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Abstract— We consider the problem of finding unknown
patterns that are recurring across multiple sets. For example,
finding multiple objects that are present in multiple images
or a short DNA code that is repeated across multiple DNA
sequences. Earlier work on the topic includes a statistical
modeling approach in which the same template is placed at
a random position in multiple independent sets. Using mixture
modeling, we propose an extension to the approach that allows
the detection of multiple templates placed across multiple sets.
Moreover, we present an expectation-maximization algorithm
for jointly estimating multiple templates based on a mixture
of non-Gaussian distributions. To address the non-convexity
of the problem, a robust initialization method is presented
and theoretical guarantees are provided. We evaluate the
performance of the algorithm on both synthetic data and real-
world data consisting of electrical voltage recordings of home
appliance activations. Our results indicate that the proposed
algorithm significantly improves the detection accuracy relative
to the single pattern model.

I. INTRODUCTION

Finding recurring patterns in data can be applied to various
areas, such as finding regulatory sequences in DNA [1],
pattern matching in strings [2], and audio motif discovery
for bioacoustic applications [3].

Different approaches have been proposed for a pre-
specified pattern matching. A Gibbs sampling framework
for estimating and identifying multiple patterns in the DNA
sequences is proposed in [1], while a graph based WIN-
NOWER algorithm for finding a signal in sampled DNA
sequence is proposed in [4]. In computer science, fast pattern
matching [2] for text strings has been widely used. Dynamic
time warping (DTW) is also a well-known algorithm for
a matching problem that allows variations in time [5]. If
the pattern of interest is unknown, the problem becomes a
blind pattern recognition problem. In [6], a parameter-free
CK distance approach with probabilistic early abandoning is
proposed for audio motif discovering on large data archives.
Finding the most similar pair in long sequence is their focus.

A natural extension to the single pattern matching involves
the recognition of multiple recurring patterns. For multiple
motif identification and alignment of protein sequences, [7]
proposes a combination of search and refinement algorithm.
For speaker identification [8], a robust text-independent
Gaussian mixture model is proposed.

We introduce a novel non-Gaussian mixture model based
on the single pattern model in [9]. Due to the non-convex

nature of the problem, multiple local solutions may arise. To
address this problem, we propose novel robust initialization
and iterative updates. Based on mixture modeling approach,
we first show estimation performance on synthetic data.
Then, we present detection performance on real world dataset
and show a significant increase in performance compared to
the approaches of [9] and [10].

II. BACKGROUND AND RELATED WORK

Before we delve into the problem of estimating multiple
different templates from N multi-instance bags containing
only one of the multiple templates (see Fig. 1(a)), we start
by introducing the simpler problem of estimating a single
template from N multi-instance bags each containing only
one occurrence of the desired template (see Fig. 1(b)). In
Fig. 1(a) and (b), the dot over the template indicates the
position of template in the bag.

(a) Multiple templates (b) Single template

Fig. 1. Recognition of templates in multiple sets.

A. Single Pattern Model

We consider the setting in which a single pattern is
embedded exactly once in each of N bags. Each bag contains
multiple instances. We denote the number of instances in
the ith bag by ni. We denote the ith bag by Xi and the
jth-instance in this bag by xij . Consequently, we can write
the ith bag as Xi = {xi1, . . . ,xin

i

}. One can consider
two different tasks. The first involves estimating the desired
pattern and the second involves determining the position of
the desired pattern in each bag (see Fig. 1(b)).

In [9], a statistical model for this setting is developed to
offer means for conducting a performance analysis. Specif-
ically, the Cramér–Rao lower bound (CRLB) on the mean-
squared-error (MSE) of the estimator of the desired pattern
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is evaluated against the number of bags, the number of
instances in each bag, the signal-to-noise ratio, and the
dimension of the signal. Our goal in this paper is to develop
estimation algorithms to learn the hidden patterns for the
single pattern model in [9] and to extend both model and
algorithms to the multiple template case. We begin by
reviewing the single pattern model.

