
Hierarchical Linear Dynamical Systems: A new model for clustering
of time series

Goktug T. Cinar, Carlos A. Loza and Jose C. Principe

Abstract— The auditory cortex in the brain does effortlessly
a better job of extracting information from the acoustic world
than our current generation of signal processing algorithms. The
proposed architecture, Hierarchical Linear Dynamical System
(HLDS), is based on Kalman filters with hierarchically coupled
state models that stabilize the input dynamics and provide a
representation space. This approach extracts information from
the input and self-organizes it in the higher layers leading to an
algorithm capable of clustering time series in an unsupervised
manner. In this paper we further investigate the properties
of HLDS, demonstrate its performance on music rather than
isolated notes and propose the time domain implementation to
overcome one of its current bottlenecks.

Index Terms— Music information retrieval, kalman filters,
dynamical systems, hierarchical systems, cognitive models, clus-
tering, time series

I. INTRODUCTION

Clustering of time series is a challenging problem compared
to its counterpart on static data sets. Therefore a lot of
research effort have been put into this area. In [1] Liao
surveys the current state of the art and reveals that most of
the current work either modifies the distance measures used
in clustering of static data to work on time series or extracts
features from time series and applies methods of static data
clustering on them. Our approach falls under the subgroup
that uses modelling techniques to cluster time series as will
be explained below, and is substantially different from the
majority of the methods dealing with clustering of time series.
Mainly because it takes advantage of the temporal information
buried in the temporal structure of time series.

The signal processing and machine learning communities
do not favor state space models and dynamical systems. This
could be a poor decision when working on sensory stimulus as
the stimuli is rich in terms of context at a given time (spatial
information); however considerably large amount of informa-
tion lies in the temporal behavior of the sensory input [2]. This
is even more important when working with auditory stimuli,
as we are working with a one-dimensional signal, most of
the information can be gathered by analyzing the temporal
structure. Therefore the bag of audio features representation,
which is a common approach in music information retrieval,
is fundamentally limited by ignoring the time dependency
between feature vectors [3].

Goktug T. Cinar, Carlos Loza and Jose C. Principe are with the
Computational NeuroEngineering Laboratory (CNEL), University
of Florida, Gainesville, FL (email: gcinar@ufl.edu, cloza@ufl.edu,
principe@cnel.ufl.edu).

This work is supported by the Office of Naval Research (ONR) grant
#N000141010375.

The important question of finding good features for sensory
processing remains unanswered. Hence we almost exclusively
keep using the sensory space to find them. This may not be
the best approach due to the complexity and variability of
the sensed signals (changes in timbre, tone, noise, context),
while what is needed is invariant representations. On the
other hand, biological organisms have solved this problem
long ago by developing an active perception mechanism.
The brain disambiguates the sensory signals according to our
expectations and prior knowledge.

Using the theory of dynamical systems to process and
analyze sensory stimulus is increasingly becoming an area
of interest [4], [5], [6]. Recently Barrington et al. [3], [7]
proposed the use of Dynamic Texture (DT) to model music.
Using Linear Dynamical Systems (LDS) as a generative model
for time-series is also known as Dynamic Texture in the
computer vision literature [3]. Barrington et al. used the
Mixture of Dynamic Textures introduced in [8] to segment
a song into sections. They use larger time scales to learn
textures corresponding to particular segments in a song. Our
focus will be to start from smaller time scales and expand the
representations in time (thus changing slowly compared to
the lower layer representations) while we build a hierarchical
network, which is a property called temporal coherence [9].
Similarly, Vaizman et al. [10] used Mixtures of Dynamic
Textures to extract features describing the emotional content
in music. Also in [11] Coviello et al. used Mixtures of
Dynamic Textures to perform automatic music tagging and
music annotation.

