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Abstract— In recent years the European Union and, more-
over, Italy has seen a rapid growth in the photovoltaic (PV)
sector, following the introduction of the feed in tariff (FIT)
scheme known as Conto Energia. In July 2013 the Italian
government definitively cut FITs, leaving only tax benefits and
a revised net metering scheme (known as ”Scambio sul Posto”)
for new PV installations. In this scenario, the design of a new PV
plant ensuring savings on electricity bills is strongly related to
household electricity consumption patterns. This paper presents
a high-resolution model of domestic electricity use based on
Fuzzy Logic Inference System. Using as inputs patterns of active
occupancy and typical domestic habits, the fuzzy model give as
output the likelihood to start each appliance within the next
minute. The focus of this work is the use of this novel fuzzy
model to correctly size a residential photovoltaic plant and
evaluate the economic benefits of energy management actions
in a case study. A cost benefits analysis is presented to quantify
its effectiveness in the new net metering Italian scenario.

I. INTRODUCTION

The amount of new solar power installed in Europe fell
sharply for the first time in more than a decade in 2013,
in an arresting sign of how the region’s dominance of the
global market is drawing to an end. Incentive programs,
although cut worldwide, have been replaced by new mech-
anisms to promote the direct consumption of energy in the
building where a PV system is located (the so called self-
consumption) in several European countries. In some cases,
pure net-metering schemes have been developed (such as
in Belgium, Denmark, the Netherlands), while other coun-
tries have favored mechanisms promoting self-consumption.
Various intermediate schemes exist between these two ap-
proaches. Nowadays Italy and Germany represent the two
most developed European PV markets, respectively with 17
and 32 GW of total PV power installations. They have been
pioneers of self-consumption promotion schemes. The evo-
lution in Germany towards promotion of self-consumption
started in 2011 with a premium incentive tariff for self-
consumed electricity. The remuneration was even higher if a
rate of self-consumption over 30% was reached, encouraging
the so called prosumers (producers and consumers of energy)
to increase their direct consumption ratio.

In Italy the government took the decision to cut PV incen-
tives on June 2013, instead of 2016 as previously expected.
To provide support to PV industry a new net metering scheme
has been amended [1] and came into effect on 1st January
2013. Under this decree PV system owners can get credits
for the value of the excess of electricity fed into the grid
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over a time period. Further encouraging self-consumption,
the Italian Revenue Agency introduced tax breaks for off-
grid PV systems installed on buildings. On the same time
the Ministerial Decree of July 6th 2012 established new
procedures aimed at supporting the production of electricity
from Renewable Energy Source-Electricity (RES-E) plants
(other than the PV ones). Concerning wind energy, tariffs are
granted only if the plant reaches 80% of the yearly planned
production quota [2], thus forcing engineers to investigate
and solve the efficiency problem, as shown in [3], [4].

In this European scenario, it is clear that overall cost-
saving by PV-generation systems would only have a marginal
impact if the energy consumption pattern of the household
does not match the most beneficial generation pattern and
no actions of energy management (EM) are performed.
Households EM is widely recognized as a priority [5] to
reach PV grid parity all over the world, see, e.g., [6], [7] and,
combined to control, forecasting and monitoring techniques,
to reduce overall energy usage [8], [9], [10], [11]. On the
same time there is an increasing number of studies on
microgrids [12], [13] and smart homes and the benefits of
demand-side management [14], [15], [16].

Accordingly the forecast and simulation of households’
electricity consumption patterns received strong interest in
literature, see, e.g., [17], [18], [19], [20]. Most of the existing
models and analysis focus on data from specific geographic
regions and try to explain the results in a local perspective
[21], [22]. It is well known that overall cost-saving by
distributed generation would only have a marginal impact
if the demand pattern does not match with the production
one. Photovoltaic sizing is an important research field in this
area but most of the works concern with the optimization
of stand alone systems without an analysis of the demand
response scenario for grid connected users, see e.g. [23],
[24], [25]. In this scenario only the knowledge of the typical
demand pattern for each household will make possible the
proper sizing of a photovoltaic plant, the design of demand
response techniques and energy management actions. The
pattern of electricity use for any individual domestic dwelling
is highly dependent upon the activities of the occupants and
their associated use of electrical appliances. In this paper we
present a high-resolution model of domestic electricity use,
based upon a combination of patterns of active occupancy
and daily activity profiles (typical appliances usage frequency
and starting time). The model is built using a ”bottom-
up” approach, according to [26]. The basic building block
is the appliance, i.e. any individual domestic electric load.
The model, managing the start of each appliance in the
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household through a fuzzy logic inference system, gives as
output the 1 − minute resolution electricity usage pattern.
The main differences with respect other approaches proposed
in literature by [26], [27], [28] derive from the novel fuzzy
approach that allow to model a specific household energetic
behavior and customize the model without acquiring a large
amount of data. In fact it is possible to add every appliance
and predispose a ”seasonal behavior” for some of them using
the flexibility of the fuzzy inference systems. This model has
been used for a case study on the proper sizing of a PV
plant (in the central east region of Italy) and the evaluation
of Energy Management potential benefits based on a costs
benefits analysis (CBA). The installation in a dwelling of all
the devices necessary to actuate proper EM policies has a
relatively high cost compared to that of a PV system [29],
[30]. The focus of the paper is to set an upper limit for the
equipment cost in order to obtain real savings for a specific
household through the CBA.

