
Enhancing MOPSO through the guidance of ANNs

Timothy Rawlins, Andrew Lewis, Jan Hettenhausen and Timoleon Kipouros

Abstract— In existing work, Artificial Neural Networks
(ANNs) are often used to model objective functions for Multi-
Objective Particle Swarm Optimisation (MOPSO) or MOPSO
is used to aid in ANN-training. We instead use an ANN to
guide the optimisation algorithm by deciding if a trial solution
is worthy of full evaluation. This should be particularly helpful
for computationally expensive calculations. We also introduce a
level of scepticism to the result produced by the ANN, to account
both for inaccuracy in the ANN and the loss of performance
in a MOPSO if the reinitialisation of particles is too extreme.

As a case study we used a multi-objective optimisation
problem that seeks to optimise the shape of an airfoil to
minimise drag and maximise lift. We evaluated several different
methods for training an ANN: pre-training vs live training,
continuous vs single training, and varied initial training set
size. For applying the ANN’s output to MOPSO we looked at
various levels of scepticism and verified ANN quality before
applying it.

Attainment surfaces were then used to compare the perfor-
mance of guided and unguided MOPSOs. Our analysis showed
the performance of guided MOPSO was significantly better
than unguided MOPSO . We further analysed the results to
derive guidance for selecting appropriate variations for specific
problems.

I. INTRODUCTION

IN this paper we introduce a novel hybrid optimisation
approach, combining an Artificial Neural Network (ANN)

and Multi-Objective Particle Swarm Optimisation (MOPSO),
with the goal of using an ANN to increase the performance
of the optimisation, where a known objective function ex-
ists, without sacrificing correctness. This is motivated, in
particular, by complex industrial problems. These problems
generally have existing functions to evaluate the performance
of a trial solution, but these evaluations are slow (with
individual evaluations taking hours or even days). It is also
necessary for the results found to have a high degree of
accuracy, which makes substituting approximations for the
evaluation function cumbersome. During the course of opti-
misation, MOPSO uses promising results from trial solutions
to guide the search algorithm. Without a high degree of
confidence in the correctness of approximations, all trial
solutions classified as “promising” or “near-optimal” must
be checked. Implementing this increases code complexity
and reduces the advantage of using surrogate function values.
Despite this, in most current research where ANNs are used
to supplement MOPSO, the ANN is used as a replacement
for the objective function or a part thereof, because either
no evaluation function is known, or because results do not
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have to be precise and the speed increase is deemed worth
the loss. Examples of these techniques can be seen in the
work of Amiryousefi [1], in which an ANN is used to
model Deep Fat Frying and MOPSO is then used to find the
optimum parameters to minimise shrinkage and fat content,
or Mukhopadhyay [2] who uses a MOPSO based approach
to select which solutions are classified by an ANN, and the
sensitivity and specificity of the labelling are used as the
objectives. Similarly, Li et al. use an ANN to model an In-
dustrial Cracking Furnace and a MOPSO variant that focuses
on finding the best solutions to maximise the objectives of
production of 2 gases [3]. Another interesting case is the use
of PSO to train an ANN which is then used as the objective
function [4].

In a related area, MOPSO and ANNs are also combined
by using MOPSO as a method to train an ANN, such as in
the work of Qasem and Shamsuddin [5] [6] or Yusiong and
Naval [7]. There is also the variant used by Feng et al. [8]
where a MOPSO is used to select Pareto-optimal fuzzy rules
used to select training set data for an ANN.

We have taken a different approach. The problems of
interest are complex industrial design applications with
computationally expensive object functions. However, since
accurate results are crucial we do not attempt to provide
a surrogate objective function but instead use an ANN as
a fast estimator to determine if it is worthwhile to spend
the computational power to fully evaluate a trial solution
suggested by MOPSO. The parameters of the trial solution
are regenerated if they are rejected. It should be emphasised
that the “estimation” does not involve any attempt to provide
an estimate of the values for objective functions, but only
judge a trial solution given knowledge of previous results to
provide a simple, Boolean function of “promising” or not.