Hopfield used recurrent artificial neural networks as a con-
tent addressable memory and demonstrated some properties
including generalization and familiarity recognition [12]. Later
Tank and Hopfield used these networks on speech signals.
As they put it, “recognizing the pattern in a time-dependent
signal is important in hearing and vision”. They introduce
the idea of attractors in the ‘energy space’ for which “the
presentation of a known sequence of stimuli builds a deep pit
on the space-time energy surface with a wide valley leading to
it” [13], [14]. In [13] they state that they would need a n+1
dimensional energy surface consisting one dimension for each
of n recognition variables and one time dimension. This would
essentially make the model computationally too expensive as
the number of recognition variables grow. We share the same
vision of addressing the possible need for a hierarchical set of
networks for detecting sequences on several time scales. They
demonstrate the model on recognition of digits in connected
speech [15], where they propose a framework that consists

2014 International Joint Conference on Neural Networks (IJCNN) 
July 6-11, 2014, Beijing, China

978-1-4799-1484-5/14/$31.00 ©2014 IEEE 2464



Fig. 1. The schematic showing the structure of the model.

of tone detectors and networks that work using the output of
tone detectors to further recognize sequences.

In [16] Munkong and Juang present an overview of auditory
perception process and advocate for the integration of struc-
tural and functional knowledge of the auditory system. They
“suggest a perspective, called the constructionist’s paradigm,
which looks at the neuron-anatomical structure for auditory
perception in three essential stages with intermediate signal
representations that allow interchangeable coupling to accom-
modate new and improved models within each individual
stage”. We follow this paradigm in creating a model that works
directly with auditory stimuli in its lowest layer and slowly
builds a hierarchical representation with intermediate stages
where key tasks can be performed.

The biological inspirations to build our model are limited
and are restricted to guidelines. The model should have a
hierarchical structure to represent the layered structure of the
auditory cortex. It should have the ability to be (directly
or indirectly) driven top-down by causes to mimic active
perception. Therefore we will concentrate on Hierarchical
Linear Dynamical Systems (HLDS). The overview of the
model is shown in Figure 1.

In [17], we introduced the HLDS and presented the initial
findings. In this paper we present additional experimental
results as well as the extension of the model to work with
time domain observations instead of the frequency domain
used in [17].

II. HIERARCHICAL LINEAR DYNAMICAL SYSTEM

It is a common belief that the cortex is stereotyped in
hierarchical layers and internal organization [18]. This is the

main motivation for choosing a Hierarchical Linear Dynamical
System.

The idea of a nested HLDS is to design a model that
would consist of one measurement equation and multiple state
transition equations. The system is nested in the sense that
each state transition equation creates the causes/states that
would drive the lower layer. This introduces a top-down flow
of information. In the nested HLDS we drive the system
bottom-up by the observations, and top-down by the states.
The governing equations of the nested HLDS are as follows:

zt = zt−1 + pt

ut = Gut−1 +Dzt−1 + rt

xt = Fxt−1 +But−1 + wt

yt = Hxt + vt (1)

where yt ∈ R
m is the observation vector. xt ∈ R

n is the
first layer hidden states, ut ∈ R

k is the second layer hidden
states, and zt ∈ R

s is the third layer hidden states where
n > k > s so that the dimensionality decreases in each layer
as we go up in the hierarchy. The motivation is to restrict
the states in to smaller representation spaces to be used in
clustering. In other words, we want the model’s representation
to expand as we go down the hierarchy. The model is shown to
work with a wide range of model sizes in Section III. In these
equations, pt, rt, wt, vt are zero mean Gaussian uncertainties.
The covariance matrices of these uncertainties are defined as
αmIm, αnIn, αkIk, αsIs respectively where Im is an identity
matrix of dimension m×m.

The reader should note that we impose a fixed point be-
havior (i.e. identity state transition) in the highest layer of the
hierarchy. This combined with the locally stationary behavior
of music signals imposes a stable behavior throughout the
hierarchy as each layer is driven by the one above it. It is
intuitive to think that even if slightly larger changes occur
in the observations, the changes in the higher layers should
be much slower. This should result in creating clusters in the
state space that zt ∈ R

s exists.

A. State Estimation in Joint Space

We can re-write the nested dynamics defined in (1) as
follows:

X̃t = F̃ X̃t−1 + W̃t (2)

yt = H̃X̃t + vt (3)

where X̃t =

⎡

⎣

zt
ut
xt

⎤

⎦ , F̃ =

⎡

⎣

I 0 0
D G 0
0 B F

⎤

⎦ ,

H̃ =
[

0 0 H
]

, W̃t =

⎡

⎣

pt
rt
wt

⎤

⎦

2465



The equations (2) and (3) tells us that there is a joint state-
space where we can do the estimation of all the hidden states
in all the layers simultaneously. This will enable the use of
the standard estimation equations of the Kalman Filter [19]
for this joint state space model.

