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Abstract— We investigate further the problem of radar signal 
classification and source identification with neural networks. The 
available large dataset includes pulse train characteristics such as 
signal frequencies, type of modulation, pulse repetition intervals, 
scanning type, scan period, etc., represented as a mixture of 
continuous, discrete and categorical data. Typically, considerable 
part of the data samples is with missing values.  In our previous 
work we used only part of the radar dataset, applying listwise 
deletion to get rid of the samples with missing values and 
processed relatively small subset of complete data. In this work 
we apply multiple imputation (MI) method, which is a model 
based approach of dealing with missing data, by producing 
confidence intervals for unbiased estimates without loss of 
statistical power (using both complete and incomplete cases).  We 
employ MI to all data samples with up to 60% missingness, this 
way increasing more than twice the size of the initially used data 
subset. We apply feedforward backpropagation neural network 
(NN) supervised learning for solving the classification and 
identification problem and investigate and critically compare  the 
same three case studies, researched in the previous paper and 
report improved, superior results, which is a consequence of the 
implemented MI and improved NN training. 

Keywords— missing data; multiple imputation; neural 
networks; supervised learning; radar signal classification. 

I.  INTRODUCTION 
Statistical analysis and research classify the nature of  

missing data in three groups [1-3]: missing completely at 
random (MCAR), where the probability that an observation is 
missing is unrelated to its value or to the value of any other 
variables; missing at random (MAR) – that missingness does 
not depend on the value of the observed variable, but on the 
extent that the missingness is correlated with other variables 
that are included in the analysis (in other words, the cause of 
missingness is considered); and missing not at random 
(MNAR) – when the data are not MCAR or MAR 
(missingness still depends on unobserved data). The problem 
associated with MNAR is that it yields biased parameter 
estimates while MCAR and MAR analyses yield unbiased 
ones (at the same time the main MCAR consequence is loss of 
statistical power). 

That’s why dealing with missingness requires analysis 
strategy that leads to least biased estimates while not loosing 

statistical power. The problem is that those are contradictory 
criteria and in order to use the information from the partial 
data in missing data samples (keeping the statistical power), 
and substituting the missing data samples with estimates, 
inevitably brings biases. 

The most popular approaches in dealing with missing data 
generally fall in three groups: Deletion methods; Single 
imputation methods; and Model-based methods [1, 4, 5].   

Deletion methods include pairwise and listwise deletion. 
The pairwise deletion (also called "unwise" deletion) keeps as 
many cases as possible for each analysis (this way uses all 
available information for each of it), but the problem is that 
the analyses are incomparable because each of them is based 
on different subsets of data, with different sample sizes and 
different standard errors. The listwise deletion (also known as 
complete case analysis) is a simple approach in which all 
cases with missing data are omitted. The advantages of this 
approach include comparability across the analyses and it 
leads to unbiased parameter estimates (assuming the data is 
MCAR), while the disadvantage is that there may be 
substantial loss of statistical power (because not all 
information is used in the analysis, especially if a large 
number of cases is excluded).  

The single imputation methods include mean/mode 
substitution, dummy variable method, and single regression. 
Mean/mode substitution is an old procedure, currently rejected 
because of its intrinsic problems, e. g., it adds no new 
information (the overall mean stays the same), reduces the 
variability, and weakens the covariance and correlation 
estimates (it ignores relationship between variables). The 
dummy variable technique uses all available information about 
missing observation, but produces biased estimates. In the 
regression approach, the linear regression is used to predict 
what the missing value should be (on the basis of the available 
other variables) and then implement it as an actual value. The 
advantage of this technique is that it uses information from the 
observed data, but it overestimates the model fit and the 
correlation estimates, and weakens the variance. 

Most popular, “modern” model-based approaches (that 
require MAR data), fall into two categories: multiple 
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imputation (MI) methods and maximum likelihood (ML) 
methods (often referred to as full-information maximum 
likelihood) [3].  Their advantage is that they model the 
missingness and give confidence intervals for estimates, rather 
than relying on a single imputation. If the assumption for 
MAR missingness holds, both groups of methods result in 
unbiased estimates (i.e., tend to ”preserve” means, variances, 
co-variances, correlations and linear regression coefficients) 
without loss of statistical power. 