However, the regeneration range is limited to the results
produced by regenerating the random components of the
velocity function as opposed to generating a completely new
position. This limits the “diameter” of the neighbourhood
in which the solution can be generated. Also, considering
that an ANN’s evaluation can be wrong, we make use of a
scepticism-based approach, in which we ignore a negative
result returned by the ANN a pre-set percentage of the time.
This allows us both to avoid infinite loops when all possible
regenerated parameters are unacceptable to the ANN (or if
a poor training set causes the ANN to reject everything),
and balance the “opinions” of the MOPSO and the ANN, in
the case where there is disagreement. The structure of our
problem, where there are more negative results than positive,
means that there is little reason to be sceptical of positive
results. However, the approach is easily altered to apply
also to positive results depending on the relative costs for
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Fig. 1. Heatmap of parameter values of feasible solutions.

other problems. This allows us a more efficient optimisation
process (since less time is spent on poor results) without
sacrificing accuracy, since all the results found are the result
of full evaluation.

II. PROBLEM - OPTIMISATION OF AIRFOIL AT STALL
ANGLE

For our test problem, we are looking at an airfoil optimisa-
tion problem. This problem has an 8-dimensional parameter
space, corresponding to the change in x and y positions
of 4 control points of the free form deformation technique
used to manipulate the airfoil shape. The objectives were to
maximised lift and minimise drag, as calculated by Xfoil [9].
To simplify the calculation, we minimised negative lift.
Many solutions to this problem are considered infeasible
due to violating design constraints or not functioning at an
angle of attack of 15 degrees (“stall angle”.) We elected
to use this problem because it is reasonably complex to
calculate, can serve as a a benchmark for more complex
aerodynamics problems and because we have a relatively
large pool of existing evaluations from prior experiments
(167946 evaluations).

As using an ANN for this purpose is new, we elected to use
a simple binary classification of validity: feasible points are
considered positive, while infeasible points are considered
negative. This results in simple labelling. Since our results
are drawn from previous work we are confident there exists
some underlying non-random relationship between location
in parameter space and solution feasibility. Figure 1 and
Figure 2 show colour maps of the parameter values of
feasible and infeasible solutions respectively. In the figures,
columns represent parameters, rows represent sets of values
known to result in a feasible result, and the colour represents
an approximation of the numeric value. It is clear from
a side by side comparison of parameter values for feasi-
ble/infeasible results that consistent differences exist. For the
feasible results, a number of parameters show a uniformity
of parameter values over a reduced range. Infeasible results
show a tendency to be more widely distributed and random;
there are many ways a design can fail, and only a few ways
it can excel.

In this problem there is significantly more infeasible space
than feasible, as from our existing data set only 51481

Fig. 2. Heatmap of parameter values of infeasible solutions.

trial solutions were valid, and the remainder (116465) were
invalid.

It is important to note that this data is drawn from all
evaluations done by complete MOPSO optimisations. If live
training is performed while running MOPSO, the initial
results are more likely to be infeasible and an ANN that
rejects an excessive amount of (or even all) parameters is
possible. This is another reason that we cannot automatically
trust negative results from the ANN.

III. TOOLS

Table I summarizes both the initial values used and various
other parameters that remain unchanged through our tests.
The following sections provide further detail.

Parameter Value
Neural Network
Hidden Layers 100
Hidden Nodes 10
Regularisation Factor 1
Max Training Iterations 300
Normalisation Before Training Yes
Initial Seed Python random library
Learning Mechanism Minimizing L2-regularised cost func-

tion using L-BFGS
Multi-Objective Particle Swarm Optimisation
Particles 60
Iterations 100
Intertial Weight 0.4
Cognitive Weight Coefficent 2
Collective Motion Weight Coefficient 2
Archive Size 60
Problem Specific
Initial Parameter Generation Uniform from -1.0 to 1.0
Parameter Constraints Constantly constrained to between -1.0

to 1.0
Regeneration Recalculate equations of motion. For 0

scepticism see III-C.4

TABLE I
SUMMARY OF PARAMETERS VALUES USED.

