pixel. As a high order 
derivative operator, OCS-LBP can capture more detailed 
discriminative information, i.e., the convexity-concavity of 
the gray-level which can characterize the change trend of the 
gray-level. 

We also introduce the rotation invariant uniform patterns 
for OCS-LBP, denoted as OCS-LBP௉,ோ୰୧୳ଶ  and is defined as 
follows: 
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where ܷሺݔሻ  is defined as in (3). For a certain value ܲ , 
OCS-LBP௉,ோ୰୧୳ଶ  has  ሺܲ 2⁄ ሻ ൅ 2  distinct coding values. 
Motivated by CLBP, We also introduce Completed OCS-
LBP (OCS-CLBP). Using the same notations in (1), the 
magnitude ݉௣ is defined as follows: 

 ( )( ) ( )2 2 , 0, 1, ..., 2p p cp Pm g g g p P+= + − = .  (13) 

Therefore, the variance of magnitude can be measured by 
OCS-CLBP-Magnitude (OCS-CLBP_M), which is defined 
as follows: 
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where ܲ, ܴ and ݏሺݔሻ are defined as in (1), ݉௣ is defined as 
in (13), and the threshold ݉ூ is set as the mean value of ݉௣ 
of the whole image. Using the same notations defined as in 
(13) and (14), we define the rotation invariant uniform OCS-CLBP_M௉,ோ as follows: 

 ( )
( )

( )
( ) ( )

, 

riu2

2 1

, 
0

, 

, OCS-C

OCS-CLB

LBP_M 2

2 1, OCS-CLBP_M

P_

2

M
P R

P

p I P R
p

P R

s m m U

P U

−

=

⎧
− ≤⎪= ⎨

⎪ + >⎩

∑ .  (15) 

In addition, We use the same definition given in (10) for 
OCS-CLBP_C. 

B. Hybrid Local Binary Pattern (HLBP) 
As mentioned above, the original LBP can capture first 

order information, while the proposed OCS-LBP can better 
describe the second order information, in this section we aim 
to fully exploit these information and introduce a more 
discriminative operator to characterize the local patterns. By 
combining these complementary operators, the original LBP 
and the proposed OCS-LBP, with the joint strategy 
introduced in [15], we present a Hybrid Local Binary Pattern 
(HLBP) operator. In order to achieve rotation invariant and 
reduce computation complexity, we adopt the rotation 
invariant uniform patterns to construct the HLBP, which is 
denoted as HLBP௉,ோ୰୧୳ଶ and defined as follows: 

 ( )riu2 riu2 ri
, , 

u
, 

2HLBP LBP * 2 2 OCS-LBPP R P R P RP= + +   (16) 

After simple derivation, we can see that HLBP௉,ோ୰୧୳ଶ  has ሺܲ ൅ 2ሻ כ ሺሺܲ 2⁄ ሻ ൅ 2ሻ distinct coding values. 

As OCS-LBP can capture more detailed discriminative 
information, HLBP outperforms the original LBP. 

C. Completed Hybrid Local Binary Pattern (CHLBP) 
As aforementioned, the original LBP suffers the demerit 

that many different structural patterns may have same LBP 
code, so it is with HLBP. Motivated by CLBP, we present a 
hybrid framework of LBP, Completed Hybrid Local Binary 
Pattern (CHLBP), based on the proposed HLBP above. 

In practice, The rotation invariant uniform patterns are 
used to represent the image for the reason of computation 
complexity. In this paper we adopt rotation invariant uniform 
patterns in CHLBP, which is decomposed into three 
operators, CHLBP-Sign (CHLBP_S), CHLBP-Magnitude 
(CHLBP_M), CHLBP-Center (CHLBP_C). As the reason 
mentioned above, CHLBP_S is equivalent to HLBP௉,ோ୰୧୳ଶ  as 
defined in (16). Adopting the same hybrid strategy used in 
defining HLBP௉,ோ୰୧୳ଶ, we define CHLBP_M (CHLBP_M௉,ோ୰୧୳ଶ) as 
follows: 
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 ( )riu2 riu2 ri
, , 

2
 , 

uCHLBP_M CLBP_M * 2 2 OCS-CLBP_MP R P R P RP= + +   (17) 

where ܲ and ܴ are defined as in (1), CLBP_M௉,ோ୰୧୳ଶ is defined 
as in (9), and OCS-CLBP_M௉,ோ୰୧୳ଶ is defined as in (15). Similar 
to HLBP௉,ோ୰୧୳ଶ, CHLBP_M (CHLBP_M௉,ோ୰୧୳ଶ) also has ሺܲ ൅ 2ሻ ሺሺܲכ 2⁄ ሻ ൅ 2ሻ  distinct coding values. We use the same 
definition given in (10) for CHLBP_C. To use CHLBP_S, 
CHLBP_M and CHLBP_C to represent images, we adopt 
the same combination strategy presented in [15]. 