B. Parameter Learning

We learn the parameters simultaneously while inferring the
states of the HLDS. This is known as sequential estimation (
[20], [21]), where we consider two dual systems with the same
observation. The idea is as simple as switching the roles of
the parameters and states, where we vectorize the parameters
in
[

F̃,H
]

and treat them as states. We consider identity state
transition for parameter dynamics. We use gammatone filters
in the first layer. We create 4th order gammatone filters in the
range from 10Hz to fs/2 (where fs is the sampling frequency
of the recordings we use). We place the center frequencies half
an ERB away from each other, to get a denser coverage in
the frequency domain. Therefore in this paper the models all
have a 60-dimensional first layer (n=60).

C. Parallelization of Parameter Learning

In [17] we have shown that the parameter learning can be
parallelized with no loss and without any approximation. This
saves a lot of computation and memory as the dual system for
the parameters require working with very high dimensional
systems. Here we present the parallelization briefly:

Fn×n =

⎡

⎢

⎢

⎣

f1
f2
...
fn

⎤

⎥

⎥

⎦

Bn×k =

⎡

⎢

⎢

⎣

b1

b2

...
bn

⎤

⎥

⎥

⎦

(xt)n×1 =

⎡

⎢

⎢

⎣

x1
t

x2
t

...
xnt

⎤

⎥

⎥

⎦

(ut)k×1 =

⎡

⎢

⎢

⎣

u1
t

u2
t

...
ukt

⎤

⎥

⎥

⎦

where fi,hi,bi is the ith row of the corresponding matrix,
xit is the ith element in the state vector.

To learn the values in F and B consider the following
system:

θt = θt−1 + wθt

xit =

[

xt−1

ut−1

]T

θt + vθt
where θt =

[

fTi
bTi

]

The high dimensionality of the parameter space was keep-
ing us from propagating the error covariance of parameter
estimation. Now with these parallel but much smaller systems
the propagation can be done easily. The same initialization
explained above is used for the dual systems estimating the
parameters.

A common problem in applying the sequential estimation
is the degenerate solution as t → ∞,ŵt → ∞ and xt → 0.
To avoid this solution we force each column of the w =
[F,H,D,B,G] matrices to have unit norm. Therefore after

each update, the values of each column are normalized such
that the column has unit norm. Equation (4) shows the
constraint we enforce.

‖Ft(., j)‖ = 1 ∀j (4)

III. EXPERIMENTAL RESULTS

In [17], we worked in the frequency domain. Here we will
recap the experimental setup we have used. Our observation
sequences will be single-sided magnitude spectrum of the au-
dio signals; we will not work with the phase of the spectrum.
The audio signal will be windowed using a L-point symmetric
Hanning window. The length of the window will be selected
such that each window will contain about 80-100ms of data.
The windows will have 50% overlap. Each window of data
will be normalized to a fixed maximum amplitude before the
FFT is computed.

In this experiment we use the audio samples from The
University of Iowa Musical Instrument Samples [22]. All the
instrument recordings that are used in this work are recorded
in an anechoic chamber. A Neumann KM 84 Cardioid micro-
phone is used at a distance of 5 feet. The mono recordings
are sustained notes of around 2 seconds sampled at 44.1 kHz
with 16-bit resolution. In our work the recordings have been
downsampled to 11025 HZ mono so that the window size for
the FFT would be reasonable. We used concatenated notes in
the range E3-D6 for the non-vibrato B-sharp Trumpet to train
and test the HLDS.

We use a 1024 point FFT to create the observation vectors
from each window of data. As we use the single sided
amplitude spectrum, the length of our observation vector is
512 (m=512). We present each observation vector multiple
times to speed up convergence to the clusters. We have
n=60 states in the first layer (the number of filters needed
to cover the frequency range placed half an ERB apart),
k=10 (chosen heuristically) states in the second layer and s=3
(for visaualization purposes) state in the third layer. We use
0.01 · I(n+k+s)×(n+k+s) as the covariance matrix of the joint
state transition equation (2) uncertainty; and 0.5 · Im×m as
the covariance matrix of the joint measurement equation (3)
uncertainty.