A. Artificial Neutral Network

For this work we made use of the Neural Network imple-
mentation of Demšar et al. [10]. This is an implementation of
a multilayer perceptron with parameters described in Table I.
The initial seed was randomly generated for each training of
the neural net.
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B. Multi-Objective Particle Swarm Optimisation

MOPSO is a multi-objective extension of Particle Swarm
Optimisation (PSO). PSO is an optimisation technique based
on a simplified version of bird flocking. It was introduced by
Kennedy and Eberhart [11]. The addition of an inertia weight
term was made by Shi and Eberhart [12] to balance the role
of local and global search. The typical implementation of
a standard PSO can be visualised as a swarm of particles
that move through (n-dimensional) parameter space guided
by the location of the global best result found by the swarm,
their individual memories of the location of their personal
best results, and by their inertia.

MOPSO is an extension of PSO in which objective space
is also n-dimensional, i.e there are two or more (often
competing) objectives to optimise. A consequence of this
is that there is no longer a single “best” solution but rather
a set of trade-off solutions that are referred to as Pareto-
optimal solutions [13]. Briefly speaking, in Pareto-dominance
a solution A is said to dominate a solution B, if solution A
is strictly better than solution B in at least one objective and
A is at least as good as B in all other objectives. The Pareto-
optimal set is that set of solutions which are not dominated
by another solution in the search space of the problem.
Extending PSO to multiple objectives was handled by adding
an archive of Pareto-dominant solutions from which a global
“best” solution was chosen using roulette wheel selection.
In addition, the personal best was modified to be a single
non-dominated solution [14].

Each particle in the swarm has a position and a velocity.
The equations of motion that govern the movement of a
particle in a swarm are:

Vt+1 =(W ∗ Vt) +R1 ∗ c1 ∗ (PBestt −Xt)

+R2 ∗ c2 ∗ (GBest−Xt)
(1)

Xt+1 = Xt + Vt+1 (2)

Where V is the particle velocity, W is inertial weight,
R1 and R2 are random values between 0 and 1, c1 is
the cognitive component weight (the weight is given to the
particles’ own search results), c2 is the collective component
weight (the weight given to the swarm’s search results),
PBest is the “best” result found by the particle, GBest is
a randomly selected member of the archive of best results
found by the swarm and X is the particle position.

For our MOPSO implementation, we implemented a
MOPSO based on the original proposal [14]. Parameters
are given in Table I. We have chosen to use 60 particles
and 100 iterations in order to maintain the same number of
evaluations (6000) used in the reference Tabu Pareto-front
provided to us for comparison [15]. We chose 60 particles
specifically because past experimentation has suggest this is
a value with good general performance.

C. Structure of Hybrid Algorithm

In its most basic form we use an ANN to guide the
movement of particles in the MOPSO by running an ANN
in parallel to the MOPSO. The initial training of the ANN is
done before initialising particles in the MOPSO, if an archive
is available, as these particles also need to be checked for
validity. After this, live training of the ANN can be performed
in parallel with the evaluation of objective function for the
swarm, as the training time for the ANN is much shorter
than the evaluation time.

Before a change in a particle’s velocity or position is
calculated, we first record the previous values. We then
calculate the new velocity and position in parameter space.
Before evaluation of the parameters, we pass the particle’s
parameters to the ANN, for classification as either valid or
invalid.

