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Abstract— Time-series data are often characterized by a large
degree of self-similarity, which arises in application domains
featuring periodicity or seasonality. While self-similarity has
shown to be an effective prior for modeling real data in the
signal and image-processing literature, it has received much
less attention in time-series literature, where only few works
leveraging the self-similarity for anomaly detection have been
presented. Here we introduce a novel change-detection test to
detect structural changes in time series by analyzing their self-
similarity. The core of the proposed solution is the definition of
a change indicator to quantitatively assesses the self-similarity
of the time-series data over time. In particular, the change
indicator is obtained by comparing each patch to be analyzed
with its most similar counterpart in a change-free training set.
Experimental results on the flow measurements in the water
distribution network of the Barcelona city show the effectiveness
of the proposed solution.

I. INTRODUCTION

OFTEN, signals and time series are redundant and self-
similar. Namely, each patch (i.e., a segment of data)

exhibits similarities to other patches in the sequence. Self-
similarity is particularly evident in climate (or environmental)
monitoring time series, in ECG recordings, and in water
(or electricity) consumption measurements, where periodicity
and seasonality result in repeated patterns. As an example,
Fig. 1.a illustrates flow measurements in a District Metered
Area (DMA) of the Barcelona city (Spain): the daily trend in
the water demand results in a highly self-similar time series.

A plethora of algorithms in the signal and image pro-
cessing literature indicates the self-similarity as an effective
prior for handling real-world data. Fractal models for natural
images [1] and fractal block coding [2] explicitly rely on the
assumption that images exhibit similar content in different
locations. Such a paradigm was further developed in texture
synthesis and completion [3] and in the nonlocal-means de-
noising algorithm [4], which has inspired several successful
noise attenuation algorithms for images [5], [6], videos [7],
[8], surfaces [9], and point-clouds [10]. Exploiting the non-
local self-similarity is now a widely accepted paradigm,
which has been adopted in a broad range of signal and image
processing applications, see [11].

Conversely, only few works in the time-series literature
consider self similarity, and these mainly focus on the
identification of similar [12], [13] or anomalous patches
[14], [15]. In particular, the identification of anomalous
patches (also called “discords” [16]) is generally formulated
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as an anomaly/novelty detection problem [17], [18]. There-
fore, these techniques are not designed to detect structural
changes, i.e., situations where the data-generating process
shifts from in-control to out-of-control conditions, while they
are instead meant to identify outliers in a data sequence.

Detecting structural changes is a primary issue in time
series analysis, representing a mean to identify faults in
the sensing apparatus or unforeseen evolutions of the data-
generating process. Even though most of structural changes
introduces patterns that are highly dissimilar to those gener-
ated in stationary conditions, self-similarity has never been
used as a prior for detecting structural changes.

Most of the change-detection solutions for time series [19],
[20], [21], [22] relies on predictive or approximation models
estimated from a change-free training set. During the opera-
tional life, the residual, i.e., the discrepancy between observa-
tion and the output of the estimated predictive/approximation
model, is monitored by means of a standard change-detection
test (CDT) [23], [24], [25],[26], [27]. CDTs are statistical
techniques meant for analyzing, in an online and sequential
manner, independent and identical distributed (i.i.d.) real-
izations of a random variable. Unfortunately, a residual-
based approach might not be feasible in complex real-world
scenarios, where estimating accurate models is particularly
difficult [21].

Here, we introduce a CDT for time series exhibiting self-
similarity that does not require to estimate a predictive or ap-
proximation model of the data-generating process. Our self-
similarity based CDT detects, in an on-line and sequential
manner, a structural change as soon as the monitored data
are no more similar to those belonging to an initial, change-
free, training sequence. In particular, we compare the patch
around each new sample with all the patches in the training
sequence to identify the most similar one. Then, we compute
the change indicator as the difference between the values at
the center of these two patches. Structural changes can then
be successfully detected by monitoring any variation in the
statistical behavior of the change indicators by means of a
CDT. To the best of our knowledge, this is the first work
exploiting self-similarity to perform detection of structural
changes in time series. Our self-similarity based CDT has
been successfully tested on flow measurements coming from
the Barcelona water distribution network, where structural
changes have been artificially introduced.