ML identifies a set of parameter values that produces the 
highest (log) likelihood and estimates the most likely value 
that would result in the observed data. It has the advantage 
that both complete and incomplete cases are used, in other 
words, it makes use of the full information and produces 
unbiased parameter estimates (with MCAR/MAR data). The 
disadvantage of this approach is that statistical estimates can 
be biased downward (but this can be adjusted by using 
observed information matrix).  

We will consider the MI estimation approach in more 
detail, as it is used in this paper for pre-processing the datasets 
used for solving the radar signal identification and 
classification problem with neural network learning. 

The MI approach involves three distinct steps: first, sets of 
plausible data for the missing observations are created and 
these sets are filled in separately to create many ‘completed’ 
datasets; second, each of these datasets is analysed using 
standard procedures for complete datasets; and thirdly, the 
results from previous step are combined and pooled into one 
estimate for the inference.  The aim of the MI process is not 
just to fill in the missing values with plausible estimates, but 
to plug in multiple times these values by preserving important 
characteristics of the whole dataset.  As with most (multiple 
regression) prediction models, the danger of overfitting the 
data is real and this can lead to less generalizable results than 
the original data would have [6]. 

The advantage of MI is that it provides more accurate 
variability with multiple imputations for each missing value 
(and considers variability due to sampling and variability due 
to imputation) and the disadvantage that it depends on the 
correctly specified model and also includes cumbersome 
coding, but this has been greatly simplified by the existence of 
easy to use off-shelf software packages. For the purpose of 
this investigation we used R open source statistical software, 
which is free to download from internet. 

II. RADAR SIGNAL CLASSIFICATION 
Radars are considered “active” sensors, as they use their 

own transmitter for locating targets. Although initially 
developed for military surveillance, navigation and weapon 
guidance (detecting, locating, tracing, and identifying air, 
marine, and terrestrial located objects, at small to medium and 
large distances), nowadays they are widely used for civil 
purposes as well (traffic control, navigation, weather forecast, 
pollution control, space observation, and sport systems) [7]. 
The radar range, resolution and sensitivity are generally 

determined by its transmitter and waveform generator. Most  
radar systems operate in the microwave region of the 
electromagnetic spectrum with frequency range of about 200 
MHz to about 95 GHz, but there are also radars that operate at 
frequencies as low as 2 MHz and as high as 300 GHz. The 
lower frequency bands are usually preferred for longer range 
surveillance, whereas the higher frequencies tend to be used 
for shorter range applications with higher resolution [7]. 

Radar detection, classification and tracking of targets 
against a background of clutter and interference are considered 
as ‘general radar problem’. For military purposes ‘the general 
radar problem’ includes searching for, interception, 
localisation, analysis and identification of radiated 
electromagnetic energy which is commonly known as radar 
Electronic Support Measures (ESM). They are considered 
reliable source of valuable information regarding threat 
detection, threat avoidance, and in general, situation 
awareness for timely deployment of counter-measures [8]. 

A real-time identification of the radar emitter associated 
with each intercepted pulse train is a very important function 
of the radar ESM. Typical approaches include sorting 
incoming radar pulses into individual pulse trains, then 
comparing their characteristics with a library of parametric 
descriptions, in order to get list of likely radar types. This can 
be very difficult task as there may be radar modes for which 
there is no record in ESM library; overlaps of different radar 
type parameters;  increases in environment density (e.g., 
Doppler spectrum radars transmitting hundreds of thousands 
of pulses per second); agility of radar features such as radio 
frequency and scan, pulse repetition interval etc.; 
multiplication and dispersion of the modes for military radars; 
noise and propagation distortion that lead to incomplete or 
erroneous signals [9]. 