As so far, The proposed CHLBP is invariant to 
monotonic gray-scale transformations and rotation invariant 
and has more ability to discriminate the different local 
structures. However it is sensitive to noise as the abrupt 
selection of the threshold and the direct value assigned to the 
neighbors in the local region. Inspired by [18], we introduce 
the Average Local Gray Level (ALG), which is insensitive to 
noise and invariant to monotonic gray scale transformations, 
to address this demerit. As we can see, it is simple yet 
effective strategy. We define ܩܮܣ_c  for the threshold as 
follows: 

 ( )7

0
ALG_c 9ii

g g
=

= +∑   (18) 

where ܲ , and ܴ  are defined as in (1), ݃  denotes the gray 
value of the central pixel in a 3 ൈ 3  local region, and ݃௜ሺ݅ ൌ 0, 1, … , 7ሻ represents the gray value of the neighbor 
pixel. As ܩܮܣ_c  represent the average gray-level of local 
texture, it is obvious that ܩܮܣ_c is more robust to noise than 
the gray value of the center pixel. Similarly, we define ܩܮܣ_nሺ݌ሻ to modify the value of the neighbors on the circle 
as follows: 

( ) ( ) ( )( ), 1 mod 1 mod_n = 3, 0, 1, ..., 1P R pp P p PALG p g g g p P− ++ + = −   (19) 

where ܲ , ܴ  and ݃௣  are defined as in (1). By applying the 
ALG strategy to the proposed CHLBP process, we can get 
more robust local patterns.  

Experimental results shown that LBP and its variants 
achieve impressive performance with the introduced AGL 
strategy in texture classification. We also observed that the 
selection of local difference set used in built CLBP_M could 
make a positive difference on the performance of CLBP. By 
discarding ݉௣ of which the corresponding ݀௣ is negative, we 
can expect a better result. 

IV. EXPERIMENTAL RESULTS 
To evaluate the effectiveness of the proposed method, we 

carried out a series experiments on two large and 
comprehensive texture databases: the Outex database (see 
Fig. 4) [19], which includes 24 classes of textures collected 
under three illuminations and at nine angles, and the UIUC 
database (see Fig. 5) [20], which contains 25 classes of real-
world textures under significant viewpoint variations. 

A. Methods in Comparison and Dissimilarity Measure 
As LBP-based schemes, the proposed OCS-CLBP and 

CHLBP are compared with the representative LBP scheme 
in [10], the CLBP algorithm in[15], and the CRLBP method 
in [18]. 

As mentioned above, in the following discussion, we 
only consider the rotation invariant uniform patterns and use 
the combination strategy and notation method introduced in 
[15]. For the LBP scheme we choose the LBP௉,ோ୰୧୳ଶ operator, 
denoted as LBP; for CLBP methods, we use CLBP_M௉,ோ୰୧୳ଶ 
and CLBP_S௉,ோ୰୧୳ଶ/M௉,ோ୰୧୳ଶ/C operator, denoted as CLBP_M and 
CLBP_S/M/C, respectively; for the CRLBP algorithm, we 
utilize the CRLBP_S௉,ோ୰୧୳ଶ/M௉,ோ୰୧୳ଶ/C  operator, denoted as 
CRLBP. All these selected operators can achieve impressive 
results. And for the proposed OCS-CLBP method, we use 
operator OCS-CLBP_S௉,ோ୰୧୳ଶ/M௉,ோ୰୧୳ଶ/C, denoted as OCS-CLBP; 
for the proposed CHLBP model, we use operator HLBP_S௉,ோ୰୧୳ଶ , CHLBP_M௉,ோ୰୧୳ଶ , CHLBP_M௉,ோ୰୧୳ଶ/C , CHLBP_M௉,ோ୰୧୳ଶ_S௉,ோ୰୧୳ଶ/C, denoted as CHLBP_S, CHLBP_M, 
CHLBP_M/C, CHLBP_M_S/C, respectively. We use alg_݅ 
to denote what ALG strategy, defined as in (18) and (19), is 
applied to the methods: no ALG strategy is applied when ݅ ൌ 0 ; the strategy ܩܮܣ_c  is adopted when ݅ ൌ 1 ; the 
strategy ܩܮܣ_nሺ݌ሻ is adopted when ݅ ൌ 2; and ܩܮܣ_c  and ܩܮܣ_nሺ݌ሻ are all applied at the same time when ݅ ൌ 3. 