This paper is organized as follows: the literature con-
cerning anomaly detection and change-detection methods
exploiting self-similarity is presented in Section II, while
the self-similarity based CDT is described in Section III.
Experiments are presented and discussed in Section IV, while
Section V draws concluding remarks and ongoing works.
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Fig. 1. a) Flow measurements in a DMA of Barcelona over 20 days: measurements are taken every 10 minutes (144 samples per day). This time series is
highly self-similar: the water demand over each day follows a clear trend determined by citizens’ habits. b) An example of search neighborhood Rt,φ,δ ,
where t = 2500, φ = 144 and δ = 10.

II. RELATED WORKS

To the best of our knowledge, the problem of detecting
structural changes in time series through self-similarity has
never been addressed in the literature, and only few works
concerning anomaly detection and self-similarity in time
series have been presented [15], [28], [14], [29], [30], [16].

Most of these works [15], [14], [29], [28] follow the
negative selection approach, which is inspired by a specific
mechanism of the human immune system [18]. In particular,
our immune system randomly generate receptors (T-cells) by
genetic rearrangements. Antigens (e.g., viruses or bacteria)
are detected as soon as they bind with such detectors. To
prevent that receptors bind also with cells of the human body,
randomly generated T-cells undergo a censoring process:
those matching with self-cells are discarded. An example
of negative selection algorithm is presented in [15], where
data are patch-wise encoded into binary strings. Anomaly
detectors are created by randomly generating strings and
removing those matching with strings in the training set.
During the operational life, incoming patches are compared
with all these detectors, and an anomaly is detected as soon
as a match is found. The main drawback of this solution is
the binary encoding of the patches, as this might dramatically
reduce the information provided to the detection algorithm.
A real-valued negative selection algorithm that is able to
operate real-valued patches is presented in [28]. There,
the initial configuration phase aims at creating a training
set composed of both self (normal) patches and randomly
generated patches to train a classifier (i.e., a multi-layer
preceptron) devoted to negative selection.

Similarly, [14] suggests an immunity-based negative selec-

tion algorithm operating on real values, where the discords-
detection mechanism exploits rules generated by genetic al-
gorithms. This approach has been successfully applied to the
detection of intrusions in computer networks. The algorithm
in [29] extends [14] by replacing the crisp detection-rules
mechanism with fuzzy logic. A technique to generate a set
of detection fuzzy rules by relying only on normal samples
is also proposed.

Remarkably, all the above mentioned works measure some
form of similarity with alternative detectors. In contrast, our
approach consists in exploiting self-similarity to characterize
the in-control state of the data-generating process, and we de-
tect any structural change as any break in such self-similarity.
Therefore, we do not need to generate any anomaly detector
for out-of-control states.

Anomaly-detection techniques for identifying faults in
a simulated refrigerator system were investigated in [30],
where several matching rules were considered (e.g., threshold
on the euclidean distance between patches or analysis of
binary encoded patches). However, the solutions proposed
in [30] are not sequential, and out-of-control states yielding
patches that are not clearly dissimilar to those in the training
sequence are not easily detectable, even when the change
persists over time. It is possible to increase the change
sensitivity of such techniques by lowering the detection
threshold, at the expenses of a large number of false alarms.

In contrast with solutions inspired to the immune system,
[16] performs anomaly detection by computing a distance in-
dex between any patch and the most similar patch in the rest
of the time series. As in [15], this distance-based anomaly-
detection technique relies on the analysis of quantized data
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by means of symbolic aggregate approximation. The authors
adopt a heuristic procedure to reduce the computations when
calculating such distance index for all the patches in the
time series. Unfortunately, this technique is not sequential
and cannot be used to detect structural changes.

