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Abstract—The architecture of neuro-fuzzy systems with fuzzy
rough sets originally has been developed to process with imprecise
data. In this paper, the adaptation of those systems to the missing
features case is presented. However, the main considerations
concern with methods of learning which could be applied to
such systems for approximation tasks. Various methods for
determining values of system parameters have been considered,
in particular the gradient learning method. The effectiveness
of proposed methods has been confirmed by many simulation
experiments, which results have been supplied to this paper.

I. INTRODUCTION

The missing data problem is a permanent element of any
application of real decision systems. It concerns all application
fields — industrial control and diagnosis, medical diagnosis,
recognition, modelling, prediction [36], [35]. Regardless of
applied methodology (neural networks, fuzzy systems, k-nn
classifiers, svm systems etc.) there are two general methods to
process data with missing values:

∙ marginalisation,

∙ imputation.

Obviously, the modified methods and hybrid solutions are also
available.

Methods that belong to the first group boil down to tem-
porary reduce the dimensionality of consideration space to the
features of known values. Therefore, some elements of the sys-
tem are just turned off. Therefore, sometimes the elimination
of all incomplete samples includes also the marginalisation.
However, it is eventually accepted only in developing time.

When we would like to use imputation, the unknown
values are replaced by estimated ones. The palette of available
methods is generally unlimited. The most primitive ones are
confined to insertion of random, average or most common
values. More sophisticated ones apply EM (Expectation Max-
imization) or k nearest neighbour algorithms, neural networks,
fuzzy systems. The promising results are obtained by multiple
imputation and interval imputation. If we know the probability
density distribution, we can use the Bayesian solution [6], [8],
[29], [30]. Then if we know the possibility distribution, we
can use fuzzy imputation.

A specific approach to the problem comes from the rough
set theory [23]. An object can be classified to a positive region
of a class (i.e. the object certainly belongs to the class), to
a negative region of the class (i.e. the object certainly not

belongs to the class) or to a boundary region of the class
(i.e. it is not possible to determine if the object belongs to
the class or not). Membership to theese regions depends on
the quality of object description. If this description is good
enough, the object belongs either to the positive or negative
regions. If the description is too weak, then the object belongs
to the boundary region. In the rough set theory [23] as well as
in the theory of evidence [37], we do not use the individual
elements of the consideration but some granules [24]. The
granules contain elements which are indistinguishable basing
on knowledge that we dispose. Thus, the size and the shape
of granules depend on the used (known) knowledge about
elements. Hence, the many hybrid approaches apply rough
sets together with other methods, e.g. mentioned above in the
imputation context.

In this paper, we focus on a hybrid system merging fuzzy
sets, rough sets and neural networks. The idea to connect the
fuzzy and rough sets comes from Dubois and Prade [4], [5].
They proposed two new types of sets, i.e. rough fuzzy sets
and, more general fuzzy rough sets. Specific definitions of
fuzzy rough sets were proposed also by Nakamura [15] and
Thiele [42]. A general approach to them was presented by
Radzikowska and Kerre [27].

The first generalization of the rough set, i.e. the rough fuzzy
set, allows to approximate not only a classical set, but also a
fuzzy set. It is realized by the same granules as in the case of
the rough set. The second generalization of the rough set, i.e.
the fuzzy rough set, uses fuzzy granules to approximate either
a classical or a fuzzy set.1

The rough fuzzy sets are used mainly in classification
systems. Sarkar [32] applied rough fuzzy sets as well as “rough
fuzzy membership functions” and “ownership functions” stud-
ied in [34] to support classification tasks. Nowicki proposed
the rough neuro–fuzzy classifiers [16], [18], [20]. The fuzzy
rough sets were employed both for classification [33] and
approximation [40], [41].

In the paper, we consider the problem of approximation in
case of missing data. We assume that exist function 𝑓 defined
in multidimensional input space, i.e X = ℜ𝑛. Therefore,
we have 𝑦 = 𝑓 (x), where x = [𝑥1, 𝑥2, . . . , 𝑥𝑛] is an input
vector and 𝑥𝑖, 𝑖 = 1 . . . 𝑛 is a value of single feature 𝑥𝑖.