If the ANN classified the particle as valid the MOPSO
proceeds normally. If the particle is instead classified as
invalid, a two step process takes place. Firstly, for some pre-
defined scepticism percentage we treat the particle as if it is
valid and allow the MOPSO to proceed normally. Secondly,
if this does not occur we instead recalculate the particle’s
position and velocity. Because there is a random factor in
the selection of the guide particle, and the variable relative
weighting of the personal best result and guide particle’s best
result, this will result in a new set of parameters, which then
must be tested. This continues until a set of parameters for
the particle is accepted (either by the ANN or by scepticism).

For the initialisation of particles, because there are no
previous values to regenerate from, a small change is made.
In this case particles that fail both ANN and scepticism are
reinitialised according to the normal rules of the MOPSO but
the process is otherwise the same.

Because this approach is new, we make use of several
variations of it, in order to find an appropriate version for
our problem. Table II summarises the the parameters we are
changing and the values they take (as well as abbreviations
used).

Parameter Values

Archive Use a(rchive)
l(ive)

Training Frequency c(ontinuous)
s(ingle)

Initial Training Set Size
500
1800
7000(archive only)

Scepticism
0
0.15
0.20

Verification v(erification)
n(o verification)

TABLE II
SUMMARY OF VARIABLE EXPERIMENTAL PARAMETERS, POSSIBLE

VALUES AND ABBREVIATIONS

1) Initial Training from the Archive versus Live Training:
An important consideration for our problem is whether
establishing a well-distributed training archive in advance is
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worthwhile, compared to training from results gathered into
an archive by the optimisation as it progresses. A training
archive cannot be assumed to exist and is often expensive to
generate. However, in optimisation problems early results are
often not representative of the search space in the optimal
area. To take full advantage of a pre-existing archive we
make sure any sample set is well distributed by requiring
the distribution of valid and invalid particles matches that of
the overall archive.

2) Continuous Training vs Single Training: Another con-
sideration is whether time should be spent retraining the
ANN after each iteration of the MOPSO, or if it is just as
effective to train the ANN only once and use that to guide
the entire optimisation. After some practical experimentation
we concluded that the time to retrain the ANN after each
iteration is minimal compared to the evaluation time of the
problems for which it was designed. However, continuous
training may not yield a benefit over single training. For
example, continuous training may result in ”overtraining” on
the area currently being explored if the initial training set is
small.

3) Size of Training Set: The “size” of the initial train-
ing set (and thus what is being tested) depends on other
parameters. When training from a pre-existing archive it is
how many points are drawn from the archive. For single
live training, it is the size of the training set (i.e. the first
n unique results found by the optimisation process), but for
continuous live training, it instead acts as the minimum size
of the training set; if more results are available at the time
they will be used.

Before we began this experiment we had performed analy-
sis, training an ANN with different sized training sets in order
to test if training from small data sets was at all viable. From
this we determined that potentially good training set sizes
were between 500 (easy to obtain, reasonable results), 7000
(training sets larger than this yielded little improvement) with
1800 as a compromise.

4) Level of Scepticism: This parameter represents our
level of doubt in the correctness of an an “invalid” result
from the ANN. From our initial analysis we believed that
the appropriate level of scepticism was based on the size
of the initial training set, but we wished to verify this. We
chose scepticism levels of 15% (likely to be appropriate for
our large training set) and 20% (likely to be appropriate for
our smaller training set.)

In order to perform a fair test we also include a 0%
scepticism level. However, for practical reasons (avoiding
“hanging”), we cannot have nil scepticism. We instead re-
calculate the value normally until we have been successively
rejected a number of times equal to twice the number of
entries in our archive. After this we instead use a slowly
increasing Gaussian distribution around our initial position
to generate new parameters, with σ = 0.01 ∗ (1 +m) where
m is the number of evaluations in excess of twice the length
of the archive, and σ is not permitted to exceed 1. Sigma has
the standard meaning for generating random numbers with

Gaussian distribution. This formula causes the area that the
regenerated particle is likely to be in to slowly expand as
the number of times it needs to be generated increases. This
attempts to “escape” an infeasible region of parameter space.
The cap at 1 exists to prevent overly large values which
would result in exploration being “trapped” exploring only
the edges of parameter space. Furthermore, to avoid hanging
in the case of a universally rejecting neural net, we also
accept the last set of parameters generated if 900 successive
sets of parameters generated with σ = 1.0 are rejected.