To describe the generative model of the dataset, we
begin by assuming that the dataset consists of N inde-
pendent bags {X1,X2, . . . ,XN}. To generate the ith bag,
first a position random variable (RV) Ji is generated uni-
formly in {1, 2, . . . , ni}, i.e., P (ji = j) = 1/ni. Then,
the instances xij are generated such that for j 6= ji

xij ⇠ N (0,�

2
Id) and for j = ji xij ⇠ N (s,�

2
Id).

In other words, a noisy version of the template s is em-
bedded in the position ji and zero-mean Gaussian noise
is placed in all other positions. Consequently, the proba-
bility density function (PDF) for a single bag is given byP

j P (j)

�Qn
i

j0=1 6=j N (xij0 ; 0,�
2
Id)

�N (xij ; s,�
2
Id). Sim-

plifying this expression yields the following PDF of a single
bag:

Gi(Xi|s) =
n
iY

j0=1

1

p
2⇡�

2
d
e

�
kx

ij

0 k2

2�2
1

ni

n
iX

j=1

e

2sT x

ij

�ksk2

2�2
. (1)

The log-likelihood for N independent bags is
NX

i=1

logGi(Xi|s) = C � Nksk2
2�

2
+

NX

i=1

log

� n
iX

j=1

e

s

T

x

ij

�

2
�
, (2)

where C denotes terms which are independent of the param-
eter s. To learn the unknown template s, we proceed with
maximum-likelihood (ML) solution. Note that this model is a
mixture of models which vary in the position of the unknown
template s. Consequently, the ML problem is non-convex. We
propose an initialization approach with quantitative guaran-
tees and refinements to solve the ML estimation.

1) Initialization: In [9], an iterative method is provided
for estimating s. However, it is pointed out that the results
depend on the initialization. In this paper, we introduce a
core idea which suggests that despite the non-convex nature
of the problem, a close to optimal solution can be obtained.
We rely on the observation that the log-likelihood can be
approximated using the soft-max approximation of the max
function: log(

P
i e

↵
i

) ⇡ maxi ↵i, yielding,

1

N

NX

i=1

logGi(Xi|s) ⇡ C � ksk2

2�2 +

1
N

PN
i=1 maxj

s

T

x

ij

�2

= max

j1,...,jN
C � ksk2

2�2 +

s

T 1
N

P
i

x

ij

i

�2 .(3)

Consequently, ML can be approximated by

max

s,j
�ksk2

2

+ s

T 1

N

X

i

x

ij

i

, (4)

or as a minimization problem

min

s,j

NX

i=1

kxij
i

� sk2 �
NX

i=1

kxij
i

k2, (5)

where j = [j1, j2, . . . , jN ]

T . This problem is a non-trivial
integer programming. A solution to a more general form is
proposed in [10]:

min

s,j

NX

i=1

kxij
i

� sk2 +
NX

i=1

�i(xij
i

), (6)

where �i(xij
i

) � 0. Minimizing the objective in (6) with
respect to s results in s =

1
N

PN
i=1 xij

i

. After substituting s

back into (6), a minimization problem only with respect to
j is obtained:

ˆ

j = argmin

j

f(j), where,

f(j) =

1
2N

NP
i1=1

NP
i2=1

kxi1ji1
� xi2ji2

k2 +
NP
i=1

�i(xij
i

). (7)

The objective in (7) can be viewed as a sum of edge weight
in a graph given by Di1i2 = kxi1ji1

� xi2ji2
k2 and a sum

of node penalties �i(xij
i

). The graph is a complete graph
since the sum runs over all pairs of (i1, i2). The solution
for the complete graph requires a brute-force search which
results in computational complexity O(M

N
), where M is the

number of instances per bag. To reduce the computational
complexity, the proposed algorithm in [10] replaces the
single complete graph by N bipartite graphs (see Fig. 2),
reducing the computational complexity to O(M

2
N

2
) [11].

