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Abstract— The relationship between seed germination rate 
and environmental temperature is complex. This study assessed 
the effectiveness of multi-layer perceptron (MLP) and Particle 
Swarm Optimization (PSO) techniques in modeling and 
predicting the germination rate of two common bean cultivars 
as a function of distinct temperatures. MLP was utilized to 
model the germination rate of the cultivars and PSO was 
employed to determine the optimum temperatures at which the 
beans germinate most rapidly. The outcomes derived from 
implementing the MLP were compared with those obtained by 
means of a traditional statistical method. The MLP provided 
more accurate results than the conventional statistical 
regression in predicting germination rate values regarding the 
two common bean cultivars. The optimum germination rate 
values derived from implementing the PSO model were more 
accurate than those obtained by using the conventional 
quadratic regression.   

I. INTRODUCTION 
 he common bean (Phaseolus vulgaris L.) is an important 
cash and subsistence crop in several parts of the world 
[11, 27, 8,]. Therefore, the understanding of every 

developmental stage of this species is essential for 
implementing feasible production techniques [2] and studies 
of germination underpin studies concerning more advanced 
developmental phases [2, 20].  

The germination of seeds has been described as both a 
critical period and a complex phenomenon [15, 2, 25, 31, 3]. 
This is because life-history traits would not be expressed if 
plants were not able to survive in the germination phase [6]. 
Of the factors that affect the germination process, temperature 
has a primary influence on seed germination, affecting the 
rate of germination [12, 1, 30, 19], where higher temperatures 
might well cause germination rate values to rise [30, 29]. 
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Therefore, the intrinsic characteristics of seeds that govern 
their germination in various temperatures should be taken 
into consideration when analyzing the biology of seeds [12, 
26]. 

The relationship between germination rate and temperature 
could be regarded as a simple relationship, because most 
papers on seed germination have not utilized complex models 
in predicting germination rate as a function of different 
temperatures. That is, most papers on seed biology have used 
classical uni- or multivariate statistical procedures for 
analyzing seed germination (e.g., [12, 1, 15, 25, 2]). 
However, the relationship between germination rate and 
temperature can be complex [2, 10], and simple statistical 
methods might not be able to reveal the complexity of this 
phenomenon.  

If more complex analytical tools had been widely used in 
analyzing germination rate as a function of temperature, and 
if the outcomes of these tools were the same as those derived 
from conventional statistical techniques, then it would have 
been fair to conclude that the relationship between 
germination rate and temperature might well be a simple 
phenomenon. However, even if a relationship between 
germination rate and temperature were simple, obtaining 
precise and accurate models that could describe a large 
proportion of the total variance could never be regarded as a 
simple modeling procedure. Moreover, the common bean is a 
profitable agricultural product [27, 8, 2], and modeling the 
germination rate of this crop species requires precision and 
accuracy because of its commercial value. Standard statistical 
methods could model this relationship (e.g., [12,1]), but they 
may be limited by both the assumption of linearity and other 
statistical assumptions. Soft computing techniques such as 
artificial neural networks (ANNs) provide an effective 
approach for modeling nonlinear processes. ANNs have 
previously been applied to several problems in plant biology 
[7, 18, 21, 9, 32, 14] and ecology [33]. For example, [13] used 
neural modeling to analyze the percentage germination of 
seeds during grain drying processes, and [5] implemented 
some ANN models to predict the accumulated emergence of a 
weed species. However, neural modeling techniques have not 
been widely applied to analyzing seed germination. Indeed, 
the current paper represents the first application of neural 
modeling to the modeling and prediction of the germination 
rate (germination speed) of a crop species.  

The objectives of this research were: 1) to assess the 
effectiveness of a MLP neural network in modeling the 
germination rate of two common bean cultivars as a function 
of distinct temperatures under laboratory conditions; 2) to 
utilize the Particle Swarm Optimization (PSO) algorithm for 
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determining the optimum temperatures at which the two bean 
cultivars germinate most rapidly; and 3) to compare the 
results from neural network models and PSO with those 
derived from a standard polynomial regression method. 