Intercepted and collected pulse train characteristics 
typically include signal frequencies, type of modulation, pulse 
repetition intervals, etc., and usually consist of mixture of 
continuous, discrete and categorical data, and also frequently 
include missing values. Missing values are imminent part of 
real world datasets and radar datasets make no exception. 
There is a variety of reasons why data may be missing, but 
common ones are related to human factor, equipment 
malfunction, or coarse environment conditions that result in 
noise and propagation distortion leading to incomplete, 
erroneous, or not intercepted signals.  Table1 shows several 
samples of radar data that consist of continuous, discrete, and 
categorical data and also includes missing values. 

III. NEURAL NETWORKS IN RADAR IDENTIFICATION 
Various approaches and methods have been investigated 

for radar emitter recognition and identification, where 
considerable part of the research in the area incorporates 
Neural Networks (NN), because of their massively parallel 
architecture, fault tolerance and ability to handle incomplete 
radar type descriptions and inconsistent and noisy data. NN 
techniques have previously been applied to several aspects of 
radar ESM processing, including PDW sorting and radar type 
recognition [10]. More recently, many new radar recognition 
systems include neural networks as a key classifier [10, 11]. 
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Examples of a variety of NN architectures and topologies used 
for radar identification recognition and classification based on 
ESM data include popular Multilayer Perceptron (MLP), 
Radial Basis Function (RBF), a vector neural network, single 
parameter dynamic search neural network, and others [12]. 

For example, in [9] the authors use initial clustering 
algorithm to separate pulses from different emitters according 
to position-specific parameters of the input pulse stream when 
implementing their “What-and-Where fusion strategy” and 
then apply fuzzy ARTMAP neural network to classify streams 
of pulses according to radar type, using their functional 
parameters. They also do simulations with data set that has 
missing input pattern components and missing training classes 
and incorporate a bank of Kalman filters to demonstrate high 
level performance of their system on incomplete, overlapping 
and complex radar data. In [10] higher order spectral analysis 
(HOSA) techniques are used to extract information from  LPI 
(low probability of intercept)  radar signals and to produce 2D 
signatures, which are then fed to a NN for detecting and 
identifying the LPI radar signal.  The work presented in [13] 
investigates the potential of NN (MLP) when used in Forward 
Scattering Radar (FSR) applications for target classification. 
The authors analyze collected radar signal data and extract 
features, which are then used to train NN for target 
classification. They also apply K-Nearest Neighbor classifier 
to compare the results from the two approaches and conclude 
that the NN one is superior. In [14] an approach combining 
rough sets (for data reduction) and NN as a classifier is 
proposed for radar emitter recognition problem, while [15] 
combines wavelet packets and neural networks for target 
classification. 

In many cases the NN are hybridized with fuzzy systems, 
clustering algorithms, wavelet packets, Kalman filters, etc., 
which in turn leads to recognition systems with increased 
accuracy and improved efficiency [9, 11, 16]. 

IV. PROBLEM STATEMENT AND DATA SET ANALYSIS 
Reliable and real-time identification of radar signals is of 

crucial importance for timely threat detection, threat 
avoidance, general situation awareness and timely deployment 
of counter-measures. In this context, this paper investigates 
the potential application of a NN-based approach for timely 
and trustworthy identification of radar types, associated with 
intercepted pulse trains. 

In our previous work [17], we used listwise deletion to 
obtain 7693 samples with no missing data from a total of 
29094 intercepted generic data samples. Each of the captured 
signals is pre-classified by experts in one of 125 categories, 
based on the main functions the radar emitter performs 
(surveillance, air defense, air traffic control, weather tracking, 
etc.). In this work we use 15656 samples after employing 
multiple imputation. From the samples with missing data 
(example given in Table I) we excluded only those with above 
60% of missing data. As it can be seen from Table II we used 
MI for substituting data samples with up to 60% missingness. 
Each data entry represents a list of 12 recorded pulse train 
characteristics (signal frequencies, type of modulation, pulse 
repetition intervals, etc. that will be considered as input 

parameters). The first column of Table I is data sample 
identifier, the second is a category label (specifying the radar 
function and being considered as system output) and the rest 
are radar signal characteristics. 