5) Verification of Neural Network Before Use: With this
variant we added a verification set. This set is half the size
of the training set, and is used to determine if the trained
ANN: 1) has predictions that have some correlation to the
real results (as determine by having a Matthew’s Correlation
Coefficient (MMC) of > 0.1) and 2) has classified at least
1 member of the verification set as valid. If either of these
conditions is not met , the ANN is not used this round, and
does not count as having been trained for the purpose of
single-training.

From this we can guarantee that the ANN is better than
a (well-distributed) random guess and that some parameter
combinations will be accepted. However, more data are
required, as they are split between training and verification
sets. For live training we need 50% more results to perform
verification and thus the ANN is delayed further before it
can begin classification.

D. Notes

Due to practical limitations, not all combinations of the
above variants were tested. It is not possible to perform live
optimisation with a minimum training set of 7000 results
from our MOPSO, as it generates at most 6000. We also
include an “unguided” ANN, which has a similar structure
to our hybrid approach, but never trains an ANN and always
returns valid. This is used as a baseline comparison to see
how our ANN’s performance compares to that of a normal
MOPSO.

Our full code is available on request.

E. Attainment Surfaces

Having determined the variants to compare, a method
by which to compare the results was needed. We initially
experimented with some numeric methods for evaluating
convergence and coverage, but these proved difficult to in-
terpret and there was little agreement, even between numeric
methods with similar goals. We attribute this to there being
distinct regions of parameter space that contribute different
areas of the Pareto-front in objective space. As such, some
runs seem to focus on a region of the objective space that
generates good drag results at the expense of lift, while other
runs concentrate on an area covering good lift. Since these
regions are both on the Pareto-front and have little overlap,
they are mutually non-comparable.

Instead we chose to look for a more easily interpretable
method, and decided to make use of a variant of attainment
surfaces [16] which are a qualitative, visual comparison
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method. Strictly speaking attainment surfaces use a worst
case middle point to join two results. We have instead
used the common practice of assuming piecewise linear
interpolation between two points. This can be problematic
in the case of certain deceptive or multi-modal Pareto-fronts
but from our prior experience we know this is not the case
in this problem. We primarily used the median (50% ,2nd
Quartile) attainment surface over 4 runs of each variant to
compare their average outcome. We also used the 1st Quartile
(25%), 3rd Quartile (75%) and overall ”Front” (100%, 4th
Quartile) attainment surfaces to assess the reliability of each
variant. For clarity, we note that the numeric order of the
quartile points refers to the percentage of results that achieve
a certain point, therefore the 1st Quartile attainment surface
shows the worst performance, and the 4th Quartile the best.
For consistency attainment surfaces on our diagrams are all
labelled by quartile (1q = 1st Quartile, 2q = 2nd Quartile,
etc.) To calculate our attainment surface all data were first
normalised using the best results in each objective from the
combination of our training set and all Pareto-optimal results
from these experiments.

F. Process

Because our hybrid method is non-deterministic we per-
formed 4 runs of each variation, in order to obtain some
estimate of the average performance of each variant. After
this an approximation of the true Pareto-front was calculated
from the combination of our training set and results from all
variants of the experiment (including results from unguided
algorithms.) Results from the Pareto-fronts found by each
run of each variant, as well as the overall Pareto-front
were normalised. A normalised version of the results from
a previous experiment using Tabu search was used as a
benchmark for our results.

Attainment surfaces at 25%, 50%, 75% and 100% were
calculated using 60 equally spaced rays emerging from the
origin, to place a linear order on the results from the runs of
each variant. The first quartile, median, and third quartile
were then calculated normally, and the first Pareto-front
encountered on each ray was used for the 100% surface.
The mean of the median (2q), and the mean Interquartile
Range (3q - 1q) of each variant discussed are also included
with the results in Table III.