In the past years, several measures have been proposed 
for discriminating the dissimilarity between two histograms 
[25], [28], [29]. In this paper, we adopt the χଶ statistics to  

 

 

 

 

 

 

 

 

 

 
Fig. 4. 24 texture images from the Outex database. 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 5. 25 texture images from the UIUC database. 
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address this problem. For two histograms, ܪ ൌ ሼ݄௜ሽ  and ܭ ൌ ሼ݇௜ሽ ሺ݅ ൌ 1, 2, … , Nሻ, the χଶ statistics can be calculated 
as follows: 

 ( ) ( )
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i i

i i i
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d H K

h k=

−
=

+∑   (20) 

In addition, in this paper, we assume that the nearest 
neighborhood classifier is used in all the methods [23][24]. 

B. Experimental Results on the Outex Database 
The Outex database includes two test suites, that is, 

Outex_TC_00010 (TC10) and Outex_TC_00012 (TC12). 
The two test suites contain the same 24 classes of textures, 
which were collected under three different illuminants 
("horizon,” “inca,” and “t184") and nine different rotation 
angles ሺ0°, 5°, 10°, 15°, 30°, 45°, 60°, 75°, 90°ሻ. There are 20 
non-overlapping texture samples for each class under a given 
illumination and rotation angle condition. For TC10, the 
classifier was trained with samples of illumination “inca" and 
angle 0° in each class and the testing dataset was constructed 
by the other eight rotation angles with the same illuminant. 
Therefore, there are 480 ሺ24 כ 20ሻ and 3840 ሺ24 כ 20 כ 8ሻ 
images used for models and validation samples, respectively. 
For TC12, same dataset as TC10 were used for classifier 
training and all samples captured under illumination “t184" 
or “horizon" were used as testing samples. Hence, there are 
480 ሺ24 כ 20ሻ  models and 4320 ሺ24 כ 20 כ 9ሻ  validation 
samples. 

Table I lists the experimental results by different schemes, 
from which we could make the following findings. Firstly, in 
the experiment ሺR ൌ 3, P ൌ 24ሻ , OCS-CLBP achieve 
significant performance compared to other methods when the 

size of the histogram is concerned. It should be noticed that 
OCS-CLBP also achieves impressive results under 
illumination “t184" and “horizon". It is obvious that OCS-
CLBP does capture more detailed discriminative information. 
As a result, CHLBP performs better than other algorithm 
which is validated by the experiment ሺR ൌ 3, P ൌ 24ሻ on the 
Outex database. Secondly, whatever AGL strategy is adopted, 
CHLBP (CHLBP_M_S/C) almost always achieve better 
results than other methods in the experiment ሺR ൌ 3, P ൌ24ሻ on TC12 dataset, which demonstrates CHLBP is more 
robust to illumination variations. Thirdly, the introduced 
AGL strategy can improve performance of LBPs, such as, 
CLBP_S/M/C. Finally, CHLBP_M/C performs better than 
other methods when the feature dimensionality is concerned. 
In a word, CHLBP can get higher classification rates than 
other methods and it is less sensitive to illumination 
variations. 

C. Experimental Results on the UIUC Database 
The UIUC texture database contains 1000 texture images 

with 25 different classes and 40 samples for each class. The 
resolution of each image is 640 ൈ 480 . The database 
contains materials imaged under significant viewpoint 
variations. To get statistically significant experimental results, ܰ  training images were randomly chosen from each class 
while the remaining 40 െ ܰ images per class were used as 
the validation set. The partition is implemented 100 times 
independently. The average classification accuracy over 100 
randomly splits is listed in Table II. 

Similar conclusions to those in Section IV-B can be 
drawn from the experimental results on the UIUC database. 
Firstly, the proposed OCS-CLBP achieves impressive results 
in the experiment ሺR ൌ 3, P ൌ 24ሻ  when the feature 

TABLE I. 
CLASSIFICATION RATE (%) ON OUTEX (TC10 AND TC12) USING DIFFERENT METHODS 

 
1, 8R P= =  2, 16R P= =  3, 24R P= =  

TC10 TC12 Average TC10 TC12 Average TC10 TC12 Average 
 t184 horizon t184 horizon  t184 horizon