TABLE I.   SAMPLE RADAR DATA SUBSET.  MISSING VALUES (I.E., VALUES 
THAT COULD NOT HAVE BEEN INTERCEPTED OR RECOGNIZED) ARE DENOTED 

WITH ‘-’. THE REST OF THE ACRONYMS ARE DEFINED IN TABLE II. 

ID FN R
F
C

RF 
mn 

RF 
mx 

P
R
C

PRI 
mn 

PRI 
mx 

P
D
C 

PD 
mn 

PD 
mx 

S
T

SP 
mn 

SP 
mx

84 SS B 5300 5800 K – – S – – A 5.9 6.1
4354 AT F 2700 2900 F 1351.3 1428.6 S – – A 9.5 10.5
7488 3D B 8800 9300 K 100 125 S 13 21 B 1.4 1.6
9632 WT F 137 139 T – – V – – D – – 
9839 3D S 2900 3100 J – – V 99 101 A 9.5 10.5

 

A more comprehensive summary of the data distribution is 
presented in Table II, where an overview of the type, range 
and percentage of missing values for the parameters in the 
data set is given. The data considered consists of both 
numerical (integer and float) and categorical values, therefore, 
coding of the categorical fields will be required during the 
data pre-processing stage, in order to convert them to 
numerical representations. The table also shows that the 
percentage of missing data varies from 11% for the RF 
variable to 59% for the SP variable. 

TABLE II.  DATA DESCRIPTION AND PERCENTAGE OF MISSING VALUES. IN 
COLUMN ‘TYPE’: I – INTEGER; C – CATEGORICAL; R – REAL VALUES.   

Field Field Description Type Levels % 
Missing 

ID Reference for the line of data I  - - 
FN Function performed by the radar (‘3D’ – 

3D surveillance, ‘AT’ – airtraffic control, 
‘SS’ – surface search, ‘WT’ – weather 
tracker, etc.) 

C 142 1.4 

RFC Type of modulation used by the radar to 
change the frequency from pulse to pulse 
(‘A’ – agile, ‘F’ – fixed, etc.) 

C 12 20.7 

RFmn Min frequency used by the radar R - 11.2 
RFmx Max frequency used by the radar R - 11.2 
PRC Type of modulation used by the radar to 

change the Pulse Repetition Interval 
(PRI), (‘F’ – fixed, etc.) 

C 15 15 

PRImn Min PRI that used by the radar R - 46.7 
PRImx Max PRI that used by the radar R - 46.7 
PDC Type of modulation used by the radar  to 

change the pulse duration (‘S’ - stable) C 5 12.9 

PDmn Min pulse duration used by the radar R - 46.1 
PDmx Max pulse duration used by the radar R - 46.1 

ST Scanning type – used method by the 
radar to move the antenna beam (‘A’ – 
circular, ‘B’ – bidirectional, ‘W’ – 
electronically scanned, etc.) 

C 28 11.3 

SPmn Min scan period used by the radar R - 59.4 
SPmx Max scan period used by the radar R - 59.4 

 

V. DATA IMPUTATION AND PRE-PROCESSING 
The pre-processing of the available data is of a great 

importance for the subsequent machine learning stage and 
usually can affect significantly the overall success or failure of 
the application of a given classification algorithm. In this 
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context, the main objective at this stage is to analyse the 
available data of inconsistences, outliers and irrelevant entries 
and to transform it in a form that could facilitate the 
underlying mathematical apparatus of the machine learning 
algorithm and lead to an overall improvement of the 
classifier’s performance. 

A. Data Imputation 
For imputing the missing multivariate data we use 

sequential imputation algorithm [18] implemented in impSeq 
function from R package (we also tried two other R functions, 
impNorm  and  impSeqRob, but they didn’t produce better 
results when tested on complete dataset). If the available data 
set is denoted with Y and the complete subset with Yc, the 
procedure will start with the complete subset to estimate 
sequentially the missing values of an incomplete observation 
y*, by minimizing the covariance of the augmented data 
matrix Y* = [Yc, x*]. Subsequently the data sample x* is 
added to the complete data subset and the algorithm continues 
with the estimate of next data sample with missing values. 