1Some authors are using terms “rough fuzzy” and “fuzzy rough” in solutions
which do not apply either rough fuzzy set or fuzzy rough set, but just separately
fuzzy set and rough set. An example could be a fuzzy classifier containing
rules generated using the rough set theory.

2014 International Joint Conference on Neural Networks (IJCNN) 
July 6-11, 2014, Beijing, China

978-1-4799-1484-5/14/$31.00 ©2014 IEEE 3759



Unfortunately, values of some input features are unknown.
Therefore, we define the two separate sets of features —
𝐷 is a set of features with known values and 𝐺 is a set
of features with unknown values, moreover 𝑄 = 𝐷 ∪ 𝐺.
In consequence, we define two vectors covered known value
— v𝐷 =

[
𝑣𝑑1 , 𝑣𝑑2 , . . . , 𝑣𝑑𝑛𝐷

]
— and unknown values —

v𝐺 =
[
𝑣𝑔1 , 𝑣𝑔2 , . . . , 𝑣𝑔𝑛𝐺

]
— where {𝑑𝑖}, 𝑖 = 1 . . . 𝑛𝐷 is

the series of known feature indexes and {𝑔𝑖},𝑖 = 1 . . . 𝑛𝐺
denotes series of unknown feature indexes. In such conditions,
the goal is to determine the acceptable value 𝑦𝐷 based on
vector x𝐷. In the estimation theory, the value 𝑦𝐷 is called
𝑦. In the proposed method, the goal is somehow changed.
We expect to obtain not a single, estimated value 𝑦𝐷 but a
possible narrow interval [𝑦𝐷∗, 𝑦

∗
𝐷] which contains the correct

value 𝑦. The width of the interval should depend on the number
and importance of missing features. Thus, we expect that in
case when 𝐺 = ∅ we obtain 𝑦𝐷∗ = 𝑦∗𝐷, and in case when
𝐷 = ∅ we obtain [𝑦𝐷∗, 𝑦

∗
𝐷] = [min {𝑦} ,max {𝑦}] or even

[𝑦𝐷∗, 𝑦
∗
𝐷] = [−∞,∞]. In the further parts of the paper, the

output interval will described as [𝑦∗, 𝑦
∗] regardless of 𝐷 set

for simplicity.

The paper is organised as follows. The current section
introduces the reader into the subject and the goal of presented
researches. Section II presents fundamental information and
definitions about rough sets, fuzzy sets, fuzzy rough sets, and
neuro-fuzzy systems with fuzzy rough sets. Section III contains
the adaptation of the neuro-fuzzy approximator to work in
cases of missing features instead of imprecise data. Section IV
considers learning methods concerned with systems mentioned
above. Section V contains results for learning and testing of
discussed systems with the use of presented learning methods.
Ending Conclusions contain also plans for the future work.

II. FUNDAMENTALS

1) Fuzzy Sets: The fuzzy sets have been defined by Zadeh
[43], who proposed to generalise the definition of common
sets by extending the term of the characteristic function and
allowing it to obtain values ”between zero and one”. Such
function is called also a membership function. Using contem-
porary terminology [31], the fuzzy set is a set of pairs which
includes element and its membership to the set, i.e.

𝐴 = {𝑥, 𝜇𝐴 (𝑥)} , 𝑥 ∈ 𝑋 , (1)

where 𝜇𝐴 : 𝑥 
−→ [0, 1] is the membership of element 𝑥 to
set 𝐴. Therefore, the fuzzy sets expresses the uncertainty in
membership of a particular element.