 

II. MATERIALS AND METHODS 

A. Laboratory experiments 
‘Carioca’ and ‘Iapar 81’ were the two Brazilian bean 

cultivars used in this work. The laboratory experiments used a 
temperature gradient block [17] providing 25 distinct 
temperatures. The sample size was equal to 125 for both 
cultivars (five replicates per temperature). Each group of five 
replicates was exposed to one of the 25 constant 
temperatures, and the same temperatures were used for both 
cultivars. 

  

B. Variables 
Temperature was the explanatory variable (input) and 
germination rate (germination speed) was the dependent 
variable (output). The germination rate utilised in the present 
work represents the inverse of the mean time of germination 
(i.e. mean time-1, measured in hours-1 in this study) and can be 
written as: 
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in which Ti is the elapsed time from the start of the experiment 
to the kth observation (in hours); ni is the number of seeds 
germinated at time i. Additional details concerning this 
germination index can be found in [28]. 

 

C. Statistical model 
A traditional polynomial regression method was used as a 

benchmark against which the outcomes of the neural models 
were compared. Polynomial regression models are special 
cases of the linear regression model [16]. The following is the 
polynomial regression model utilized in the current 
investigation: 

 
ŷi=b0+b1xi+b2xi

2                                                                      (2)                           
 
where ŷi denotes the response (the predicted germination rate) 
in the ith trial; xi represents the value of the predictor variable 
(temperature) in the ith trial; and b0, b1, and b2 represent the 
parameters of the model.  

The performance derived from the MLP network was 
compared with that derived from the polynomial regression 
by means of R2 values (coefficient of determination). This 
coefficient constitutes a simple and effective means of 
comparing the actual values (observed values) with those 
derived from the predictive models (estimated values). In 
addition, root mean square errors (RMSE) were utilized in 
evaluating the performance of the models. Additional 
information on these well-known statistics can be found in 

[16]. 

D. Modeling procedures for analyzing germination rate 
The MLP had five neurons in the hidden layer. The number 

of neurons in this layer was determined by assessing which 
configuration yielded the lowest global training error. The 
activation functions used at each level of the network were 
sigmoid for the hidden layer neurons and linear for the output 
neuron, and standard backpropagation was used for training. 
Each bean cultivar was modeled separately. 

To train the MLP, the entire data set (i.e. 125 examples for 
each bean cultivar) was randomly separated into two subsets: 
60% of the examples were used as the training subset (75 
examples), and 40% were used as the test subset (50 
examples). The training and test subsets for the statistical 
regression model were the same as those used for the MLP 
network. 

The ‘learned’ neural function enabled us to achieve two 
aims: it was used as a predictive tool, estimating germination 
rate values at any temperature; and it functioned as an 
objective function (meta-heuristic) of an optimization 
algorithm that was capable of providing the neural function 
with near-optimum solutions, after which the Particle Swarm 
Optimization (PSO, see [36] and [23] for details about this 
neural model) was used to obtain the near-optimum 
germination rate value for each cultivar.  

 Once the PSO had determined the optimum germination 
rate, it also provided the related temperature. In addition, 
model parameters were estimated with the purpose of 
maximizing the output function that was derived from the 
model inputs. Thus, PSO obtained the temperature that 
produced the maximum germination rate value (i.e. the 
optimum germination rate) from the implemented neural 
network. 

Distinct results were obtained by the optimization process 
using the parameters employed in the PSO algorithm. This 
optimization process was carried out several times, using the 
following parameters: swarm size 15; learning coefficients 
were equal to 2; inertial weight (w) fixed at 1; and the 
maximum number of epochs was restricted to 30. 

 In order to compare the optimum germination values 
derived from the PSO model with those obtained by using the 
traditional quadratic regression model, the following equation 
was used [35]: 

 
x0=(-b1)/(2b2)                                                  (3)                   
 
in which x0 represents the optimum temperature 

(independent variable); and b1 and b2 are the regression 
coefficients (see Equation 2). The optimum germination rate 
was obtained by substituting the estimated x0 for the xis in the 
estimated quadratic model. 