III. DETECTING CHANGES IN SELF SIMILARITY

A. Problem Formulation

Let us denote by S = {s(τ), τ = 1, . . . , }, s(τ) ∈ R a
real-valued time series, which is generated by a process S.
We assume that, when S is in-control state, the time series S
features self-similarity, i.e., for each patch of S it is possible
to find at least another similar patch within S itself. We say
that S presents a structural change at time T ∗ when it shifts
into an out-of-control state that affects the self similarity of
S. In particular, there is no more similarity between patches
in {s(t), t = 1, . . . , T ∗ − 1} and {s(t), t ≥ T ∗, . . . }.

We address the problem of detecting structural changes
by analyzing the time series in a sequential manner. To
this purpose, we assume that an initial training set TS =
{s(τ), τ = 1, . . . , L}, generated when S is in-control, is
provided.

B. Notation

To assess the self-similarity in a time series S, we op-
erate in a patches-wise manner and we adopt the following
notation

st = {s(t− ν), . . . , s(t), . . . , s(t+ ν)} , (1)

for indicating a patch having size 2ν + 1 and centered in t.
Since st ∈ R2ν+1, each patch corresponds to a vector, and
the distance between two patches can be computed as the
Euclidean distance

d(st1 , st2) = ‖st1−st2‖2 =

√√√√ ν∑
i=−ν

(
s(t1 + i)− s(t2 + i)

)2
,

(2)
for any pair of patches centered in t1 and t2. We denote by
T̂ the time instant when a structural change is detected.

C. The Proposed Solution

We tackle the problem of detecting structural changes in
S by determining when patches in the time series S are no
more similar to any patch in the training set. To this purpose
we build a training set of patches

P = {sτ , τ = ν + 1, . . . ,M − ν − 1} , (3)

where M ≤ L indicates the portion1 of the training set TS
that is used for building the training set of patches P. We
approach the detection of structural changes in S with the
following design assumption:{

∃su ∈ P similar to st, ∀t < T ∗

@su ∈ P similar to st, ∀t ≥ T ∗
. (4)

1Part of TS is often required to configure the CDT that is used in the
next steps of the algorithm, as it will be clarified later on in Section III-E
of the training set TS used for building P.

We then compute a meaningful change indicator, denoted by
x, to highlight any departure from the in-control state as (4),
and we monitor any variation in the statistical behavior of
x by means of a CDT. More precisely, our desiderata are
that when S is in-control (i.e., t < T ∗), the values of the
change indicator are stationary, i.e., {x(t)t < T ∗} are i.i.d.
realizations of a unique random variable. In contrast, when S
goes out-of-control, the distribution of the change indicator
should vary. This allows us to detect structural changes by
means of a suitable CDT. Detecting when S goes out-of-
control is thus reformulated as the problem of detecting
changes in the probability density function (pdf) of a random
variable by monitoring a sequence of its realizations over
time, i.e., the change indicators X = {x(τ), τ = L+1, . . . }.

The proposed change indicator is computed as follows:
for each time instant t > L, we extract st, the patch around
s(t), and look for the most similar patch within P, which is
centered in

π(t) = argmin
τ=ν+1,...,M−ν−1

d(st, sτ )) . (5)

Equation (5) defines a function π(·) : N→ {ν+ 1, . . . ,M −
ν − 1}, which maps each time instant t to the center of the
patch P that is the most similar to st. The patch in P that
is most similar to st is from now on denoted by sπ(t). The
change indicator then defined as

x(t) = s(t)− s(π(t)) , (6)

namely, the difference between the values at the center of the
patches st and sπ(t), which have been associated according
to (5).

To clarify why the change indicator (6) is suitable for being
monitored with a CDT, let us consider the ideal situation
where any patch st, t < T ∗ has a perfect match and sπ(t)
differs only because of noise. In such ideal situation, the
expectation of the change indicator is zero, i.e., E[x(t)] =
0 and the sequence X = {x(τ), τ = L, . . . , T ∗ − ν − 1}
contains i.i.d. realization of a random variable following an
unknown pdf. In contrast, any out-of-control state affecting
the self similarity (4), would introduce a bias or some form
of correlation or increase the dispersion of x. In practice,
structural changes of S would modify the pdf of the change
indicators {x(τ), τ ≥ T ∗−ν} and, therefore, a suitable CDT
is able to detect when S goes out-of-control, by monitoring
the stationarity of X .