2) Rough Fuzzy Sets: The rough fuzzy set has been defined
by Pawlak [22]. It is a pair

(
𝑅𝐴,𝑅𝐴

)
of fuzzy sets. 𝑅𝐴 is an

𝑅-lower approximation and 𝑅𝐴 is an 𝑅-upper approximation
of fuzzy set 𝐴 ⊆ 𝑋 . The membership functions of 𝑅𝐴 and
𝑅𝐴 are defined as follows

𝜇𝑅𝐴(𝑥̂) = inf
𝑥∈[𝑥̂]𝑅

𝜇𝐴(𝑥) , (2)

𝜇𝑅𝐴(𝑥̂) = sup
𝑥∈[𝑥̂]𝑅

𝜇𝐴(𝑥) . (3)

where [𝑥̂]𝑅 is an equivalence class [25] dependent on the 𝐷̃-
indiscernibility relation which is defined by

𝑥𝐷̃𝑥̂⇔ ∀𝑣 ∈ 𝐷; 𝑓𝑥(𝑣) = 𝑓𝑥̂(𝑣) , (4)

where 𝑥, 𝑥̂ ∈ X and 𝑓𝑥 is an information function expressing
a value of feature 𝑣𝑖 of object 𝑥.

3) Fuzzy Rough Sets: As was mentioned above, the first
attempt to combine fuzzy and rough sets comes from Dubois
and Prade [4], [5]. Formally, if Φ is a fuzzy partitioning of a
universe 𝑈 , fuzzy sets 𝐹𝑖 are its partitions, and 𝐴 is a fuzzy
subset of 𝑈 , i.e., 𝐴 ⊆ 𝑈 . The fuzzy rough set is defined as a
pair (Φ∗𝐴,Φ∗𝐴), where set Φ∗𝐴 is a Φ–lower approximation
of the fuzzy set 𝐴, and set Φ∗𝐴 is its Φ–upper approximation.
Accordingly, membership functions of fuzzy sets Φ∗𝐴 and
Φ∗𝐴 are defined as follows:

𝜇Φ∗𝐴(𝐹𝑖) = sup
𝑥∈𝑈

min (𝜇𝐹𝑖(𝑥), 𝜇𝐴(𝑥)) , (5)

𝜇Φ∗𝐴(𝐹𝑖) = inf
𝑥∈𝑈

max (1− 𝜇𝐹𝑖(𝑥), 𝜇𝐴(𝑥)) . (6)

III. NEURO-FUZZY APPROXIMATOR

Continuing the development of hybrid decision systems
[28], [17], [19], [20], [21], we have proposed the fuzzy rough
network for approximation tasks which have been developed
for imprecise input data. The system is an extension of pre-
vious rough neuro-fuzzy classifiers, however, based on fuzzy
rough sets (Eqs. (5) and (6)) instead of rough fuzzy sets. It,
as previous ones, consists of two specific neuro-fuzzy systems
and the common knowledge base. The base of knowledge can
be represented in the classical form, i.e.

𝑅𝑘 : IF 𝑥1 is 𝐴𝑘1 AND 𝑥2 is 𝐴𝑘2 AND . . .
. . .AND 𝑥𝑛 is 𝐴𝑘𝑛 THEN 𝑦 is 𝐵𝑘 , (7)

where 𝐴𝑘1 , . . . , 𝐴
𝑘
𝑛 is an antecedent fuzzy set and 𝐵𝑘 is a

consequent fuzzy set used the 𝑘-th rule, or as Takagi-Sugeno-
Kang type I rules:

𝑅𝑘 : IF 𝑥1 is 𝐴𝑘1 AND 𝑥2 is 𝐴𝑘2 AND . . .
. . .AND 𝑥𝑛 is 𝐴𝑘𝑛 THEN 𝑦 = 𝑦𝑘

. (8)

In such case, 𝑦𝑘 = sup𝑦∈𝑌 𝜇𝐵𝑘 (𝑦) and 𝑌 is domain of 𝑦.