IV. RESULTS AND ANALYSIS

Due to the large number of variants, multiple runs of each
variant, and up to 60 results each with 8 parameters and 2
objectives for each run, it is not possible to include the full
results (or even all attainment surface comparisons) in this
paper. We will instead use a selection of the results that show
both the good and poor performance of our algorithm, look at
the variability of the results of particular reliable or unreliable
variants, and attempt an explanation for their behaviour.

In our analysis we pay special attention to potential
application of this technique to a jet engine compressor blade
shape optimisation problem, in which the most interesting
results are in the centre of the Pareto-front. For this purpose
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Fig. 3. Comparison of Pareto Front from this experiment to total Pareto-
Front, and to our unguided ANN
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Fig. 4. The First Quartile (1q), Second Quartile (2q), Third Quartile (3q)
and Fourth Quartile (4q) results for the Unguided MOPSO. Each run (after
normalization) is also shown, to demonstrate the relationship between runs
and the quartiles.

we consider the 50% attainment surface shows a reason-
able combination of the performance and reliability of the
technique. In other problems where either optimisation is
greatly more important than reliability or reliability is highly
important it may be more appropriate to use the third quartile
or first quartile attainment surfaces respectively.

An interesting early observation is that our overall (com-
posite) Pareto-front is derived primarily from results from
the algorithms tested in this experiment with only minimal
contributions from our training set of existing values, and
none at all from the unguided MOPSO (Fig. 3). This strongly
suggests that guidance from the ANN has helped some
variants to outperform the unguided MOPSO.

As a baseline we also needed to establish the variability
between runs in an unguided MOPSO. Figure 4 also demon-
strates how the attainment surfaces related to the runs. Of
particular note is how the lack of results with high lift in the
3rd run has degraded the high lift / high drag portion of the
First Quartile attainment surface.

Comparison of the median attainment surface for each
variant with the attainment surface of the unguided MOPSO
further strengthens our belief that the guidance has helped. Of
the 60 variants (24 each at 500 and 1800 initial training set,
and 12 at 7000), 29 variants have a median attainment surface
that is superior to the unguided MOPSO, 26 are competitive
with it (i.e. each dominates some areas that the other does
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(3q) and Fourth Quartile (4q) results for the 500 Initial Training Set, Live,
Continuous, No Verification, No Scepticism variant.

not) and only 5 are worse. This appears to confirm that ANN
guidance has provided assistance. All 5 of the strictly worse
cases use nil scepticism. In addition, all used smaller (500
and 1800) training sets. For the competitive variants, the
great majority used smaller training sets, and several used
nil scepticism. This is generally what would be expected,
as smaller initial training sets could be expected to result in
a poorer network, and lacking scepticism to have a greater
impact as a result of this.

Archive Continuous Verification Training Scepticism Mean Mean
Set Median IQR

True False False 1800 0.2 (0.3486, (-0.1631,
0.6151) -0.2156)

True True False 500 0.2 (0.3201, (-0.0719,
0.3788) -0.1721)

True True False 1800 0.2 (0.3991, (-0.2424,
0.7500) -0.6403)

True True False 7000 0 (0.3304, (-0.0210,
0.3987) -0.0237)

True True True 500 0.2 (0.3424, (-0.1197,
0.5732) -0.5306)

False False True 500 0.15 (0.3630, (-0.0652,
0.5046) -0.1737)

False True False 500 0 (1.3050, (-0.7607,
1.5655) -1.0279)

Unguided (0.4548, (-0.2563,
0.7077) -0.7827)