Because impSeq uses the sample mean and covariance 
matrix, it is vulnerable to the presence of outliers, but this can 
be enhanced by including robust estimators of location and 
scatter (which is realised in impSeqRob function). Because the 
outlyigness metric can be computed for a complete dataset 
only, firstly the sequential imputation of the missing data is 
done and then the outlyigness measure is computed and used 
to define whether the observation is an outlier or not. If the 
measure doesn’t exceed a predefined threshold, the 
observation is included in the next steps of the algorithm 
(nevertheless, the use of impSeqRob in our case didn’t produce 
better results when tested on complete dataset, which may be 
simply because of lack of outliers, so we stuck to the impSeq 
function). 

As we mentioned before, in the available radar dataset of 
29094 samples, there are 7693 fully intercepted and 
recognised radar signals that constitutes the complete subset 
(received after listwise deletion of the original dataset). 
Subsequently, employing the MI on the missing data samples 
with less than 60% missingness led to dataset of 15656 
observations, which more than doubled the size of the initial 
data subset 

TABLE III.  SAMPLE RADAR DATA SUBSET WITH IMPUTED VALUES FOR THE 
MISSING CONTINUOUS VALUES.   

ID FN RF
C 

RF 
mn 

RF 
mx 

PRC PRI 
mn 

PRI 
mx 

PD
C 

PD
mn 

PD 
mx 

ST SP
mn

SP 
mx 

84 SS B 5300 5800 K 963.2 5625 S 5.8 17 A 5.9 6.1 
4354 AT F 2700 2900 F 1351 1428 S 4 6.3 A 9.5 10.5
7488 3D B 8800 9300 K 100 125 S 13 21 B 1.4 1.6 

9632 WT F 137 139 T 622.6 31312 V 61.
1 93.1 D 12 47.8

9839 3D S 2900 3100 J 2058 48128 V 99 101 A 9.5 10.5
 

For the identification and classification of the radar 
signals, the applied NN supervised learning uses from two to 
eleven output classes: in the first set of simulations we use 2 
classes – civil and military (defined by experts in the field 
from a total of 125 functional categories); and in the second 

set of simulations, four civil and seven military classes, which 
gives eleven output classes for the NN to classify. Processing 
the missing subset with MI more than doubled the complete 
data subset investigated in [17], enabling us to include 
valuable information and statistical power of the data 
contained in the samples with missing values. 

Table III shows the samples from Table I with the inputted 
values produced by the implemented MI. 

B. Data Coding and Transformation 
This stage of the pre-processing aims to transform the data 

into a form that is appropriate for feeding to the selected 
classifier and would facilitate faster and more accurate 
machine learning. In particular, a transformation known as 
coding is applied to convert the categorical values presented in 
the data set to numerical ones. Three of the most broadly 
applied coding techniques are investigated and evaluated – 
continuous, binary and introduction of dummy variables. 

TABLE IV.  SAMPLE SUBSET WITH IMPUTED RADAR DATA AND NATURAL 
NUMBER CODING OF ‘RFC’, ‘PRC’, ‘PDC’, AND ‘ST’.   

ID RFC RF 
mn 

RF 
mx 

PRC PRI 
mn 

PRI 
mx 

PD
C 

PDm
n 

PD 
mx

ST SP 
mn

SP
mx

84 2 5300 5800 7 963.2 5625 1 5.8 17 1 5.9 6.1
4354 4 2700 2900 4 1351 1428 1 4 6.3 1 9.5 10.5
7488 2 8800 9300 7 100 125 1 13 21 2 1.4 1.6
9632 4 137 139 11 622.6 31312 2 61.1 93.1 4 12 47.8
9839 9 2900 3100 6 2058 48128 2 99 101 1 9.5 10.5

 

For the first type of coding, each of the categorical values 
is substituted by a natural number, e.g., the 12 categories for 
the RFC input are encoded with 12 ordinal numbers, the 15 
PRC categories – with 15 ordinal numbers, etc. A sample of 
data subset coded with continuous values is given in Table IV. 
Binary coding, wherein each non-numerical value is 
substituted by log2N (where N is the number of categories 
taken by that variable) new binary variables (i.e., taking value 
of either 0 or 1), is illustrated in Table V for 32 categories. 