Once the training is completed the parameters are fixed
and the system is tested with trumpet notes. Figure 2 shows
the point clusters learned by the HLDS. As explained in
[17], we see that there is a transition phase before the states
converge around the cluster. The system usually reaches the
neighborhood of the cluster within a few (3-6) iterations. We
observe that whatever the initial states are, they converge to
the particular clusters when a certain note is played.

A. Monophonic Pitch Estimation

For pitch estimation using the clusters in the highest layer,
we need to label cluster centers for each note. Therefore to
determine the cluster centers we present the notes one-by-one
to the system with its parameters fixed. As the transition phase
between the notes is considerably short, we do not bother

2466



Fig. 2. The response of the 3rd layer hidden states to a subset of the trumpet
notes. The transients are not shown to clearly show the clusters.

eliminating the transition phase while determining the cluster
centers. We find the mean value for the highest layer states for
all time instances, and assign this value as the cluster center.

To assess the classification accuracy we do Monte Carlo
runs through all 35 notes. In each run the notes are presented
in a different order. At each time instant the states are
compared to the cluster centers for each note. The closest
center is assigned as the label. When a new note is presented
we create a window or ‘memory’ of instantaneous labels. We
then check if the same decision was given by the system
for all time instances in the memory. When the unanimous
decision is given for the window, convergence is declared.
The memory size should be decided with care as too long of
a memory would prevent us from recognizing notes that are
played for a short duration. On the other hand too short of
a memory can signal wrong convergence. We use a memory
of 4 instantaneous labels. Using this method we have shown
that the model consistently achieves over 90% classification
accuracy, where as high as 96.6% accuracy was achieved for
all time instances. The model was shown to have performed
similarly for a large selection of dimensionalities for second
and third layers as well. Results have been detailed in [17].

B. Performance in Music

We have tackled the problem of classifying the isolated
notes successfully. However this setup is not ‘practical’. In
a real life scenario it would be almost impossible to find a
piece that consists of notes sustained for at least 2 seconds.
However we also didn’t want to tackle the problem of dealing
with different playing styles such as vibrato. Therefore we
have created the ‘Yesterday’ from the Beatles, [23], using the
notes that are in the database. This created a more challenging
scenario to test the system compared to the isolated note
classification. The main reason being the existence of notes
with much shorter durations.

We present the music generated using the samples from our

0 2 4 6 8 10 12 14
40

50

60

70

80

90

100

# of Reiterations

%
 C

la
ss

ifi
ca

tio
n 

A
cc

ur
ac

y

 

 

Without post−processing
With post−processing

Fig. 3. The figure shows the curves of the pitch estimation accuracy with and
without post-processing for different number of iterations over each window
of music. Dimensions of the model are s=3, k=10, n=60.

database and let the model run through the whole length with
fixed parameters. At each time instant we assign the class to
the current window w.r.t. the value of the highest layer states.
We compare the current position of the state to the cluster
centers and assign the closest center as the current class as we
did in the supervised pitch estimation problem. As we created
the music recording using the samples in the database, we
have the ground truth for the class labels (note assignments)
of each window. We evaluate the success of the algorithm
w.r.t. the pitch estimation accuracy over all time instances.

We notice that most of the errors are concentrated around
the onset of each note. This is caused by the wrong assign-
ments the model makes before converging to the true cluster.
To overcome this issue we decided to keep a window of
note assignments in memory and look for consistent note
assignments before making any decisions. We constantly
monitor this sliding window of assignments and start labeling
‘undecided’ when one or more of the note assignments are
different. After this event we wait for the window to have a
unanimous decision. Once the unanimous decision is given,
we go back in time and correct the assignments with the
consistent assignment.

We have noticed that the convergence time of the system
is the main bottleneck that we are facing. Figure 3 shows
the curves of the classification accuracy with and without
post-processing for different number of iterations over each
window of music. After we perform the post-processing the
classification accuracy goes as high as 93%. We couldn’t break
this barrier because the misclassified notes were shorter than
the convergence time. This prompted us to investigate the
convergence time of the system.