 

E. Akaike’s Information Criterion 
 
The larger the number of parameters in a model, the better 

the fit of the model. However, the main drawback to an 
overparameterized model is its inability to generalize. 
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Therefore, we employed Akaike’s Information Criterion 
(AIC), which compromises between goodness of fit and 
parsimony in the number of parameters [34]. In other words, 
AIC penalizes models containing large numbers of 
parameters [34, 16]. It can be written as: 

 
AIC=nlnR+2p                                                        (4)                                                              
 
where n represents the number of training or test subset 

values. Both the training and test data sets used in the 
statistical model were exactly the same as those used in 
implementing the MLP. R represents the residual sum of 
squares, and p is the number of parameters in the model. 
Three parameters were used for the quadratic regression, and 
10 for the MLP. Normally, a lower AIC value indicates a 
better model. 

If AIC had not been used in this paper, it could have been 
argued that the MLP might outperform the statistical model 
not because the neural model represented a more accurate 
model, but because the statistical model contained only three 
parameters, whereas the MLP contained 10 parameters 
(connection weights). 

III. RESULTS 
Seeds germinated from 10.3ºC to 38.2ºC with respect to 

both cultivars. On the whole, the patterns of distribution of 
germination rate values across the range of temperatures were 
similar for both cultivars (Figure 1). In addition, it was 
observed that the highest germination rate values were in the 
30-35ºC temperature range for both cultivars. 
 

Figure 1 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The coefficients of determination (R2) and root mean square 
error values (RMSE) derived from the data subsets utilized in 
both training and test procedures are available in Table 1. It 
was noted that the MLP neural network was more accurate 
than the quadratic regression in relation to both cultivars 
because it provided higher R2 and lower RMSE values, as 
well as lower AIC values than the statistical model regarding 
both the training and test subsets. 

The Iapar 81 data set analyzed by means of the MLP 
exhibited the highest R2 and the lowest root mean square error 
values with respect to both training (R2=0.908 and 
RMSE=0.0022) and test (R2=0.901 and RMSE=0.0023) 
subsets, as well as the lowest AIC value for the test data set 
(Table 1). On the other hand, the Carioca data set modeled by 
means of the statistical regression produced the least accurate 
performance regarding both training (R2=0.771 and 
RMSE=0.0041) and test (R2=0.684 and RMSE=0.0052) 
subsets, as well as the highest AIC values. 

Table 2 shows the optimum germination rate as well as 
their related temperature values derived from implementing 
two distinct methods (PSO and quadratic regression). With 
respect to both cultivars, Figure 1 reveals that the optimum 
germination rate values derived from using the statistical 
model (A&C) were less accurate than those obtained by 
means of the PSO method (B&D). The optimum germination 
rate values derived from the quadratic regression and the 
actual (observed) maximum values do not match (A&C), 
especially in relation to the Carioca data set (A). On the other 
hand, the optimum germination rate values derived from 
using the PSO method were more realistic regarding both 
cultivars (B&D). 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

 
 
 
 
 

Figure Caption - Germination rate (in hours-1) of two 
Phaseolus vulgaris cultivars as a function of 25 
distinct temperatures. Circles represent the raw data 
set (n=125) for both cultivars (Carioca, A&B, and 
Iapar 81 C&D). The thin solid lines represent the 
predicted values derived from either the quadratic 
regression (A&C) or the multi-layer perceptron 
(B&D). The solid squares represent the optimum 
germination rate value derived either from using the 
quadratic regression (A&C) or from implementing 
Particle Swarm Optimization procedures (B&D).  
 

Table 1. Accuracies 
Algorithm Metric Carioca Iapar 81 

MLP R2 0.905/0.878 0.908/0.901 

 AIC -546.82/-356.30 -572.83/-390.09 

 RMSE 0.0026/0.0033 0.0022/0.0023 

Quadratic R2 0.771/0.684 0.795/0.84 

 AIC -494.32/-324.03 -524.64/-382.51 

 RMSE 0.0041/0.0052 0.0034/0.0029 

 
Coefficients of determination (R2), root mean square errors 
(RMSE), and AIC (Akaike’s Information Criterion) values 
derived from implementing MLP (Multi-layer perceptron neural 
network) and quadratic regression for prediction of germination 
rate. ‘Carioca’ and ‘Iapar 81’ are bean cultivars. Results are 
shown as training result/test accuracies. 
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IV. DISCUSSION AND CONCLUSIONS 
Most biological processes in plants might well be 

characterized as intricate phenomena [9], and thus complex 
models such as ANNs and PSO could outperform traditional 
statistical methods. In fact, neural network techniques have 
been effectively used in modeling complex non-linear 
interactions between biological and ecological variables [24, 
37].  