The neuro-fuzzy systems can be developed using either
conjunction type or logical type of reasoning [3] [28] and
various methods of defuzzification. Here, we consider only
centre average defuzzification and the conjunction-type reason-
ing. However, fuzzification is defined in the context of fuzzy
rough sets. We assume that a premise is defined as follows

𝑥1 is 𝐴′1 AND 𝑥2 is 𝐴′2 AND . . . . . .AND 𝑥𝑛 is 𝐴′𝑛, (9)

and the sets 𝐴′𝑖, 𝑖 = 1, . . . , 𝑛 are not singletons. We treat 𝐴′𝑖 as
the 𝐹𝑖 function in fuzzy rough definitions (Eqs. (5) and (6)).
Thus, we obtain the interval {𝐴∗, 𝐴∗} defined as follow

𝜇𝐴∗𝑖 𝑘(𝐴
′
𝑖) = sup

𝑥𝑖∈X𝑖

𝑇
(
𝜇𝐴′𝑖(𝑥𝑖), 𝜇𝐴𝑘𝑖 (𝑥𝑖)

)
, (10)

𝜇𝐴𝑘𝑖∗(𝐴
′
𝑖) = inf

𝑥𝑖∈X𝑖

𝑆
(
𝑁
(
𝜇𝐴′𝑖(𝑥𝑖)

)
, 𝜇𝐴𝑘𝑖 (𝑥𝑖)

)
. (11)

Now we can observe that the fuzzy rough set
{
𝐴𝑘𝑖∗, 𝐴

∗𝑘
𝑖

}

is formally an interval type-2 fuzzy set, although the notions
of these two sets differ in interpretation. As a consequence,
the well known Karnik-Mendel type-reduction iterative method
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[9], [10] can be employed to defuzzify interval fuzzy conclu-
sions. According to this method, in each 𝑡-th iteration, the
lower and upper approximations are calculated by:

𝑦∗(𝑡) =

𝑁∑

𝑘=1

𝑦𝑘 ⋅ 𝜇𝐴𝑘L(x̄, 𝑡)
𝑁∑

𝑘=1

𝜇𝐴𝑘L(x̄, 𝑡)

(12)

and

𝑦∗(𝑡) =

𝑁∑

𝑘=1

𝑦𝑘 ⋅ 𝜇𝐴𝑘U(x̄, 𝑡)
𝑁∑

𝑘=1

𝜇𝐴𝑘U(x̄, 𝑡)

, (13)

where 𝐴𝑘L and 𝐴𝑘U are determined as

𝐴𝑘L(𝑡) =

{
𝐴𝑘∗ if 𝑦𝑘 > 𝑦∗(𝑡− 1)

𝐴∗𝑘 if 𝑦𝑘 ≤ 𝑦∗(𝑡− 1)
, (14)

and

𝐴𝑘U(𝑡) =

{
𝐴∗𝑘 if 𝑦𝑘 > 𝑦∗(𝑡− 1)

𝐴𝑘∗ if 𝑦𝑘 ≤ 𝑦∗(𝑡− 1)
, (15)

with the initial values

𝑦∗(0) = 𝑦∗(0) =
1

𝑁

𝑁∑

𝑘=1

𝑦𝑘. (16)

The sets 𝐴𝑘∗ and 𝐴∗𝑘 are defined by Cartesian product i.e.
𝐴𝑘∗ = 𝐴𝑘1∗×𝐴𝑘2∗× . . .×𝐴𝑘𝑛∗, 𝐴∗𝑘 = 𝐴∗𝑘1 ×𝐴∗𝑘2 × . . .×𝐴∗𝑘𝑛 .

The content of the general defuzzification module ac-
cording to the KM type-reduction algorithm in fuzzy rough
network is depicted in Fig. 1. A similar system but without the
Karnik-Mendel type-reduction iterative method was proposed
by Simiński [39].

Another formulation of the system could be adopted for
the case of missing features if we know a variation range of
the features with unknown values. In such a case, fuzzy sets
𝐴′𝑖 are substituted by intervals {𝑥𝑖min, 𝑥𝑖max} and sets 𝐴𝑘𝑖∗ and
𝐴∗𝑘𝑖 are calculated as follows

𝜇𝐴∗𝑘𝑖 (𝑋𝑖) = sup
𝑥𝑖min<𝑥𝑖<𝑥𝑖max

𝜇𝐴𝑘𝑖 (𝑥𝑖), (17)

𝜇𝐴𝑘𝑖∗(𝑋𝑖) = inf
𝑥𝑖min<𝑥𝑖<𝑥𝑖max

𝜇𝐴𝑘𝑖 (𝑥𝑖). (18)

When a value 𝑥𝑖 is known, we get

𝜇𝐴𝑘𝑖∗ (𝑥𝑖) = 𝜇𝐴∗𝑘𝑖 (𝑥𝑖) = 𝜇𝐴𝑘𝑖 (𝑥𝑖) . (19)

The structure of adapted fuzzy rough network is presented in
Fig. 2.