TABLE V.  EXAMPLE OF BINARY CODING FOR 32-LEVEL CATEGORICAL 
VARIABLE.   

Original Category Encoded Variables 
Index Label B1 B2 B3 B4 B5 

1 ‘2D’ 0 0 0 0 0 
2 ‘3D’ 0 0 0 0 1 
3 ‘AA’ 0 0 0 1 0 

… 

16 ‘CS’ 0 1 1 1 1 
… 

32 ‘ME’ 1 1 1 1 1 
 

Finally, the non-numerical attributes are coded using 
dummy variables. In particular, every p levels of a categorical 
variable are represented by introducing p dummy variables. 
An example of dummy coding for 4 categorical levels is 
shown in Table VI. 

Taking into account the large number of categories 
presented for the categorical attributes in the input data set 
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86.5%
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la

ss

Training Confusion Matrix

Civil Military

10

01

756

197

79.3%

180

1215

87.1%

80.8%

86.0%

83.9%

Target Class

O
u

tp
u

t C
la

ss

Validation Confusion Matrix

Civil Military

10

01

746

199

78.9%

186

1217

86.7%

80.0%

85.9%

83.6%

Target Class

O
u

tp
u

t C
la

ss

Test Confusion Matrix

Civil Military

10

01

5050

1245

80.2%

1249

8112

86.7%

80.2%

86.7%

84.1%

Target Class

O
u

tp
u

t C
la

ss

All Confusion Matrix

(Table I), continuous and binary codings are considered for 
transforming the input variables. On the other hand, binary 
and dummy variable codings are chosen for representing the 
output parameters. 

TABLE VI.  EXAMPLE OF DUMMY CODING FOR 32-LEVEL CATEGORICAL 
VARIABLE. 

Original Category Encoded Variables 
Index Label D1 D2 D3 D4 D5 … D16 … D32

1 ‘2D’ 1 0 0 0 0 … 0 … 0 
2 ‘3D’ 0 1 0 0 0 … 0 … 0 
3 ‘AA’ 0 0 1 0 0 … 0 … 0 

… 

16 ‘CS’ 0 0 0 0 0 … 1 … 0 
… 

32 ‘ME’ 0 0 0 0 0 … 0 … 1 
 

Finally, in order to balance the impact of the different 
input parameters on the training algorithm, data scaling is 
used. Correspondingly, each of the conducted experiments in 
the next section is evaluated using 3 forms of the input data 
set: the original data (with no scaling); normalized data (i.e. 
scaling the attribute values within (0, 1) interval); and 
standardized data (i.e. scaling the attribute values to a zero 
mean and unit variance). A sample binary coded and 
normalised data subset is given in Table VII. 

TABLE VII.  SAMPLE SUBSET WITH IMPUTED RADAR DATA AND BINARY 
CODING. 

ID RFC RF 
mn 

RF 
mx 

PRC PRI 
mn 

PRI 
mx 

PD
C 

PD 
mn 

PD 
mx 

ST SP
mn

SP 
mx 

84 0001 5300 5800 0110 963 5625 0 5.8 17 00000 5.9 6.1 
4354 0011 2700 2900 0011 1351 1428 0 4 6.3 00000 9.5 10.5 
7488 0001 8800 9300 0110 100 125 0 13 21 00001 1.4 1.6 
9632 0011 137 139 1010 622 31312 1 61.1 93.1 00011 12 47.8 
9839 1000 2900 3100 0101 2058 48128 1 99 101 00000 9.5 10.5 

 

VI. NN TRAINING AND RESULTS 
Three broader experiments are conducted for investigating 

the application of neural network classifiers for solving the 
radar emitter recognition problem. The investigated neural 
network topologies include one hidden layer, with fully 
connected neurons in the adjacent layers and batch-mode 
training. For a given experiment with P learning samples, the 
error function is given as: 

 

( )2

1 1

1
2

P L
p p

P i i
p i

E x t
= =

= −∑∑ ,         (1) 

where for each sample p=1,…,P and each neuron of the output 
layer i=1,…, L, a pair (xi, ti) of NN output and target values, 
respectively, is defined. 