For each bipartite graph, we set aside the ith bag and
calculate the sum of the squared distances from one instance
in bag i to the other instance in all other bags as a function
of fi(ji). Instead of minimizing the objective in (7), a sub-

complete graph bi-partite graph

Fig. 2. Graphical representation of two approach: (7) and (9). This figure
is a reproduction of the figure from [10].

optimal solution ˜

j is obtained by solving N independent
minimizations. For each i, we solve

j

i
= argmin

j

fi(j), where (8)

fi(j) =

NX

i2=16=i

�kxij
i

� xi2ji2
k2 + �i2(xi2ji2

)

�
. (9)

Then, the vector of position estimate is determined by ˜

j =

j

i⇤ , where

i

⇤
= argmin

i
fi(j

i
). (10)
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In [10], it is shown that the minimum of the objective f(j)

can be bounded using the fi(j)’s as follows:
1

2

min

i
fi(j

i
)  f(

ˆ

j)  f(

˜

j)  min

i
fi(j

i
).

This sandwich inequality guarantees f(

ˆ

j)  f(

˜

j)  2f(

ˆ

j).
Consequently, the bound suggests that the bi-partite approach
yields a solution which guarantees that f(

˜

j) the objective
value in (7) evaluated at the sub-optimal solution is no more
than the twice of its global minimum f(

ˆ

j).
Naturally this approach can be applied to the minimization

in (5) by setting �i(xij
i

) = maxt kxitk2 � kxij
i

k2 in (6).
Consequently the minimum of the objective

PN
i=1 kxij

i

�
sk2 +

PN
i=1(maxj kxijk2 � kxij

i

k2) can be approached
within a factor of 2. Moreover, this result suggests that the
approximate solution s

⇤

s

⇤
=

1

N

NX

i=1

xĩj (11)

can offer a feasible robust initialization to iterative methods
for solving the ML in (2).

2) Refinement: To refine the solution to the nearest op-
timum of (2), we consider a minimization problem of the
negative objective:

min

s

f(s) = u(s)� v(s),where,

u(s) =

ksk2
2�

2
;

v(s) =

1

N

NX

i=1

log

� n
iX

j=1

e

s

T

x

ij

�

2
�
.

Since u(s) and v(s) are both real-valued convex functions,
f(s) is a convex-concave function and may contain multiple
local solutions. We propose majorization-minimization (MM)
approach [12]. The general idea is to construct a majorizing
function g(s, s

(t)
) such that (i) g(s, s

(t)
) � f(s) for any

s, s

(t); and (ii) g(s, s

(t)
) = f(s) for any s. Minimizing

g(s, s

(t)
) function instead of f(s) results in the following

update rule s

(t+1)
= argmin

s

g(s, s

(t)
), which yields non in-

creasing sequence of the objective, i.e., f(s(t+1)
)  f(s

(t)
).

A simple upper bound function g(s, s

(t)
) can be obtained

by linearizing the convex function v(s). Since v(s) �
v(s

(t)
) + (s� s

(t)
)

T
�v(s

(t)
), then f(s)  u(s)� v(s

(t)
)�

(s � s

(t)
)

T
�v(s

(t)
) := g(s, s

(t)
) [12]. Therefore, the upper

bound g(s, s

(t)
) is:

g(s, s

(t)
) =

ksk2

2�2 � 1
N

PN
i=1 ·

P
n

i

j=1 e

s

(t)T
x

ij

�

2 · xij

�

2

P
n

i

j=1 e

s

(t)T
x

ij

�

2

·�s� s

(t)
�� v(s

(t)
).

By minimizing g(s, s

(t)
) with respect to s, we obtain the

update rule:

s

(t+1)
=

1

N

NX

i=1

n
iX

j=1

e

s

(t)T
x

ij

�

2

Pn
i

k=1 e
s

(t)T
x

ik

�

2

xij . (12)

In effort to obtain the global solution, we propose the
combination of the initialization in (11) and the iterations in
(12). Inspired by this approach for solving the ML problem
for the single template case, we proceed with a mixture
model generalization for the multiple template case.

III. PROBLEM FORMULATION

Fig. 3. A graphical model for the K-Pattern alignment problem

To formulate this problem, consider N subsets
X1,X2, . . . ,XN of the d-dimensional Euclidean space
Rd, i.e., Xi ✓ Rd for i = 1, 2, . . . , N . Each set is assumed
to contain only one of K possible patterns {s1, s2, . . . , sK}
among other instances (see Fig. 1(a)). Our goal is to obtain
the K patterns of interest.