C. Convergence Time of the Model

We investigate the convergence time of the model experi-
mentally. We randomly pick two notes and then play the first
one. When we present the second note, we measure the time
it takes for the model to start giving consistent decisions. This
is repeated 500 times for two different model sizes to create a
distribution of convergence times. We picked two well-trained
models to use in this experiment. They both had over 90%
classification accuracy for all time instances. So we expected
a peak for the distribution for smaller number of windows.
We see in Figure 4 that the distributions peak around 2-5

2467



0 2 4 6 8 10 12 14 16 18
0

10

20

30

40

50

60

Convergence Time (# of data windows)

O
cc

ur
re

nc
e 

F
re

qu
en

cy

Fig. 4. Histogram of Convergence Times. Dimensions of the model are s=3,
k=10, n=60.

Fig. 5. The flow diagram of the time domain implementation.

windows (≈110-220 ms) as expected. As we wait for a few
more windows of consistent decisions to make sure of the
convergence after the first appearance of the cluster label, it
takes the model around 6-10 windows to make a decision.
Therefore the model needs about 250-400 ms to make a
decision, which may be reasonable as “latencies as long as
0.5 seconds following brief auditory stimulation have been
measured for neurons in A1 cortex of behaving monkeys”
[13]. In the worst case the model takes about 16 windows of
data to converge from one note to the other, which corresponds
to about a second. These are the bottlenecks of the model
regarding the pitch estimation task. This also explains why
we couldn’t go over certain accuracy for music transcription.
Therefore we propose a time domain method to overcome the
”downsampling” introduced by the spectral windowing. As
we have considerably larger amount of data when working in
time domain, we expect to reduce the effect of convergence
time on the classification accuracy.

IV. TIME DOMAIN APPROACH

As the model requires a locally stationary observation
sequence we will apply the following preprocessing steps to
the time domain signals. We implement in the time domain the
gammatone filters detailed above and pass the signal through
60 filters. The outputs are then passed through a recursive filter
to estimate the mean squared values of the filter outputs:

yit = α(git)
2 + (1− α)yit−1 (5)

TABLE I

THE TABLE SHOWS THE PITCH ESTIMATION ACCURACY FOR ALL TIME

INSTANCES OF THE ALGORITHM IMPLEMENTED IN TIME DOMAIN.

s=3, k=10,
α=0.005

s=4, k=12,
α=0.005

s=5, k=15,
α=0.005

s=3, k=10, vari-
able α

96.37% 91.8% 97.46% 98.73%

0 200 400 600 800 1000 1200 1400 1600 1800
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

Samples

P
er

ce
nt

ag
e 

of
 T

ra
ns

iti
on

s

Fig. 6. Histogram of Convergence Times. Dimensions of the model are s=3,
k=10, n=60.

where yit is the ith entry of the observation vector and git
is the output of ith filter at time t. Then the output of the
recursive mean squared estimator is fed into the HLDS to
train the model. The flow diagram is shown in Figure 5.

Following the same procedures we have trained and tested
the models on three different model sizes. The results are sum-
marized in Table I. We see that the performance is significantly
better compared to our frequency domain implementation.
Only one of the models performed closer to the frequency
domain implementation as some of the clusters were too
close in the 3rd layer which caused the drop in accuracy.
The convergence time of the model is analyzed similarly and
a histogram of convergence times are shown in Figure 6.
We see that it takes less than ≈ 50ms for the algorithm to
converge in general which is significantly shorter compared
to our frequency domain implementation.

When a large α parameter is selected the mean squared
estimate will reach the neighborhood of the true value quickly
but will have oscilaltions around it. On the other hand a small
α will increase the convergence time of the estimate while
minimizing the oscillations. A smaller α will in return increase
the convergence time to the clusters in HLDS but will not
suffer from the oscillations (which manifests themselves as
orbits around the cluster centers). This is demonstrated in
Figure 7. We see that the orbit size increases whereas the
convergence time decreases for larger α.

In order to provide a more consistent model, we decided
to optimize the free parameter of the mean square estimator,
i.e. α, by selecting the particular value that would yield to

2468



Fig. 7. The figure shows the effect of the α parameter on the model behavior.