Unfortunately, such an ideal situation is rarely met in real-
world time series: patches that are identical except of noise
are rare and, even when these exist, they could eventually
not be paired through (5) because of noise. Out of this ideal
situation we have no warranty that {x(τ), τ = L, . . . , T ∗−ν}
contains i.i.d. data. Nevertheless, when time series feature
self-similarity, it is reasonable to monitor the change indica-
tor (6) by means of a CDT. In fact, the similarity between two
patches is well correlated with the similarity of their central
pixels (also the nonlocal-means denoising algorithm [4] relies
on such a modeling assumption) and therefore out-of-control
states that meet our designing assumptions (4) would affect
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the distribution of x. However, since the distribution of x
would not be perfectly i.i.d. during the in-control state, we
expect the CDT to be less effective, and in particular, to have
larger false positive rates than in the ideal situation previously
described.

D. Dealing with Periodic Time Series

Often, self similarity in time series is due to the periodic
or cyclic nature of S – as in the case of water/electricity
demand. This information has not been considered so far,
since in (5), the most similar patch is searched among all
the training patches in P. It follows that out-of-control
states corresponding to a shift in the period of S would
not be perceived, as these do not affect the self-similarity
of patches. To detect such out-of-control states in time series
that exhibits a cyclic behavior, the most similar patch has to
be searched within a suitable search region rather than in the
whole training set of patches. In practice, if the time series
is expected to have a period φ – which can be either known
or estimated from TS – , it is possible to replace (5) by

π(t) = argmin
sτ∈Rt,φ,δ

d(st, sτ ), (7)

where the search region Rt,φ,δ is defined as

Rt,φ,δ =
n⋃
i=1

{τ, |t0 + iφ− τ | < δ} , (8)

being n = bM/φc the number of periods in the training set,
t0 = t−

⌊
t
φ

⌋
φ the point corresponding to t in the first period

in the training set (b·c denotes the floor approximation),
and δ ∈ N a user-defined parameter. Thus, the search
region in (8) consists of patches centered in windows opened
around points corresponding to t with respect to the period
φ and having width 2δ. Obviously, constraining the search
region from P to Rt,φ,δ also to reduces the computational
complexity of the whole algorithm. However, in periodic time
series, the choice between (5) and (7) is mostly determined
by the desired sensitivity of the CDT being designed, since
this choice determines the out-of-control states that can be
detected. Fig. 1.b illustrates an example of search region.

E. The Algorithm

We here summarize the self-similarity based CDT for
time series featuring self similarity. The CDT is detailed
in Algorithm 1 independently from the specific CDT used
for monitoring the distribution of change indicators, since
any nonparametric CDT for scalar data can be used2. Most
of nonparametric CDTs are configured from a sequence of
change indicators thus, the initial M > 0 samples of TS will
be used to build P as in (3) (line 2), while the rest of TS,
i.e., {s(τ), τ = M + 1, . . . , L}, will be used to compute the
change indicators (lines 3 - 7) to configure the CDT (line
8). Other inputs required at line 1 are the patch size ν and,
when the time series shows periodic trends, the period φ and

2We consider nonparametric CDTs since these do not assume any apriori
information about the distribution of the monitored data before or after the
change.

parameter δ that determines the size of the search regions
Rt,φ,δ .

Disregarding whether the change indicators are computed
for CDT configuration (lines 3 - 7) or during the operational
life (lines 11 - 14), the algorithm proceeds as follows: at time
t, the the patch st around the current data s(t) is extracted
(line 4, line 11), then the search region Rt,φ,δ is defined (line
5, line 12) and the most similar patch sπ(t) is extracted (line
6, line 13). Then, the change indicator x(t) easily follows
from (6), (line 7, line 14).