A. Statistical K-pattern Model

To model the problem of finding the K-unknown elements
in multiple sets in a noisy setting, we extend the single
pattern model in [9] as shown in Fig. 3. We introduce hidden
template id RV K in addition to the position of the template
J in a given bag.

For each bag i, we organize the elements of Xi in a d⇥ni

matrix Xi = [xi1, . . . ,xin
i

] and consider joint distribution
of the observations represented by the observation matrix
X = [X1, . . . , XN ] given the unknown vectors s1, . . . , sK .
We introduce the class prior probability ↵k that satisfies 0 <

↵k < 1,

PK
k=1 ↵k = 1 for each probability density function

G(Xi|sk) in (1). Since we assume that sets are generated in
an independent fashion, we express the joint distribution of
sets as a product of their marginal PDFs:

⇤(X; ✓) =

NY

i=1

fi(Xi; ✓) (13)

fi(Xi; ✓) =

KX

k=1

↵kG(Xi|sk), (14)

where G(Xi|sk) is a the ith bag probability density
function conditioned on template pattern sk, and ✓ =

{↵1,↵2, . . . ,↵K , s1, s2, . . . , sK}. Then, the log-likelihood
function is:

log⇤(X; ✓) =

NX

i=1

log(

KX

k=1

↵kG(Xi|sk)). (15)

Although the expectation maximization algorithm has been
well-developed to solve the parameter estimation problem in
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mixture models, the optimization of a non-convex objective
is non-trivial.

IV. INFERENCE SOLUTION FRAMEWORK

In the following section, we present the expectation maxi-
mization (EM) framework for solving the parameter estima-
tion problem in general. Furthermore, we use a Majorization-
minimization (MM) approach with robust initialization for
implementing the EM updates.

A. Expectation Maximization

EM is an iterative solution to maximum likelihood [13].
Specifically, the iterations offer a non-decreasing sequence
of the likelihood function. In general, the auxiliary function
Q(✓, ✓

(t)
) is:

Q(✓, ✓

(t)
) = E[logP (X1, X2, . . . , XN , k1, k2, . . . , kN ; ✓)

|X1, X2, . . . , XN , ✓

(t)
]

The iterations are performed in two steps. In the E-step, the
auxiliary function is computed as:

Q(✓, ✓

(t)
) =

NX

i=1

KX

k=1

p

(t)
i (k|✓(t)) log(↵kG(Xi|sk)).

Here, p(t)i (k|✓(t)) = ↵
(t)
k

G(X
i

|s(t)
k

)
P

K

l=1 ↵
(t)
l

G(X
i

|s(t)
l

)
represents the prob-

ability that the ith bag was generated by component K.
In the M-step, we maximize the auxiliary function
max✓ Q(✓, ✓

(t)
) to obtain the update rule:

↵

(t+1)
k =

1

N

NX

i=1

p

(t)
i (k|✓(t)), (16)

s

(t+1)
k = argmax

s

k

NX

i=1

p

(t)
i (k|✓(t)) ·

⇣
C � kskk2

2�

2
+ log

� n
iX

j=1

e

s

T

k

x

ij

�

2
�⌘

. (17)

The optimization in (17) involves the sum of convex-concave
functions that cannot be solved in closed-form. We propose to
solve (17) and obtain s

(t+1)
k by using a method described in

Section II. First, we find a robust initialization for s(t+1)
k (i.e.,

s

(t+1,0)
k ). Then we use MM approach to refine the solution.

Algorithm 1 Expectation Maximization for mixtures of G
likelihood function

1: Initialize ✓

0
= {↵0

1,↵
0
2, . . . ,↵

0
K , s

0
1, s

0
2, . . . , s

0
K}.

2: procedure EMFORMGF(✓0, X)
3: while Likelihood ⇤(X; ✓) not converged do
4: E-step: compute membership probability

p

(t+1)
ik =

↵
(t)
k

G(x
i

|s(t)
k

)
P

K

l=1 ↵
(t)
l

G(x
i

|s(t)
l

)

5: M-step: max

✓
Q(✓, ✓

(t)
) to obtain sk

6: Running Procedure: ŝk =MMforS(s0k, X)