0 1000 2000 3000 4000 5000
−60

−50

−40

−30

−20

−10

0

Frequency (Hz)

F
ilt

er
 G

ai
n 

(d
B

)

 

 

α = 0.004

α = 0.014

α = 0.0784

α = 0.258

Fig. 8. The figure shows the frequency gain of the filters adjusted by alpha
for a selection of the filters.

a 10% decay in the magnitude of the signal after having
passed through the IIR filter implemented by the mean square
estimator 5. In particular, we selected the central frequency
of each one of the 60 gammatone filters and searched for the
value of alpha that would provide a 10% decay (-10 dB) in
the magnitude of the frequency response of the IIR filter at
that particular central frequency. Figure 8 provides a graphical
interpretation of the procedure for 4 central frequencies of
the gammatone filters along with their corresponding α’s.
By doing this, we assured that the size of the clusters are
consistent and relatively equal in diameter. This property could
be particularly useful when dealing with more features (notes)
present in the time series. Using these optimized α values
we trained a model (s=3, k=10, n=60) and achieved 98.73%
accuracy which outperformed the results obtained by fixed α.

V. DISCUSSION AND CONCLUSION

This paper shows that we have successfully formed a
hierarchical model that extracts information and self-organizes

TABLE II

THE TABLE SHOWS PERFORMANCE OF THE STATE-OF-THE-ART METHODS

ON PITCH ESTIMATION OF ISOLATED NOTES.

YIN SWIPE’ HLDS Time Domain
HLDS

93.71% 95.45% 96.61% 98.73%

this extracted information in its higher layers. This self orga-
nization leads to an algorithm capable of clustering time series
in an unsupervised manner. This is substantially different
from the majority of the methods dealing with clustering of
time series as they do not take advantage of the temporal
information. Here we simply take advantage of the internal
dynamics of the presented signals and exploit them to embed
the time series in smaller subspaces. When we look at the
equations, we can notice that there is an observable subspace
for each layer of states given an observation vector. As we
impose stationary behavior on the top layer, each observation
vector and its neighborhood would correspond to a local
subspace in the top layer. Therefore although this hierarchical
model is equivalent to a conventional linear dynamical system,
the way the model is trained creates different parameters from
the conventional model trained with the Kalman filter applied
to the same data. This behavior was explained in [17].

In this paper we further detailed the properties of the model.
We have shown its performance on music as well as isolated
notes. We also gave an insight to the convergence time of
the model and introduced the time domain implementation
to overcome the limitations due to the slow convergence
time. We have seen that the time domain implementation
have outperformed the frequency domain implementation and
consistently performed better then the state-of-the-art as seen
in Table II.

This work is the first step in building a bigger model that
can extract information on different time scales. With this
initial building block we gather information about the note
that is played and the transitions between notes. Our plan
is to duplicate this same framework to work on the output
of this layer. As we know the western music consists of
a hierarchical structure that starts with a note, followed by
a group of notes forming motifs, and different motifs tied
together forming themes. We created the famous first motif in
Beethoven’s 5th Symphony using the trumpet notes we have.
We repeatedly presented this motif to a trained model with
different variations such as dynamical amplitude variations
(crescendo or decrescendo) and tempo. We noticed that the
same trajectory was followed in the state space of the highest
layer. This behavior is presented in Figure 9. Our goal is
to capture these hierarchical structures by forming further
hierarchies using the HLDS framework. The model will be
further investigated in the future regarding its generalization
property, model size selection and will be extended to work
on polyphonic input.

Due to our use of a linear system the computational burden

2469



Fig. 9. The state trajectory when variations of the same motif is presented
to the HLDS.

is reasonable. The algorithm takes ≈ 11.62 ms to estimate the
states for each window (s=3, k=10, n=60) in the frequency
domain implementation. This number grows linearly with the
number of reiterations over the same window of data. Usually
we reiterate 4 times over each window of new data thus
the computation time for each window is ≈ 46.47 ms. As
parameters are fixed after learning, the algorithm can work
almost real time (each window contains ≈ 36.30 ms of new
data). (The algorithm is tested in MATLAB R2011b, using
Intel Core i5-2320 3.0GHz CPU with 6GB RAM)

REFERENCES

[1] T Warren Liao, “Clustering of time series dataa survey,” Pattern
Recognition, vol. 38, no. 11, pp. 1857–1874, 2005.

[2] Stephen Handel, Listening: An Introduction to the Perception of
Auditory Events, MIT Press, Cambridge, MA, 1993.