TABLE III
THE MEAN MEDIAN/2Q VALUES AND MEAN INTERQUARTILE RANGE

(3Q-1Q) OF THE VARIANTS DISCUSSED

There are 4 variants with initial training sets of 500 that we
find particularly interesting. These are the Live Continuous,
No Verification with no scepticism (Fig. 5), the Archive
Continuous with 20% scepticism both with (Fig. 6) and
without verification (Fig. 7) and Live Single, Verification
with 15% scepticism variants (Fig. 8). Considering first
Figure 5, it shows a good front but the significant differences
between the front and the quartiles make it unsuitable for
practical use. These features suggest that only a single good
run existed, but it was very good. This is indicated also by its
poor Mean Median (indicating poor performance) and large
IQR (indicating poor reliability). This strongly suggests that
the good result is merely a result of random chance and
should not be relied on for practical use.

Moving to consideration of the more interesting figures,
it is clear from the large IQR corresponding to Figure 6
that it is less reliable than the other two variants. It also
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and Fourth Quartile (4q) results for the 500 Initial Training Set, Archive,
Continuous, No Verification, 20% Scepticism variant.

shows that over 4 runs it also generates a well distributed
coverage of the front, but fails to track the overall Pareto-
front in the best optimal lift area. Figure 7 also shows this
problem but to a reduced extent. Of particular interest to us
is how well it covers the central area of the true Pareto-front
(where the Tabu search results are located), where it has the
most even performance. It lacks the sharp inflection apparent
in Figure 6, at the cost of not optimising drag as well, and the
degraded values of lift for high drag cases visible in Figure 8.
This makes it an interesting choice if reliability is not a high
priority.

Considering particularly the median attainment surface, we
see that Figure 8 clearly has the most reliable performance
(which is reflected in its low IQR). In particular, the other
two figures have problems reliably optimising the best lift
results at this reliability threshold. This leads us to select
Live Single, Verification with 15% scepticism (Fig. 8) as the
best performing variant of these for our purposes, as its high
degree of reliability comes with only a small cost to the total
coverage of the front over multiple runs. Since the problems
we wish to apply this technique to have high computational
complexity we deem the higher reliability worth the small
loss in convergence.

Although more of the variants based on an 1800 initial
training set than those based on an initial training set of 500
perform well compared to an unguided MOPSO, the best
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Fig. 8. The First Quartile (1q), Second Quartile (2q), Third Quartile (3q)
and Fourth Quartile (4q) results for the 500 Initial Training Set, Live, Single,
Verification, 15% Scepticism variant.
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Fig. 9. The First Quartile (1q), Second Quartile (2q), Third Quartile (3q)
and Fourth Quartile (4q) results for the 1800 Initial Training Set, Archive,
Continuous, Verification, 20% Scepticism variant.

performing variants of these sets generally do not perform
as well as the best performing variants with initial training
sets of 500. This behaviour can be explained by an ANN with
a larger training set having stronger pre-conceived biases
regarding the parameter space, which leads to better initial
results but poorer optimisation near the Pareto-front (for
which solutions are not present in the training set). The three
variants that performed particularly well are the Archive,
Continuous, 20% scepticism with verification (Fig. 9), and
the Archive, Single, 20% scepticism with no verification
(Fig. 10). Figure 10 is similar to Figure 6: it has a good
combined front but the median attainment surface is degraded
in the area we are interested in. A similar trend is also present
in Figure 9. Overall this shows that for our problem there is
little benefit in using an initial training set of size 1800.

Although the variants with initial training set of 7000
were reliable at outperforming the unguided MOPSO, few
of them had median attainment surfaces that approached
the true front. We attribute this to the same cause as for
the 1800 training set variants. However, all 7000 initial
training set variants outperform the unguided MOPSO and
are reasonably reliable. If reliability is particularly important,
the Archive, Continuous, No Verification, No Scepticism
variant (Fig. 11) is both highly reliable (shown by it’s low
mean IQR) and has fairly good performance.