For all of the studies, NN learning with Levenberg-
Marquardt algorithm (we also used Conjugate Gradient 
technique, but it produced inferior results) and tangent 
sigmoid transfer functions are used (Matlab nprtool and 
nntool). A split-sample technique with randomly selected 70% 
of the available data for training, 15% for validation and 15% 

for testing is employed and mean squared error (MSE) is used 
for evaluating the learning performance. The stopping 
criterion is set to 500 training epochs, or gradient reaching 
value less than 1.0e-06, or 6 consequent failed validation 
checks, whichever occurs first. 

 
Fig. 1.  No imputed data classification results for 12-10-2 NN with normalised 
input data. The values in green specify the correctly classified samples for 
each class (10 - Civil, 01 - Military). 

Fig. 2.  Classification results for imputed data case for 12-10-2 NN with 
normalised input data. The values in green specify the correctly classified 
samples for each class (10 - Civil, 01 - Military). 

For the purposes of the first study, the categorical 
attributes of the input data are coded with consecutive 
integers. In this way a total of 12 input variables are received 
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(Table IV). Two neural network topologies are examined – 
12-10-1 (10 neurons in the hidden layer) and 12-10-2 (two 
output neurons), where the output parameter is coded as one 
binary neuron taking values 0 (“Civil”) and 1 (“Military”) for 
the first topology and 2 neurons, taking binary values 10 
(“Civil”) and 01 (“Military”) for the second topology. 

TABLE VIII.  NN CLASSIFICATION ACCURACY (TESTING) FOR 
CONTINUOUS INPUT CODING AND 12-10-N TOPOLOGIES WITH NO DATA 

SCALING, AFTER NORMALISATION AND AFTER STANDARDISATION. 

Topology Input data % Accuracy 
No imputation   With imputation 

12-10-1 
no scaling 78.1  83.3 
normalised 80.8  84.5 

standardised 80.8  85.2 

12-10-2 
no scaling 80.1  82.1 
normalised 81.6  83.6 

standardised 82.1  84.5 
 

The performance of each of the topologies is investigated, 
evaluated and compared for training with the original data (no 
pre-processing), and after normalisation and standardisation. 
The results are summarised in Table VIII, showing up to 5% 
accuracy improvement for the case with imputation. 

Sample confusion matrices for 12-10-2 NN classifiers after 
training (validation stop) with normalised input data, for the 
two cases: no imputed data; and with imputed data are given 
in Fig. 1 and Fig. 2 respectively. They show the NN 
performance on the training, validation, and testing subsets, 
and the overall performance. The network outputs demonstrate 
high accuracy, as it can be seen by the high number of correct 
responses in the green squares and the low number of 
incorrect responses in the red squares. The lower right squares 
illustrate the overall classifier accuracies. Fig. 2 shows 
improved results for the imputed data, and the test confusion 
matrix, which is of course of most interest (NN generalization 
abilities), shows increased accuracy, especially for the 
Military class. 

TABLE IX.  NN CLASSIFICATION ACCURACY (TESTING) FOR BINARY 
INPUT CODING AND 22-22-N TOPOLOGIES WITH NO DATA SCALING, AFTER 

NORMALISATION AND AFTER STANDARDISATION. 

Topology Input data % Accuracy 
No imputation   With imputation 

22-22-1 
no scaling 81.9 85.6 
normalised 83.3 87.3 

standardised 83.1 87.2 

22-22-2 
no scaling 81.77 84.8 
normalised 83.90 85.0 

standardised 84.30 86.8 
 

The second case study investigates two additional NN 
topologies – 22-22-1 and 22-22-2, where the output parameter 
is again coded by one binary neuron (0 for “Civil” and 1 for 
“Military”) for the first topology and by two binary neurons 
for the second one (10 for “Civil” and 01 for “Military”). The 
NN performance for each of the topologies is investigated, 
evaluated and compared using the original data, after 
normalisation and after standardisation for the two cases with 
and without imputed data. The performance results are 

summarised in Table IX, showing again improved NN 
performances for the cases with imputed data. 