IV. LEARNING

The learning of a neuro-fuzzy system is the subject of
many papers. Parameters of the fuzzy sets in rules can be
determined by various versions of genetic, evolutionary and
gradient algorithms using the commonly known criterion:

𝑄 =
1

2

𝑚∑

𝑗=1

(
𝑦𝑗 − 𝑑𝑗

)2
, (20)

where 𝑦𝑗 is a value obtained on 𝑗-th output and 𝑑𝑗 is desired
value on 𝑗-th output, 𝑚 is the number of outputs. It could be
applied also to above proposed system but only when values
of all features are known. In this case, both subsystems work
with the same data and we obtain 𝑦∗ = 𝑦∗ = 𝑦, 𝑚 = 1, and
consequently 𝑗 can be omitted.

When of at least one feature value is unknown, the fuzzy
rough network gives mentioned above couple values 𝑦∗, 𝑦

∗
(𝑚 = 2) which constitute an output interval [𝑦∗, 𝑦

∗]. It must
be noted that the desired value 𝑑 is common for both outputs.
Below we consider a few possible criteria, some of them are
new.

1) Criterion ”standard”: By applying directly the criterion
given by (20), we obtain the following definition

𝑄 =
1

2
(𝑦∗ − 𝑑)

2
+

1

2
(𝑦∗ − 𝑑)

2 . (21)

It can be also decomposed into two individual criteria for
particular outputs,

𝑄∗ =
1

2
(𝑦∗ − 𝑑)

2 (22)

𝑄∗ =
1

2
(𝑦∗ − 𝑑)

2 (23)

The criterion attracts the both output values to desired
value 𝑑; however, the attraction is stronger when the distance
is higher. Thus, the criterion always reduce the width of the
output interval. Fig 3 presents the drift of output values in
three cases. The pressure of this criterion tries to involuntary
narrow the output interval. The theoretically ”desired” state,
i.e. 𝑄 = 0 is reached when 𝑦∗ = 𝑦∗ = 𝑑 even in the case of
missing input values. However, as it was mentioned above, we
expect that 𝑦∗ = 𝑦∗ = 𝑑 occurs only when values of all input
features are known. Moreover, in consequence of narrowing
the output interval this criterion leads to widening of the sets
in antecedents of the rules. It reduces the sensitivity of the
system. Thus we can expect that the ”standard” criterion is
not proper for the learning with incomplete samples.

Fig. 3. The result of ”standard” criterion a) 𝑑 inside output interval, b) 𝑑
above output interval, c) 𝑑 below output interval

2) Criterion ”shift of medium”: This criterion attempts to
set the output interval in such position that the desired value
𝑑 is in its centre. It is defined as follows

𝑄 =
1

2

(
𝑦∗ + 𝑦∗

2
− 𝑑

)2

(24)

Note that the criterion does not refer to the width of the inter-
val. The ”desired” state 𝑄 = 0 is obtained when 𝑦∗+𝑦∗ = 2𝑑
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Fig. 1. The architecture of fuzzy rough network

and the width of output interval, i.e. 𝑦∗ − 𝑦∗, is meaningless.
In consequence, changes of the output interval width are
unpredictable. A resulting impact of such changes is illustrated
in Fig. 4. This criterion could be useful together with an
additional criterion respecting the width of the output interval,
e.g. in multicriteria genetic algorithms. The desired value of the
width could depend on a number of missing values according
to discussion in the Introduction of this paper.