In this paper, Section II provides a brief introduction of
the Fuzzy Inference System used, followed by a presentation
of the simulator. Model implementation and samples on how
fuzzy rules can vary are presented in Section III. In Section
IV is presented the application of the simulator to evaluate
EM benefits for different PV plant sizes.

II. FUZZY HOME CONSUMPTION SIMULATOR

In this paper we develop a model of the electricity use
pattern for any individual domestic dwelling using a ”bottom-
up” approach, according to those proposed by [26]. The basic
building block is the appliance, i.e. any individual domestic
electric load, such as a television, a washing machine, a
dishwasher. This approach requires a classification of the
appliances into different categories, each one modeled in the
same way. The main categories are:
• Continuous use appliances (e.g. Refrigerator, freezer,

Wi-fi router, cordless phone, clock radios)
• Periodical use appliances without human interaction

(e.g. Oven and microwave oven, dishwasher, washing
machine, cooker hood)

• Periodical use appliances with human interaction This
category (e.g. Vacuum cleaner, cooking appliances, hair
dryer)

• Multimedia appliances
• Lighting
The modeling of the appliance’s usage has been performed

with a LFM approach to determine if wether or not it is going
to be started.

The usage pattern, depending on the appliance’s category,
can be related to many variables, such as the number of
active people in the house, the typical frequency of the
appliance, the time of the day, the temperature. For example,
when people are not at home, most appliances will not be
used (only the so called continuous use appliances). In work
days daily appliance electricity profile, the occupants use
virtually little power (stand by and fridge-freezer) while in
the evening, the meal is cooked, television is watched, lights

are on, etc. This typical pattern can drastically change during
the weekend and holidays and, moreover, it can change
from dwelling to dwelling due to different life styles. The
main factors influencing occupancy pattern and appliances
usage are: the number of occupants, the time the first person
gets up in the morning and last person goes to sleep, the
periods house is unoccupied during work days, holidays and
weekends. When analyzing the households load profile we
need information on the active occupants of the dwelling.
To compute the overall occupancy pattern for work days
and holidays an interview to dwelling occupants can be
performed. Starting from basic information in this paper we
build a 1-minute resolution daily active occupants pattern for
each day of the week. To compute the number of the busy
occupants a counter is used; this counter is increased every
time an appliance that requires interaction with a person is
switched on, and decreased every time it is switched off.
The number of unoccupied people in the dwelling can be
computed from the active occupants pattern and the current
value of the busy occupants counter. Knowing this value for
each time of the day, we can enable or interdict the switching
on of the appliance. A further important feature is to identify
the typical frequency of each appliance’s starting for each
household. This parameter is rarely a crisp value, e.g. ”the
washing machine starts usually from 2 to 3 times a week”,
and often related to the time of the day, e.g. ”the television
starts some hours a day usually at night”. In this work all
information regarding occupancy, appliances frequency and
typical start time are taken with a brief interview. The former
are used to build the active occupancy pattern and the latter
to build fuzzy rules.

A. Appliances Fuzzy Inference System
The membership functions of the input variables (a sample

is shown in Fig. 1) consist of triangular asymmetric and
trapezoidal functions. The trapezoidal function is totally
represented with four points, known also as fuzzy set:
A = (a1, a2, a3, a4). This representation is interpreted as
membership functions:

µA(x) =



0 , x < a1
x−a1
a2−a1 , a1 < x < a2

1 , a2 < x < a3
a4−x
a4−a3 , a3 < x < a4

0 , x > a4

(1)

When a2 = a3, the triangular function can be considered
as a particular case of the trapezoidal one. The input variables
for the FIS inference are the time h(t) of the day, the
percentage p(t) of unoccupied people in the dwelling and
DT/T (t) that is the time elapsed since the last appliance
start normalized on his period. Table I shows the fuzzy sets
for the input variables.