The final case study investigates a broader output space of 
11 classes (4 civil and 7 military) and evaluates a 22-22-11 
NN classifier with the original, normalised and standardised 
training data, and with dummy variable coded outputs. 
Summary of the obtained results from training on data subsets 
with and without imputation is presented in Table X. 

TABLE X.  NN CLASSIFICATION ACCURACY (TESTING) FOR BINARY INPUT 
CODING AND 22-22-11 TOPOLOGY WITH NO DATA SCALING, AFTER 

NORMALISATION AND AFTER STANDARDISATION. 

Topology Input data % Accuracy 
No imputation   With imputation 

22-22-11 
no scaling 61.94  66.1 
normalised 66.70  66.4 

standardised 67.49  66.7 
 

Sample test confusion matrices for the two cases of 
training NN on standardised input dataset without imputation 
and with imputation are given in Fig. 3 and Fig.4 respectively. 
Although the results from Fig.4 seem slightly inferior, they 
give higher statistical confidence with the largely increased 
number of ‘hits’. 

 
Fig. 3. No imputed data classification results of 22-22-11 NN classifier with 
standardised data on 7 military (‘M1’ – Multi-function, ‘M2’ – Battlefield, 
‘M3’ – Aircraft, ‘M4’ – Search, ‘M5’ – Air Defense, ‘M6’ – Weapon, and 
‘M7’ – Info) and 4 civil classes (‘C1’ – Maritime, ‘C2’ – Airborne 
Navigation, ‘C3’ – Meteorological, and ‘C4’ – Air Traffic Control). 

It can also be seen from Figure 4 that although the accuracy 
of the NN classifier is relatively the same, the number of hits 
is largely increased and with better hits distribution. This is 
especially evident for the ‘M7’ class, for which there were no 
hits in the case without imputation. The best accuracy is again 
achieved for ‘M4’ and ‘C1’ classes, but the more important 
achievement as a result from the imputation is the uniform 
distribution of the correctly classified samples. As it is 
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illustrated in Fig.3, the class accuracy variance for the 
classification with no missing data is very high, from 0% to 
87.9%, whether in the case with imputed data (Fig.4), it is 
between 22.6% and 87.4%. Or while keeping the best 
accuracy almost the same, the minimum accuracy is improved 
by more than 22%. This should be attributed to the greater 
number of available training and testing samples as a result 
from the imputation, which increases the statistical power of 
the dataset and subsequently improves the classification 
performance of the NN.  

 

Fig. 4. Data classification results for imputed data of 22-22-11 NN classifier 
with standardised data on 7 military (‘M1’ – Multi-function, ‘M2’ – 
Battlefield, ‘M3’ – Aircraft, ‘M4’ – Search, ‘M5’ – Air Defence, ‘M6’ – 
Weapon, and ‘M7’ – Info) and 4 civil classes (‘C1’ – Maritime, ‘C2’ – 
Airborne Navigation, ‘C3’ – Meteorological, and ‘C4’ – Air Traffic Control). 

VII. CONCLUSION 
Multiple imputation model is employed for dealing with 

the large number of missing data in the available radar signal 
dataset. The use of MI on samples with up to 60% of 
missingness enabled us to double the data subset used in our 
previous work [17]. Subsequently, this larger data subset is 
used for feedforward backpropagation supervised learning, 
when solving the radar signal classification and identification 
problem. 

The application of neural network classifiers for 
recognition of generic radar data signal train pulse sources is 
investigated, implemented, tested and validated for the two 
cases with and without imputation. The results are compared 
and critically analysed, showing overall improved accuracy 
when the NN are trained on the larger subset with imputed 
values. 

Future work that can further improve the classification 
accuracy will include linear discriminant analysis and 
principal component analysis for dimensionality reduction and 
increased separability.  When preprocessing the available 
large dataset we will also investigate the applicability of MI to 
samples with more than 60% missingness. 
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