Fig. 4. The result of ”shift of medium” criterion a) 𝑑 inside output interval,
b) 𝑑 above output interval, c) 𝑑 below output interval

3) Criterion ”shift and narrow”: Another criterion is sim-
ilar to the previous one but it is extended by an additional part
respecting the width of the output interval

𝑄 =
1

2

(
𝑦∗ + 𝑦∗

2
− 𝑑

)2

+
1

2
(𝑦∗ − 𝑦∗)

2 (25)

This will ensure some reduction of the width of the output
interval. Therefore, during a long process of learning, it can
strive near to zero even in the case of missing features. Such
situation is illustrated in Fig. 5.

Fig. 5. The result of ”shift and narrow” criterion a) 𝑑 inside output interval,
b) 𝑑 above output interval, c) 𝑑 below output interval

In the case of problems which require a very long learning
process, the criterion should be modified by weights, e.g.

𝑄 = 𝛼
1

2

(
𝑦∗ + 𝑦∗

2
− 𝑑

)2

+ 𝛽
1

2
(𝑦∗ − 𝑦∗)

2 (26)
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Fig. 2. The architecture of fuzzy rough network adapted for missing values

and the weight 𝛽 should be decreasing with respect to the
expected length of the learning process.

4) Criterion ”bound and narrow”: This criterion attracts
the nearest bound of the output interval to the desired value
as long as the desired value is outside of the interval. If 𝑑 is
within this interval, the criterion performs no change. Besides,
it tries to reduce the width of the output interval.

𝑄 =
1

2
(max {0, 𝑑− 𝑦∗, 𝑦∗ − 𝑑})2 + 1

2
(𝑦∗ − 𝑦∗)

2 (27)

The performance of the criterion is shown in Fig. 6.

In the case of problems which required very long learning
process the criterion should be modified as previous one.

5) Criterion ”expand then narrow”: The last proposition
acts in two overlapping stages. When the desired output value
is outside of the interval, it tends to be extended in the direction
of 𝑑, otherwise, when the desired value is inside, the width
of the interval is asymmetrically decreasing. It is defined as

Fig. 6. The result of ”bound and narrow” criterion a) 𝑑 inside output interval,
b) 𝑑 above output interval, c) 𝑑 below output interval

follows

𝑄 =

⎧
⎨

⎩

1
2 (𝑦

∗ − 𝑑)
2 if 𝑑 > 𝑦∗

1
2 (𝑦∗ − 𝑑)

2
+ 1

2 (𝑦
∗ − 𝑑)

2 if 𝑦∗ < 𝑑 < 𝑦∗
1
2 (𝑦∗ − 𝑑)

2 if 𝑑 < 𝑦∗,
(28)
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or, alternatively, as two separate criteria for the particular
outputs

𝑄∗ =

{
1
2 (𝑦∗ − 𝑑)

2 if 𝑑 ≤ 𝑦∗

0 if 𝑑 > 𝑦∗
, (29)

𝑄∗ =

{
1
2 (𝑦

∗ − 𝑑)
2 if 𝑑 ≥ 𝑦∗

0 if 𝑑 < 𝑦∗
. (30)

This solution applied to any gradient algorithm will result
with the width of the output interval being extended in the
direction of values 𝑑 being outside and the width of the interval
will be reduced for values 𝑑 being within the interval. This
behaviour is illustrated in Fig. 7. We expect that in the first
stage of learning, in most cases, the desired value will be
outside of the output interval, so it will be extended. If the
size of the system (the number of rules) is enough, in the
second stage the interval will be sufficiently narrow to contain
all the desired values.

Fig. 7. The result of ”expand then narrow” criterion a) 𝑑 inside output
interval, b) 𝑑 above output interval, c) 𝑑 below output interval

The consideration presented above have been verified in
tests.