 For instance, [9] assessed the usefulness of a MLP, a 
relatively simple neural model, in a study of the effects of 
light intensity and sucrose concentration on the proliferation 
of kiwi microshoots. The outcome of the MLP was compared 
with the results derived from three statistical models (Poisson 
regression, logistic regression, and analysis of variance), and 
the neural network model was deemed to be an effective 
analytical tool. In the current paper, a MLP outperformed a 
conventional statistical model (Table 1). In addition, other 
agrobiological studies have demonstrated the superiority of 
MLP over traditional statistical procedures. For example, [22] 
utilized a MLP neural network for predicting tomato moisture 
ratio during its drying process, and the ANN was more 
accurate than empirical correlations. 

Linear models were used in assessing relationships 
between germination speed parameters and seed traits of 
weed seeds. However, such linear models left a considerable 
amount of the total variance unexplained [10], since the R2 
values were lower than 0.6. It is a well-known fact that 
analyzing the germination of weed seeds in a thorough 
manner is essential for understating the biology and ecology 
of weed species [10, 31]. Therefore, neural modeling 
techniques could have been used in modeling and analyzing 
such germination parameters and traits in order to try to 
explain a larger proportion of the total variance. In the current 
work, the neural model (MLP) explained a large proportion of 
the total variance, since the R2 values for the test subsets were 
higher than 0.87. On the other hand, the R2 values derived 
from the quadratic regression (a linear model), using the same 
test examples as those used in implementing the neural 
model, were relatively low, especially for Carioca seeds 

(Table 1). 
In this investigation, both cultivars showed similar patterns 

of distribution of germination rate values (Figure 1), and the 
PSO was able to highlight this fact in an accurate manner, 
since the optimum germination value for Carioca seeds were 
virtually the same as the optimum value for Iapar 81 (Table 
2). On the other hand, the quadratic regression was not able to 
reveal such a fact, especially in relation to Carioca seeds 
(Table 2, Figure 1-A). 

In order to determine the optimum range of germination 
rate values, [4] and [17] implemented a large number of 
non-parametric statistical tests (Mann-Whitney test) and used 
the outcomes derived from such tests as if they constituted 
one single statistical test. However, this should be deemed to 
be incorrect from a statistical perspective, because the 
probability of obtaining a significant difference when, in 
reality, the samples being compared come from the sample 
population is too high [2, 35]. Hence, from a statistical 
standpoint, the predictive models utilised in the present 
investigation constitute more effective, realistic procedures 
than those utilised by [4] and [17].  

It should be noted that [4] stated that the optimum 
germination rate value for the Carioca beans should be in the 
30.5-34.5ºC temperature range, and the optimum germination 
rate for Iapar 81 should be 32.5ºC. Table 2 shows that the 
optimum germination values derived from the neural 
modeling techniques are similar to those derived from the 
non-parametric statistical procedure implemented by [4]. 
Nonetheless, their outcomes were based on an inaccurate 
statistical procedure.   

It is important to highlight that neural models can 
outperform statistical methods in analyzing both complex 
phenomena [24] and simpler phenomena, as was the case in 
this investigation.  

It could be argued that a quadratic regression may not be 
able to fit the germination rate of seeds in an accurate manner. 
Figure 1 (A&C) shows that the maximum germination rate 
values are not where the quadratic function says (Table 2). 
However, a MLP is a simple ANN model, and thus a simple 
neural model outperformed a classical statistical method in 
this paper. Therefore, the current investigation provides 
statistical evidence of the ineffectiveness of standard 
statistical models in modeling the germination rate of seeds, 
and we recommend that researchers should deploy both more 
complex neural modeling techniques and higher-order 
regression models in order to analyze the germination of crop 
seeds. 
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