During the operational life, i.e., when t > L, the CDT
is then applied to the sequence of change indicators X =
{x(τ), τ = M + 1, . . . , t}, and as soon as the CDT detects
a change in X , the process S is considered out-of-control.
Note that there is an intrinsic delay of ν samples in each
detection since the whole patch st around t is required for
computing x(t): this motivates the delay introduced at line 9.
When the monitored time series does not show periodicity,
lines 5 and 12 have not to be considered, and the most similar
patch sπ(t) is defined according to (5) rather than (7).

In our implementation3 we monitor the sequence of change
indicators X by means of the ICI-based CDT described
in [24], which detects both changes in mean and variance
in i.i.d. realizations of a random variable. Remarkably, the
ICI-based CDT can be executed with a fixed computational
complexity. Thus, since searching for the most similar patch
in (5) or (7) requires a fixed number of operations, the overall
computational burden per input is also fixed.

1- input: {s(τ), τ = 1, . . . , L}, ν, δ, φ, M
2- define P from TS = {s(τ), τ = 1, . . . ,M} as in (3),
3- for (t = M + 1; t ≤ L; t++) do
4- extract the patch st as in (1),
5- define the search region Rt,φ,δ as in (8),
6- compute the patch most similar to st in Rt,φ,δ , (7)
7- compute the change indicator x(t) as in (6),

end
8- configure the CDT on {x(t), t = M + 1, . . . , L},
9- wait for the next ν samples,

10- while (s(t+ ν) arrives) do
11- extract the patch st as in (1),
12- define the search region Rt,φ,δ as in (8),
13- compute the patch most similar to st in Rt,φ,δ , (7)
14- compute the change indicator x(t) as in (6),
15- if (CDT

(
{x(τ), τ = M, . . . , t}

)
== 1) then

16- detect a structural change in S at T̂ = t.
17- return.

end
18- t = t+ 1;

end
Algorithm 1: Self-similarity based CDT for time series.

We remark that parameters of the specific CDT used at

3Codes of the self-similarity based CDT are available for down-
load at http://home.deib.polimi.it/boracchi/Projects/
projects.html
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line 15 are also required as input, though not reported in
Algorithm 1. In case of nonparametric CDTs that do not
require any explicit configuration phase, such as [27], [31],
it is possible use the whole training sequence to build P,
setting M = L.

IV. EXPERIMENTS

A. Dataset Description

The CDT in Algorithm 1 has been tested on a dataset of
10 time series containing flow measurements coming from
different DMAs of Barcelona. In each DMA the flow is mea-
sured every 10 minutes, 144 times per day. Each time series
lasts 82 days. Fig. 1 shows the highly self-similar behaviour
of the time series induced by the periodicity of citizens’
habits. We manipulated these sequences to reproduce the
following structural changes starting at day 41:
Offset: an offset o is added to the time series after T ∗, i.e.

s(t) = s(t) + o , t > T ∗.

Such an additive offset models the effects of a leak in the
pipes or junctions, which increases the flow measurements
at each time instant. We considered an offset of both 0.5 and
0.25 of the mean flow during the in-control state. Examples
to illustrate the effects of an offset on time series are reported
in Fig. 3.a and Fig 4.a.
Sensor degradation: a zero-mean Gaussian random variable
is added to the time series after T ∗, i.e.,

s(t) = s(t) + η(t) , t > T ∗, η ∼ N (0, σ2),

modeling the effects of a degradation of the flow sensor. In
our experiments, the noise standard deviation σ is set to 0.5
or 0.25 the average flow during in the control state.
Source Change: two different time series are juxtaposed at
time T ∗

s(t) = s1(t) , t > T ∗,

being s1 data from a time series recorded in a different DMA.
Each DMA is characterized by its own daily profile, thus,
such a source change breaks the self similarity in the time
series. An example of time series affected by a source change
is reported in Fig. 5.a.
Stack-at: The measurements become constant after T ∗, i.e.,

s(t) = s(T ∗) , t > T ∗,

which is a situation that could be induced by a sensor or
communication fault.