V. EXPERIMENTAL RESULTS

In order to analyse the fuzzy rough network, we have
chosen the pumadyn dataset. As we can read in the docu-
mentation attached to the data [7], ”the pumadyn datasets are
a family of datasets synthetically generated from a realistic
simulation of the dynamics of a Puma 560 robot arm”. We have
decided to choose four sets, all with 8 inputs but with various
characteristics. The set pumadyn8fh is characterised by fairy
linearity and high noise, the set pumadyn8fm is characterised
by fairy linearity and medium noise, the set pumadyn8nh
is characterised by nonlinearity and high noise, and the set
pumadyn8nm is nonlinear with medium noise. The eight input
features consist three angles between robot elements with
range

[− 1
2𝛽𝜋,

1
2𝛽𝜋

]
, its velocities with the same range and

two torques at robot joints with range
[− 1

2𝛽,
1
2𝛽
]
. The index

𝛽 is fixed as 0.6 for sets pumadyn8fm and pumadyn8fh and as
1.2 for sets pumadyn8nm and pumadyn8nh.

The pumadyne dataset had been modelled by Shmilovici
and Ben-Shimon [38] for a complete input interval and after
a feature selection. Their results (RMSE) in the first case for
selected above datasets are quoted in Table I. We will treat
these results as a reference.

The fuzzy rough network gives on its output an answer in
the form of an interval. If values of all features are known, the

TABLE I. RMSE OBTAINED IN SELECTED pumadyn DATASETS BY [38]

Database RMSE

pumadyn8fh 3.16
pumadyn8fm 1.05
pumadyn8nh 3.28
pumadyn8nm 1.26

width of the interval is zero and should increase as a number
and importance of unknown values increase. However, in our
intention, the correct (desired) output value should be inside
the interval. Otherwise, the distance to the interval constitutes
the error measure. Therefore, we have got two measures that
characterise the performance of the approximator. The first one
is the root mean square of the distance between a desired value
and the nearest boundary of an output interval,

RMSEBnd =

√
∑𝑀
𝑠=1 (max{0, 𝑑𝑠 − 𝑦∗𝑠 , 𝑦∗𝑠 − 𝑑𝑠})2

𝑀
, (31)

where 𝑠 is an index of a sample, 𝑀 is a number of samples,
𝑑𝑠 is a desired value of 𝑠-th sample, 𝑦∗𝑠 , 𝑦∗𝑠 are upper and
lower approximations of 𝑠-th sample. The second measure is
given by the mean width of output intervals. It can be defined
as follows

IWidth =

∑𝑀
𝑠=1(𝑦

∗
𝑠 − 𝑦∗𝑠)
𝑀

. (32)

Tables II-V contain the average results (RMSEBnd and
IWidth measures) obtained for fuzzy rough networks with 7
rules. The number of rules has been selected during multiple
experiments. The number of missing features (1, 2 or 4) has
been changing for each optimisation criteria (1 – 5). For
evaluation purpose, the systems have been tested using 10-
cross validation. The distribution of the missing values has
been chosen randomly. In order to obtain comparable results,
parameters of the learning process, as the learning coefficient,
the momentum coefficient and the number of iterations, have
been constant in all experiments. Therefore, it is quite possible
to improve the presented RMSEBnd results by continuing the
learning process or changing some of its parameters.

TABLE II. IMPACT OF CRITERIA ON ERROR AND AVERAGE INTERVAL

WIDTH FOR pumadyn8fh DATABASE

Criterion Measure
#missing features
1 2 4

”standard” RMSEBnd 2.94 3.13 3.87
IWidth 1.76 2.35 2.04

”shift of medium” RMSEBnd 2.26 1.83 1.23
IWidth 3.71 6.59 10.83

”shift and narrow” RMSEBnd 3.55 4.14 4.71
IWidth 1.10 0.99 0.59

”bound and narrow” RMSEBnd 3.14 3.59 3.99
IWidth 1.82 1.89 1.89

”expand then narrow” RMSEBnd 2.03 2.23 2.47
IWidth 4.04 4.56 5.20

The results contained in Tables II-V show that the choice of
criterion is extremely important. The presumptions presented
in Section IV, that refer to the criteria, have been partly
confirmed. The criterion ”shift of medium” results with a
huge width of intervals and therefore is of low importance.
The criteria ”standard”, ”shift and narrow” and ”bound and
narrow” have not reduced the width of intervals to zero and
consequently both the width and the level of error have re-
mained on a restrained level. The positively dominant criterion
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TABLE III. IMPACT OF CRITERIA ON ERROR AND AVERAGE INTERVAL