7: Return ✓

B. Robust Initialization

There are two sets of initialization parameters ↵

0
k =

{↵0
1,↵

0
2, . . . ,↵

0
K} and s

0
k = {s01, s02, . . . , s0K}. The initializa-

tion of Gaussian mixture model is a well-known problem
(e.g., see [14]). We can directly apply initialization tech-
niques for the ↵

0
k and s

0
k, while initializing s

(t+1,0)
k is our

focus.
By approximating the log of sum of exponential func-

tions with the largest term in the sum log(

Pn
i

j=1 e
s

T

k

x

ij

) ⇡
maxj s

T
k xij and pik = pi(k|✓), wik =

p
ikP

N

i=1 p
ik

, the
approximated maximization problem in (17) becomes:

max

s

k

NX

i=1

wik · ��kskk2
2

+ max

j
i

s

T
k xij

i

�
, or,

max

s

k

,j

NX

i=1

wik · ��kskk2
2

+ s

T
k xij

i

�
. (18)

We first solve for sk by taking the derivative of the objective
function with respect to sk and setting to zero. We obtain the
solution for sk as sk =

PN
i=1 wikxij . Substituting sk back

into (18), yields:

max

j

1

2

� NX

i=1

wikxij
i

�2
or,

max

j

1

2

NX

i1=1

NX

i2=1

wi1kwi2kx
T
i1ji1

xi2ji2
,

which can be written as,

min

j

f

(k)
(j), where

f

(k)
(j) =

1
2

NP
i1=1

NP
i2=1

wi1kwi2k||xi1ji1
� xi2ji2

||2

+

NP
i1=1

wi1k

�
max

t
||xi1t||2 � ||xi1ji1

||2�. (19)

The objective in (19) can be viewed as a weighted sum
of edge weight in a graph given by Di1i2 = kxi1ji1

�
xi2ji2

k2 and a weighted sum of node penalties �i(j) =

maxt ||xit||2 � ||xij ||2.
This problem is similar to the single pattern matching

problem. We apply the bi-partite graph approach for each
pattern to robustly initialize s

(t)
k for each iteration with

estimated ˆ

sk. Since (19) is similar to (7), we can use the
same procedure to obtain the ML solution ˆ

jk. Using f

(k)
i (j)

functions and solving N minimizations for each pattern
individually, we obtain the approximate solution ˜

jk:

j

i1
k = argmin

j

f

(k)
i1

(ji2), where

f

(k)
i1

(ji2) =

NX

i2=16=i
i

wi2k

�kxi1ji1
� xi2ji2

k2 + �i2(ji2)
�
.

Then, ˜jk = j

i⇤
k

k , where

i

⇤
k = argmin

i
f

(k)
i1

(ji2).
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Based on the approximate solution ˜

jk, we directly obtain the
approximate estimation for s⇤k:

s

⇤
k =

NX

i=1

wikxĩj
k

. (20)

Moreover, we can still establish a lower and upper bound for
each pattern k:

1

2

X

i1

wi1kf
(k)
i2

(j

i1
k )  f

(k)
(

˜

j(k))  min

i1
f

(k)
i1

(j

i1
k ).

Since
P

i1
wi1k mini1 f

(k)
i1

(j

i1
k )  P

i1
wi1kf

(k)
i1

(j

i1
k ), we

can further bound the lower bounded by 1
2 mini1 f

(k)
i1

(j

i1
k ).

Therefore,

1

2

min

i1
f

(k)
i1

(j

i1
k )  f

(k)
(

ˆ

jk)  f

(k)
(

˜

jk)  min

i1
f

(k)
i1

(j

i1
k ).

This bound shows that the robust initialization finds out an
approximated template such that the corresponding objective
is within a factor of 2 from the optimal solution objective.