B. Considered CDTs

The self-similarity based CDT is contrasted against both a
residual-based and a template-based approach. The residual-
based approach consists in computing the residual between
the observation s(t) and the output of a nonlinear ARX
predictive model fNARX trained on the initial M samples of
the time series [32]. The residuals are computed as

r(t) = s(t)− fNARX(s(t), s(t− 1), . . . , s(t− k)), (9)

where k is the order of the autoregressive component (the
eXogenous component of the NARX predictive model is not
considered since we are dealing with time series).
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Fig. 2. Autocorrelation of the change indicator x in (6), the residuals in (9)
and the template-based change indicator in (10). The autocorrelation was
computed considering only change indicators before the structural change,
and both the average over the 10 time series and the value on each time series
have been reported. Peaks at indicates that the change indicators are not
white, and this is particularly evident at lags equal to 144 (which corresponds
to the period).

The template-based approach represents the most straight-
forward way to cope with periodic patterns corrupted by
additive white noise. We estimate the average flow profile
by averaging the flow measurements recorded at the same
time over different days: this corresponds to the template of
the daily water flow. During the operational life, the template
is used as an estimate of the expected flow measurements.
The template-based change indicator is defined as

p(t) = s(t)− 1

n

n∑
i=1

s(t0 + iφ) (10)

being, as in (8), n = bM/φc and t0 = t −
⌊
t
φ

⌋
φ. In (10),

the term 1
n

n∑
i=1

s(t0+ iφ) represents the value of the template

estimated from the training set.
The ICI-based CDT is then applied to sequences of x in

(6), r in (9) and p in (10), to fairly compare the detectability
of the structural changes from these different change indica-
tors at time t.

Configuration: The patch training set P, the NARX
predictive model, and the average daily profile have been
estimated from the first two weeks of each time series, i.e.,
M = 2016. The ICI-based CDTs were then configured over
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Self-Similarity based Residuals-based Template-based
FPR FNR DD FPR FNR DD FPR FNR DD

offset 0.5 0.1 0.0 156.4 0.0 0.0 1554.0 0.2 0.0 332.0
offset 0.25 0.1 0.0 914.2 0.0 0.3 2803.4 0.2 0.0 747.0

sensor degradation 0.5 0.1 0.0 174.2 0.0 0.0 170.0 0.2 0.0 269.5
sensor degradation 0.25 0.1 0.0 336.4 0.0 0.0 288.0 0.2 0.0 652.0

source change 0.1 0.0 103.1 0.0 0.0 800.0 0.2 0.0 219.5
stack-at 0.1 0.0 169.8 0.0 0.0 160.0 0.2 0.0 534.5

TABLE I
DETECTION PERFORMANCE OF THE THREE CONSIDERED SOLUTIONS.

400 change indicators, thus L = M + 400 = 2416. The
true change-time was T ∗ = 59044. All the ICI-based CDT
were configured by setting Γ = 2.5; further details about the
ICI-based CDT, can be found in [24]. The change indicator
x was computed by setting ν = 5, δ = 5 and the period
φ = 144, while in (9) we considered a wavelet network as
nonlinear estimator of the NARX predictive model, where k
has been experimentally fixed to 7.

C. Figures of Merit

The detection performance is assessed by means of the
following figures of merit:
• False Positive Rate (FPR), the percentage of time series

where a structural change was erroneously detected
when S is in-control, i.e., T̂ < T ∗.

• False Negative Rate (FNR), the percentage of time
series where an actual structural change in S was not
detected.