LBP 84.82 65.46 63.68 71.32 89.40 82.27 75.21 82.29 95.08 85.05 80.79 86.97
CLBP_M 81.74 59.31 62.78 67.94 93.67 73.80 72.41 79.96 95.52 81.18 78.66 85.12 
CLBP_S/M/C 96.56 90.30 92.29 93.05 98.72 93.54 93.91 95.39 98.93 95.32 94.54 96.26
CRLBP (α=1) [18] 96.54 91.16 92.06 93.25 98.85 96.67 96.97 97.50 99.48 97.57 97.34 98.13 
CRLBP (α=8) [18] 97.55 91.94 92.45 93.98 98.59 95.88 96.41 96.96 99.35 96.83 96.16 97.45
CLBP_S/M/C (agl_2) 97.27 88.89 91.20 92.45 98.83 94.70 94.72 96.08 99.06 96.13 95.65 96.95
CLBP_S/M/C (agl_3) 96.82 86.27 87.73 90.27 98.88 94.86 95.49 96.41 99.30 96.60 95.88 97.26 
OCS-CLBP(agl_0) 82.71 72.04 76.27 77.01 95.60 88.06 91.06 91.59 98.20 94.38 95.16 95.91
OCS-CLBP(agl_1) 74.40 69.44 71.79 71.94 96.02 89.21 91.92 92.38 99.01 95.79 97.04 97.28 
OCS-CLBP(agl_2) 86.80 73.84 77.57 79.40 95.83 87.11 88.84 90.59 97.73 92.82 93.68 94.79
OCS-CLBP(agl_3) 75.13 67.85 70.00 70.99 94.97 89.07 92.27 92.10 98.88 95.46 97.75 97.36 
CHLBP_S (agl_0) 83.33 74.12 76.53 77.99 96.02 90.32 89.21 91.85 98.39 91.74 89.58 93.24
CHLBP_M (agl_0) 84.92 69.26 74.38 76.19 96.02 89.49 90.35 91.95 99.19 95.97 95.21 96.79
CHLBP_M/C (agl_0) 92.68 83.47 85.81 87.32 98.52 92.92 94.05 95.16 99.17 96.48 96.06 97.24 
CHLBP_M_S/C(agl_0) 94.11 86.76 90.37 90.41 98.39 94.77 95.56 96.24 99.51 97.59 97.25 98.12
CHLBP_S (agl_1) 78.41 69.44 70.90 72.92 96.54 93.87 92.01 94.14 99.11 93.84 91.50 94.82 
CHLBP_M (agl_1) 82.16 72.55 73.56 76.09 96.74 92.38 93.47 94.20 99.04 96.67 96.04 97.25
CHLBP_M/C (agl_1) 86.07 80.76 83.19 83.34 98.62 93.91 94.88 95.80 99.32 96.99 97.45 97.92
CHLBP_M_S/C(agl_1) 87.29 78.61 81.81 82.57 98.85 95.76 97.04 97.22 99.64 97.94 97.96 98.51 
CHLBP_S (agl_2) 86.12 74.17 70.83 77.04 94.40 88.17 86.85 89.81 98.46 92.06 89.70 93.41
CHLBP_M (agl_2) 84.01 65.00 61.60 70.20 96.25 89.61 89.14 91.67 99.04 95.49 95.65 96.73 
CHLBP_M/C (agl_2) 93.52 79.63 77.55 83.57 97.55 91.94 93.29 94.26 99.14 96.04 96.23 97.14
CHLBP_M_S/C(agl_2) 93.75 85.14 83.47 87.45 96.77 93.73 94.44 94.98 99.53 97.94 97.41 98.29 
CHLBP_S (agl_3) 66.59 63.47 63.63 64.56 95.70 92.15 91.09 92.98 98.75 93.89 92.04 94.89
CHLBP_M (agl_3) 78.91 68.31 71.71 72.98 95.81 91.39 92.71 93.30 99.17 96.57 96.11 97.28
CHLBP_M/C (agl_3) 84.43 77.69 82.38 81.50 96.95 92.92 94.81 94.89 99.30 97.20 98.33 98.28 
CHLBP_M_S/C(agl_3) 78.93 75.21 78.52 77.55 98.18 96.20 96.57 96.98 99.58 98.59 98.17 98.78

2055



 
 

dimensionality and computation complexity are concerned, 
as OCS-CLBP (agl_3) produce much better results than 
CLBP especially when the size of the training set is small. 
Secondly, CHLBP (CHLBP_M_S/C(agl_3)) performs much 
better than CLBP when the radius is larger than one. Thirdly, 
CHLBP also achieves much better accuracy results than 
CRLBP in the experiment ሺR ൌ 3, P ൌ 24ሻ. In addition, The 
proposed ܩܮܣ_nሺ݌ሻ  strategy can make CLBP and its 
variants more effective. In one word, CHLBP achieves 
higher classification accuracy and less sensitive to viewpoint 
variations and illumination variations than other LBP-based 
methods. 

V. CONCLUSIONS 
In this paper, we analyzed the two main demerits of 

Local Binary Pattern (LBP). And then we proposed a novel 
Order-based Center-Symmetric Local Binary Pattern (OCS-
LBP) which could capture more detailed discriminative 
information. Based on LBP and the proposed OCS-LBP, we 
presented a new hybrid framework of LBP, named 
Completed Hybrid Local Binary Pattern. We also introduced 
a simple yet effective strategy, the Average Local Gray 
Level (ALG), which could make the CHLBP model less 
sensitive to illumination variations and viewpoint variations. 
Experimental results obtained from two representative 
databases clearly demonstrate that the proposed CHLBP 
method enhanced by AGL strategy is less sensitive to 
illumination variations and viewpoint variations and can 
obtain impressive texture classification accuracy. 
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