A sample of the fuzzy control rule base for a ”Periodical
use appliance without human interaction” (e.g. the dish-
washer) is shown in Table III; the Max-Min fuzzy inference
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TABLE I:
Considered fuzzy sets for input variables.

h(t) Abbr. a1 a2 a3 a4

Early Morning EM 0 0 300 450
Morning M 300 400 750 800
Afternoon A 650 750 1000 1150
Evening E 1050 1100 1250 1300
Late evening LE 1250 1300 1440 1440
DT/T(t) a1 a2 a3 a4

Very Advance VA 0 0 0.3 0.6

Advance A 0.5 0.75 0.75 1

In Time IT 0.9 1 1 1.1

Late L 1 1.25 1.25 1.5

Very Late VL 1.4 1.8 2 2

p(t) a1 a2 a3 a4

Very Low VL 0 0 0.2 0.4

Low L 0.2 0.3 0.4 0.5

Medium M 0.3 0.5 0.7 0.9

High H 0.7 0.8 1.0 1.1

Very High VH 1.0 1.1 inf inf

algorithm is considered, [31] . The outputs of the FIS engine
are the probability P (t) to start a certain appliance: (N)
None, (VL) Very Low, (L) Low, (M) Medium, (H) High,
(VH) Very High and the total time D(t) the appliance will be
on: (VL) Very Low, (L) Low, (M) Medium, (H) High, (VH)
Very High. Output membership functions, shown as example
in Fig. 2, consist of sigmoid functions with different values
for each appliance category. As described in section II, there
are 5 different categories of appliances and each one has
different fuzzy input-output variables. In particular Table II
contains inputs and outputs for each category. Concerning
the defuzzyfication we use the modified Center of Area
defuzzyfication method since the centroid method evaluates
the area under the scaled membership functions only within
the range of the output linguistic variable and the resulting
crisp output values could not span the full range. The fuzzy
logic controller uses the following equation to calculate the
geometric center of the full area under the scaled membership
functions:

mCoA =

∫
f(x) · xdx∫
f(x)dx

(2)

where mCoA is the modified center of area. The interval
of integration is between the minimum membership function
value and the maximum membership function value. Note
that this interval might extend beyond the range of the output
variable.

III. MODEL IMPLEMENTATION

The aim of the simulation tests is to evaluate the potentiali-
ties of an energy management technique applied for different
households, in order to evaluate the economic benefits users
can obtain. The model has been realized using LabVIEW, the
graphical programming environment of National Instruments.
In particular the FIS has been realized using the LabVIEW
fuzzy toolkit while the input-output membership functions
and the rule set with the fuzzy system designer. As the

Fig. 1: Membership function of the input variable DT/T (t).
The x-axis is the ratio between the time elapsed since the last
start and the average starting period.

TABLE II:
Fuzzy input output variables for the different appliance’s
categories.

Category IN IN IN OUT OUT

Continuous - - - - -

Periodic without human h(t) DT/T (t) - P (t) -

Periodic with human h(t) DT/T (t) - P (t) -

Multimedia h(t) DT/T (t) p(t) P (t) D(t)

Lighting h(t) DT/T (t) p(t) P (t) -

simulator is not time driven when a simulation runs one-
min resolution electricity demand data can be generated for
a specified time period using two nested FOR loops (the
outer for the days of the year and the inner for the minutes
of each day). Each single appliance block, implemented as
a functional global variable, is in the inner loop and runs in
two phases. During the first iteration of the simulation all the
configuration parameters are loaded, e.g. the fuzzy rule set of
the appliance, the consumption profile, the maximum power,
the typical starting frequency, number of people typically
interacting with the appliance (all the mentioned parameters
are fully editable in text files and fuzzy rules through
LabVIEW graphical interface). After the first iteration the
likelihood an appliance will start within the next minute is
evaluated with a time resolution of one-minute (except for the
so called ”Continuous use appliances”). In particular, since
the FIS output is a probability value, to manage the start of
an appliance this value is multiplied by a calibration factor
(equal to the difference in hours between the average period
of use of the appliance and the time elapsed since the last

TABLE III:
Dishwasher FIS sample. Input DT/T (t) is in the first row,
while h(t) is in the first column. Probability P (t) are the
central values of the table.