• Detection Delay (DD), the average of T̂−T ∗ computed
on runs where T̂ ≥ T ∗;

D. Discussion

The detection performance of the proposed CDT relies
on the ability to correctly exploit self-similarity of the time
series: namely, the sequence of change indicators has to
be i.i.d., during the in-control conditions, and its statistical
behavior should be modified by any structural change. To
assess whether x(·), p(·) and r(·) are suited for monitoring
in-control, self-similar processes, we compute the autocor-
relation of these when t < T ∗. The autocorrelation of the
proposed change detection index x (Fig 2.a) shows that it
is very close to be i.i.d.. This means that we are operating
fairly close to the ideal conditions for CDTs, as discussed
in Section III-C. This result justifies the use of a CDT
designed to work with i.i.d. data, such as the ICI-based
CDT. The analysis of the autocorrelation of r(t), that is
depicted in Fig. 2.b, shows a peak around lag 144. This is
not surprising since it corresponds to the period of the daily-
cycle. This result indicates that the NARX predictive model
is not effective in capturing the time-series dynamic. Finally,

4This specific choice of T ∗ was made to maximize both the number and
the length of the time series extracted from the Barcelona water distribution
network dataset.

the autocorrelation of p(t) (Fig 2.c) shows highly correlated
values over time. Even in this case, there is a peak around
144, indicating that template-based change indicator does not
properly model the time series.

These results are well reflected by the detection perfor-
mance of the three considered CDTs reported in Table I.
Remarkably, the proposed change indicator x yields detec-
tions in the offset and source change scenarios that are far
prompter than those of the residual-based and the template-
based approaches. The residual-based approach provides
slightly better results in the sensor degradation and stuck-
at scenario. The template-based CDT is less effective than
the other solutions and this is due to the high-correlation of
the change indicator p(t), indicating that the assumption of
strict periodicity does not hold for these time series.

Figure 3-5 show three examples of considered time series
together with the corresponding change indicators and de-
tections results. The statistical behaviour of x is particularly
interesting since it clearly behaves like an i.i.d. random
variable before the change. It is also worth noting that
after T ∗, the values of x show a very different behavior,
indicating that self-similarity was successfully exploited for
detecting structural changes. As expected, r(t) exhibits a
similar behaviour, while p(t) clearly shows autocorrelated
values (as also highlighted with the analysis of Figure 2).

Note that each CDT is characterized by constant FPR over
different application scenarios, since false positives do not
depend on the specific structural change introduced. Fig 3
reports the time series where the self-similarity based CDT
had a false positive detection and, even though no change
was artificially introduced, it clearly emerges an anomalous
behavior of the flow measurements around sample 4500.

V. CONCLUSIONS AND ONGOING WORKS

We introduced the self-similarity based CDT, a novel
solution for detecting structural changes in time series by
analyzing their of self-similarity. This CDT computes a
change indicator that quantitatively assess the similarity
between patches in the recent data and patches from the
initial training set. Changes in the self-similarity of the time
series are detected by monitoring such change indicator over
time, by means of a non-parameteric CDT. The proposed
solution revealed to be very effective in detecting structural
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Fig. 3. An example of structural change inducing an offset of +0.25 times the average flow during in-control conditions

Time series affected by an offset at T* = 5904

3000 4000 5000 6000 7000 8000
10
20
30
40
50

Change indicator x in (6) T = 6056

3000 4000 5000 6000 7000 8000
-5

0

5

Change indicator r in (9) T = 2416

3000 4000 5000 6000 7000 8000

-5
0
5

10
15

Change indicator p in (10) T = 6876

3000 4000 5000 6000 7000 8000
-10

0

10

20

s(
t)

x(
t)

r(
t)

p(
t)

t

t

t

t

a)

b)

c)

d)

T*
T from x (6)
T from r (9)
T from p (10)
CDT training

Fig. 4. An example of structural change inducing an offset of +0.5 times the average flow during in-control conditions

changes in the time series of flow measurements coming from
the Barcelona water distribution network.

Ongoing works concern the investigation of different
change indicators, the analysis of both the impact of the
search region and the patch size on the CDT performance,
as well as the use of self-similarity to perform change
detection in application scenarios where time series exhibits
self-similarity though not periodicity.
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