These various considerations lead us to choose the 500
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Fig. 10. The First Quartile (1q), Second Quartile (2q), Third Quartile (3q)
and Fourth Quartile (4q) results for the 1800 Initial Training Set, Archive,
Single, No Verification, 20% Scepticism variant.
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Fig. 11. The First Quartile (1q), Second Quartile (2q), Third Quartile (3q)
and Fourth Quartile (4q) results for the 7000 Initial Training Set, Archive,
Continuous, No Verification, No Scepticism variant.

Initial Training Set, Live, Single Training, 15% Scepticism
with verification (Fig. 8) as the best variant overall. This
variant has no need for an initial training archive (which is
desirable for complex problems where it may not exist and be
expensive to generate), has a small training set which, for live
optimisation, means that the ANN can begin supplementing
results quickly, verifies that the ANN isn’t pathological
before using it, does not retrain as further new results come,
to avoid overtraining on the current area being explored, and
has only a 15% chance of ignoring the ANN classifying a
particle as infeasible. We select this variant since it is reliable,
very good (though not the best) at optimisation, requires only
a small training set and performs well in the middle area of
the Pareto-front in which we are particularly interested.

An interesting observation is that verification doesn’t seem
to be very useful for this problem. Its main effect seems
to be restraining the poor behaviour of poor variants (small
initial training set sizes with little or no scepticism). It seems
to slightly hinder well-performing variants by holding back
data that could be added to the training set to generate a
better neural network.

We also notice that appropriate levels of scepticism seem
relatively important, with variants using higher levels of scep-
ticism performing more reliably with small initial training
sets. However, algorithms with lower, or even no scepticism
perform well as long as they have large initial training sets.
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This is to be expected, as ANNs trained from large training
sets should be naturally more reliable.

V. CONCLUSION

Our results strongly suggest that using an ANN as a
fast approximate evaluator to determine if a trial solution
is worthwhile, can be effective at increasing the convergence
of MOPSO optimisation, given the selection of appropriate
parameters. Furthermore, we can perceive some relationships
between the variants of guided MOPSO we are using and
the problem we seek to solve. In particular, we identified a
promising variant to extend to a specific, industrial optimi-
sation problem, where the primary interest is in the middle
area of the Pareto-front. This variant doesn’t require an initial
training set, reliably produces good optimisation results and
performs well on the area of the Pareto-front in which we
are most interested.

VI. POSSIBLE FUTURE WORK

There are several areas that the authors would like to
explore further:

1) Testing if verification can be made more useful by in-
creasing the Matthew’s Correlation Coefficient (MMC)
threshold and possibly introducing a dynamic threshold
where the cut-off increases with the size of the training
set, because in theory a larger training set indicates
greater knowledge and thus greater predictive power.

2) Looking at the effects of a dynamic level of scepticism
dependent on the size of the current training set for
continuous training with particular emphasis on using
the ANN’s own confidence in its result.

3) Examining the potential for expert interaction, such as
• having an expert provide a classification when

confidence is low;
• provide direction in terms of areas of parameter or

objective space for the MOPSO to favour; and
• using active learning techniques to reduce the size

of initial archive required, by having an expert give
preliminary classifications to parameter sets that
are most likely to be useful.

4) Extending this technique to more complex problems,
with particular attention to how well it functions with
relatively small initial training sets, and how viable
continuous training of the ANN is as the problems
become more complex. This complexity could take
different forms, such as a greater number of param-
eters, a more complicated mapping from parameters
to objective space or a more finely tuned degree of
classification than valid/invalid.

5) Generating a behaviour tree from the ANN trained
during the optimisation in order to aid in understanding
both the ANN’s process and the underlying mapping
between parameter and objective space i.e. the ANN
acts as a “smoother” providing simpler approximations
to the complex underlying mapping that behaviour
trees have proven unable to handle.

The overall goal of this research is to use Artificial Intelli-
gence techniques to aid in a variety of Multi-Objective Opti-
misation problems, with a particular focus on supplementing
expert knowledge in order to reduce the work load on domain
experts.
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