WIDTH FOR pumadyn8fm DATABASE

Criterion Measure
#missing features
1 2 4

”standard” RMSEBnd 1.36 1.97 3.14
IWidth 1.97 2.59 2.36

”shift of medium” RMSEBnd 0.52 0.47 0.42
IWidth 3.95 6.25 10.15

”shift and narrow” RMSEBnd 2.38 3.34 4.13
IWidth 1.29 1.21 0.72

”bound and narrow” RMSEBnd 2.21 2.87 3.47
IWidth 1.60 1.81 1.79

”expand then narrow” RMSEBnd 1.13 1.47 2.02
IWidth 2.83 3.92 4.57

TABLE IV. IMPACT OF CRITERIA ON ERROR AND AVERAGE INTERVAL

WIDTH FOR pumadyn8nh DATABASE

Criterion Measure
#missing features
1 2 4

”standard” RMSEBnd 3.12 3.66 4.59
IWidth 2.25 2.55 1.86

”shift of medium” RMSEBnd 2.08 1.63 1.10
IWidth 5.26 8.48 13.42

”shift and narrow” RMSEBnd 4.15 4.78 5.31
IWidth 1.17 1.04 0.52

”bound and narrow” RMSEBnd 3.64 4.10 4.56
IWidth 2.00 2.11 1.98

”expand then narrow” RMSEBnd 2.24 2.44 2.78
IWidth 4.47 5.31 5.88

has turned out to be the criterion marked as ”bound and
narrow”. Unfortunately, the results obtained using the criterion
”expand then narrow” have proved to be a surprise; the width
of intervals is unacceptably high and the level of error not
satisfactory. Note, that we had been expected the process of
interval narrowing during the second stage of the learning
process. This large divergence with respect to our expectations
requires further study.

VI. CONCLUSIONS

In the paper, we have shown the structure of fuzzy rough
network and its adaptation to handle with missing features
in approximation tasks. We have studied the learning process
in terms of various criteria. The criteria relate to the case of
missing input features and an interval output. The appropriate
criterion should allow to learn the system using even samples
with missing features without imputation or marginalisation.
Details on gradient learning of neuro-like networks was omit-
ted as they were extensively studied in the literature. A general
methodology presented in this paper can be adopted to other,
more sophisticated methods of learning as well as to genetic or
evolutionary algorithms. The presented research confirm that
the results obtained by a single fuzzy-rough or a rough-fuzzy

TABLE V. IMPACT OF CRITERIA ON ERROR AND AVERAGE INTERVAL

WIDTH FOR pumadyn8nm DATABASE

Criterion Measure
#missing features
1 2 4

”standard” RMSEBnd 1.86 2.83 4.14
IWidth 2.58 3.08 2.27

”shift of medium” RMSEBnd 0.81 0.82 0.70
IWidth 5.31 7.76 12.21

”shift and narrow” RMSEBnd 3.64 4.33 5.02
IWidth 1.15 1.31 0.70

”bound and narrow” RMSEBnd 2.91 3.68 4.26
IWidth 1.91 2.16 2.00

”expand then narrow” RMSEBnd 1.45 1.80 2.46
IWidth 3.66 5.06 5.55

system are not completely satisfactory, hence such systems
seem to be predisposed to work in ensembles [14]. The future
work will be focused on improving the results e.g. by using
other methods of learning or by constructing ensembles of
fuzzy rough network as in the cases of rough fuzzy networks
[13], [12], [11]. Moreover, we would like also extend the
proposed model with an additional weight [44], which could
result with reducing the number of rules [2]. Next, the logical
methods of reasoning as well as the flexible reasoning schemes
[1] will hopefully allow to obtain new desired properties of the
system as interpretability of fuzzy rules [26].
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