VA A IT L VL

EM VL VL VL VL VL

M VL VL VL L L

A VL VL L L M

E VL L M H VH

LE VL VL VL VL VL
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Fig. 2: Membership function of the output variable P (t).
The x-axis is the probability to start an appliance.

start), as stated in [26]. The result is then compared with a
random number (within the real interval 0−1). The appliance
will start if:

• this number is less than the scaled probability
• there is at least one person in the house
• there are sufficient active people in the house (only for

some appliance’s categories)
• the sum between the current electrical consumption and

the max power of the appliance is less than the power
the customer can absorb from the grid.

Table II shows the need of taking into account also the
number of active people in the dwelling for ”Periodical
use appliances with human interaction” and ”Multimedia
Appliances”. Starting from the typical pattern of people in
the household we decrement this number when an appliance
of one of these categories starts and increment this number
when the appliance is turned off. To simulate EM actions,
fuzzy rules have been modified to approximate a different
user behavior regarding the starting time of the two main
shiftable appliances (dishwasher and washing machine). As
an example, without any action, fuzzy input sets for ”peri-
odical use appliances without human interaction” are:

• the time of the day h(t)
• the time elapsed since the last appliance start multiplied

his typical start frequency DT/T (t)

and a typical rule formulation is:
if h(t) is afternoon and DT/T (t) is late, then the
probability to start the appliance is low.
The installation of a PV plant can have a great impact on the
energy behavior of users. they can use an energy manager,
forecasting tools or simply plan to start appliances according
to weather forecast. To model this behavior a new input
DX(t) is added in the model, the time distance from the
peak power production time of the next day. According to
this new input, the same rule discussed above will change:
if h(t) is afternoon and DT/T (t) is late and DX(t) is
very low, then the probability to start the appliance is very
high.

In the energy management problem considered in this
work the two shiftable tasks are the dishwasher and the
washing machine. In particular since in this model we
represent the typical user behavior, for what regards the
starting of one of these two tasks we consider the best time

to start the appliance according to the algorithm described in
[32].

Fig. 3: Sample of the energy management actions performed.
Red line is the PV production, green line is the original
household consumption profile, blue line is the consumption
profile after the shifting of a load.

6 − seconds resolution data of most of the household
appliances (e.g. washing machine, dishwasher, multimedia
appliances, iron, oven, microwave) have been extracted in-
stalling individual appliance monitors (IAMs from Current
Cost company) in the dwellings. It is important to emphasize
that the differences between single appliance blocks for
the different dwellings are taken into account changing
the fuzzy rules, the occupancy profile and using different
consumption patterns from the database (according to the
different appliances and categories). An example of 24h
comparison between the simulated and measured demand
profile for a single dwelling is shown in Fig. 4. Further

Fig. 4: March 23 2012. 1-min resolution data for one
of the considered households in Ripatransone (AP), Italy.
The dotted blue line is the simulation load profile, the red
continuous line is the measured one.

details on the software implementation, experimental setup
and model validation can be found in [33].

IV. ECONOMICAL EVALUATION OF EM BENEFITS

Due to the random nature of solar energy, great effort must
be made to design PV systems that optimize energy savings,
self consumption and costs. Furthermore the growing interest
in innovative energy management techniques suggests that
the installation of a proper system able to actuate them can
be drastically economically advantageous. In this section we
propose economical analysis for both:
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• a PV sizing case study;
• the evaluation of real economic benefits from the shift-

ing of the two main loads of a dwelling;
The following analysis are based on the consumption

pattern simulated for a household with an overall annual
electrical consumption of 2300 KWh. The main appliances
in the dwelling are: a dishwasher, a washing machine, 3
televisions, a microwave and an electrical oven, an iron,
an hi-fi system, a refrigerator and a freezer. The key of
the proposed analysis is the self consumption percentage,
computed by the simulation tool. A 3 year historical solar
irradiance data set is used to calculate the output of a
varying size PV plant (1 to 3.5 KWp) and compared with the
consumption pattern computed by the simulator in order to
obtain the self consumption percentage for each considered
PV plant size. A financial evaluation technique is used to
compare the different investments under the revised Italian
net metering scheme known as ”scambio sul posto” in which
GSE pays a contribution Et to the customer equal to:

Et = Ct ·min(Ft,Wt) (3)

where Ft and Wt are respectively the injected and with-
drawn electricity in KWh and Ct represents a coefficient
comprehensive of the electricity cost and net services cost in
eur/KWh. For the global cost of the PV plant, an average
of the main solar installer prices in the considered area has
been considered.

A. ECONOMICAL ANALYSIS

The cost-benefit analysis (CBA) is a financial valua-
tion technique used to predict the effects of a project, a
program or an investment, verifying its benefits. CBA, as
an alternative to traditional methods of economic analysis,
represents also a method of ex-ante evaluation by external
parties that have to decide on the financial viability of an
investment or have to choose how to allocate scarce financial
resources among different possible investments. To evaluate
the economic convenience of PV systems on the considered
building we carried out the CBA of different sizes of PV
plants to choose the best one.