[3] L. Barrington, A.B. Chan, and G. Lanckriet, “Modeling music as
a dynamic texture,” Audio, Speech, and Language Processing, IEEE
Transactions on, vol. 18, no. 3, pp. 602–612, 2010.

[4] Peter Dayan, Geoffrey E Hinton, Radford M Neal, and Richard S Zemel,
“The helmholtz machine,” Neural computation, vol. 7, no. 5, pp. 889–
904, 1995.

[5] Karl Friston, “A theory of cortical responses,” Philosophical Transac-
tions of the Royal Society B: Biological Sciences, vol. 360, no. 1456,
pp. 815–836, 2005.

[6] Rajesh PN Rao and Dana H Ballard, “Dynamic model of visual
recognition predicts neural response properties in the visual cortex,”
Neural Computation, vol. 9, no. 4, pp. 721–763, 1997.

[7] Luke Barrington, Antoni B Chan, and Gert Lanckriet, “Dynamic texture
models of music,” in Acoustics, Speech and Signal Processing, 2009.
ICASSP 2009. IEEE International Conference on. IEEE, 2009, pp.
1589–1592.

[8] Antoni B Chan and Nuno Vasconcelos, “Modeling, clustering, and
segmenting video with mixtures of dynamic textures,” Pattern Analysis
and Machine Intelligence, IEEE Transactions on, vol. 30, no. 5, pp.
909–926, 2008.

[9] Aapo Hyvärinen, Jarmo Hurri, and Patrik O Hoyer, Natural image
statistics, vol. 39, Springer, 2009.

[10] Yonatan Vaizman, Roni Y Granot, and Gert Lanckriet, “Modeling
dynamic patterns for emotional content in music,” in Proc. ISMIR,
2011, pp. 747–752.

[11] Emanuele Coviello, Antoni B Chan, and Gert Lanckriet, “Time series
models for semantic music annotation,” Audio, Speech, and Language
Processing, IEEE Transactions on, vol. 19, no. 5, pp. 1343–1359, 2011.

[12] John J Hopfield, “Neural networks and physical systems with emergent
collective computational abilities,” Proceedings of the national academy
of sciences, vol. 79, no. 8, pp. 2554–2558, 1982.

[13] DW Tank and JJ Hopfield, “Neural computation by concentrating
information in time,” Proceedings of the National Academy of Sciences,
vol. 84, no. 7, pp. 1896–1900, 1987.

[14] John J Hopfield, David W Tank, et al., “Computing with neural circuits-
a model,” Science, vol. 233, no. 4764, pp. 625–633, 1986.

[15] KP Unnikrishnan, John J Hopfield, and David W Tank, “Connected-
digit speaker-dependent speech recognition using a neural network with
time-delayed connections,” Signal Processing, IEEE Transactions on,
vol. 39, no. 3, pp. 698–713, 1991.

[16] Rungsun Munkong and Biing-Hwang Juang, “Auditory perception and
cognition,” Signal Processing Magazine, IEEE, vol. 25, no. 3, pp. 98–
117, 2008.

[17] Goktug T. Cinar and Jose C. Principe, “Clustering of time series using
a hierarchical linear dynamical system,” in ICASSP, 2014.

[18] H.L. Read, J.A. Winer, and C.E. Schreiner, “Functional architecture of
auditory cortex,” Current opinion in neurobiology, vol. 12, no. 4, pp.
433–440, 2002.

[19] R.E. Kalman et al., “A new approach to linear filtering and prediction
problems,” Journal of basic Engineering, vol. 82, no. 1, pp. 35–45,
1960.

[20] Alex Nelson, Nonlinear estimation and modeling of noisy time-series by
dual Kalman filtering methods, Ph.D. thesis, Oregon Graduate Institute
of Science and Technology, 2000.

[21] V. Panuska, “A new form of the extended kalman filter for parameter
estimation in linear systems with correlated noise,” Automatic Control,
IEEE Transactions on, vol. 25, no. 2, pp. 229–235, 1980.

[22] University of Iowa Electronic Music Studios , “Musical instrument
samples,” http//:theremin.music.uiowa.edu/, 1997, [On-
line; accessed 24-April-2012].

[23] The Second Golden Beatles Album, Hansen Publications, Inc., 1966.

2470