Maintenance cost and effort residential systems is usu-
ally very low in comparison with the initial investment
afforded (approx 0.5 − 1.0% of investment). The annual
electrical energy output of the PV system is computed from
the historical irradiance profiles and results to be between
the performance range typical of the considered latitude
(between 1200 and 1250 kWh/kWp). We assumed that the
PV system performance will degrade 20% in 25 years. By
considering this fact a derating factor of 0.5% is used for the
first 8 years and 1.0% from the 9th.

The discounted cash flows generated from each investment
have been calculated for 20 years, equal to the period in
which PV module producers guarantee at least 85% of their
initial performance. The net present value (NPV), calculated
for each PV plant size, is:

NPV =
K∑
t=0

Ct

(1 + r)
t (4)

Where Ct is the cash flow at time t, r the discount rate
(equal to 5% in our case) and K the considered lifetime of
the investment. The cash flow Ct is the difference between
the discounted annual cash inflows It and outflows Ot. In
particular It consists of the annual directly saved energy
by self consumption (considering a 3% annual increase of
the unitary energy price), the net metering contribution Et
and government contributions (50% of the plant cost in
taxes deduction for the first 10 years). Ot consists instead
of the initial cost of the plant (we assume that the bank
does not allow a loan without feed in tariffs) and the
annual maintenance costs (0.5% of the initial cost per year).
Considering that NPV calculation strongly depends on the
used reference discount rate r used (for which the same
investment may be convenient or less in relation to its value)
it is useful to consider as financial indicator also the IRR
(internal rate of return), calculated as the rate r∗ for which
results:

NPV (r∗) = 0 (5)

Table IV reports the unitary costs (Cost), the self consump-
tion percentages of two simulated scenarios (user performing
EM actions and user maintaining the same behavior) and
CBA results for different PV plant sizes in the analyzed case
study. The values of NPV, which range between 790 and
2070 e, IRR, between 6.89 and 9.71 %, show better results
for a 2.25 KWp plant. In particular revenues decrease from
2070 to 1360 ewith a 3 KWp plant and IRR decrease of
2%, emphasizing the need of the correct sizing of the plant.
We have furthermore analyzed the situation in which the
user performs basic EM actions to fix a target equipment
cost for each specific household to analyze. As shown in
table IV the NPV difference between the best and worst
case can be 140% (which results in more than 1, 200 e).
Furthermore the economical benefits of energy management
actions (shifting of the two main appliances) varies from 250
to 600 e(depending on the plant size) thus imposing cost
limitation for the EM equipment.

V. CONCLUSIONS

This paper introduces a novel Fuzzy approach to model
household electrical consumptions. Our model differs from
the ones existing in literature, see e.g. [26], for the chance
to easily customize it exploiting the potential of Fuzzy
Systems. Indeed it has been possible its use to correctly
size a residential photovoltaic (PV) plant and simulate the
effects of energy management techniques only changing few
fuzzy rules. According to a cost benefits analysis (CBA)
we computed net present value (NPV) and internal rate of
return (IRR) for different PV plant sizes in a case study.
Results show that the convenience to install a new PV plant
in the actual scenario is strongly related to the matching of
production and consumption patterns and the cost of home
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TABLE IV:
Unitary costs, self consumption percentages (SC) and CBA
results (NPV and IRR) for the considered case study with
and without energy management actions.

No EM actions EM actions
Size Cost SC NPV IRR SC NPV IRR
(KWp) (e/KWp) (%) (e) (%) (%) (e) (%)
1.00 3850 41.1 787 7.91 53.4 1005 8.64
1.25 3750 35.3 937 7.85 47.3 1208 8.60
1.50 3500 31.3 1251 8.35 42.9 1566 9.11
1.75 3150 27.4 1711 9.28 38.5 2067 10.07
2.00 2950 24.2 2048 9.71 35.2 2443 10.51
2.25 2750 22.5 2069 9.47 32.9 2501 10.30
2.50 2700 20.6 1730 8.51 30.6 2198 9.36
2.75 2500 19.4 1716 8.42 29.4 2215 9.32
3.00 2450 17.5 1363 7.60 26.9 1888 8.51
3.25 2320 16.2 1310 7.46 25.8 1879 8.44
3.50 2260 15.7 1047 6.89 24.7 1624 7.85

automation devices to perform EM actions can not exceed
600 ein the best case.
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