Algorithm 2 Robust Initialization
1: Input pik from previous E-step in EM algorithm
2: Compute wik =

p
ikP

N

i=1 p
ik

3: procedure SEARCHGOODINSTANCES(wik, X)
4: for bagid i1 in 1,. . . ,N do
5: for bagid i2 in 1,. . . ,N6= i1 do
6: Compute weighted distance matrix Dj

i1 ji2
=

wi2k

�kxi1ji1
� xi2ji2

k2 + �i2(ji2)
�

7: Find smallest instance position for each i1:
[j

⇤
1 , j

⇤
2 , . . . , j

⇤
N ]=minindex(DT

j
i1 ji2

)
8: Compute v = v +D

T
j
i1 ji2

9: Find overall smallest distance value for each i1:
10: MinVal(i1)=minimum value(v)
11: MinIdx(i1)=minimum index(v)
12: [i

⇤
1]=min(MinVal(i1))

13: Get [j1⇤, j2⇤, . . .MinIdx(i

⇤
1), . . . , jN⇤] from optimal

position collection in bag i

⇤
1.

14: Return sk =

PN
i=1 wikxij

C. Majorization-minimization for ML refinement

In the M-step of the EM algorithm, a separate update rule
is used for each sk (see (18)). We can directly apply MM
algorithm for each individual minimization:

min

s

k

˜

fk(sk), where

˜

fk(sk) =
kskk2
2�

2
�

NX

i=1

wik log
� n

iX

j=1

e

s

T

k

x

ij

�

2
�
,

where pik = pi(k|✓) and wik =

p
ikP

N

i=1 p
ik

. The upper bound

of the objective gk(sk, s
(t0)
k ) is a majorizing function which

satisfies ˜

fk(sk)  gk(sk, s
(t0)
k ). By minimizing gk function, a

solution of sk⇤ is obtained in the t

0th iteration and it provides
an input to the (t

0
+ 1)th iteration:

gk(sk, s
(t0)
k ) =

ks
k

k2

2�2 �PN
i=1 wik

P
n

i

j=1 e

s

(t0)T
k

x

ij

�

2 · xij

�

2

P
n

i

j=1 e

s

(t0)T
k

x

ij

�

2

·(sk � s

(t0)
k )�PN

i=1 wik log
�Pn

i

j=1 e

s

(t0)T
k

x

ij

�

2
�
.

Then by setting �g
k

(s
k

,s
(t0)
k

)
�s = 0, we have the update rule:

s

(t0+1)
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Using a combination of robust initialization and iterative
implementation of the ML estimator of sk, we can obtain
the solution of s(t+1)

k in (17).

Algorithm 3 Majorization-minimization for template sk

1: RobustInitialize ss

0
k = {s01, s02, . . . , s0K}.

2: procedure MMFORS(s0k, X)
3: while Likelihood f(s; s

(t0)
) not converged do

4: Recalculate Q

(t0+1)
ik =

p
(t0)
ikP

N

i=1 p
(t0)
ik

from E-step of
EM

5: Recalculate W

(t0+1)
ijk =

e

s

(t0)T
k

x

ij

�

2
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n

i

j=1 e

s

(t0)T
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6: Update s

(t0+1)
k =

PN
i=1 Q

(t0+1)
ik

Pn
i

j=1 W
(t0+1)
ijk ·

xij

7: Return s

final
k

V. PERFORMANCE ANALYSIS

In this section, we evaluate our proposed method on a
synthetic data set and on a real world data set of elec-
tric appliance activations (Source: Pecan Street Research

Institute). We evaluate our methods in terms of Receiver
Operating Characteristic curve (ROC) and Area Under the
ROC curve (AUC) and compare the results to the results
presented in [10]. We also show the improved performance
on ROC and AUC based on the mixture model.

A. Synthetic Dataset Generation

The Xi’s are generated in an independent fashion based on
the K-pattern Model, where the template id for bag i is uni-
formly sampled in {1, 2, . . . ,K} and the template position
in the ith bag Ji is uniformly sampled in {1, 2, . . . ,M}. We
choose K = 3 and ground-truth templates s1(t), s2(t), s3(t)

are designed as:

s1(t) = u(t+D/2)� u(t�D/2), for t = 0, 1, 2, . . . , D;

s2(t) = t, for 0  t  D;

s3(t) = �t, for 0  t  D.
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Note that u(t) is a step function. We normalize each vector
si = [s

i

(1), s

i

(2), . . . , s

i

(t)]

T using si/||si|| and set it as
our new si for all i = 1, 2, 3.

Since the estimated accuracy is affected by the set of
parameters {D,M,N, SNR} (D-dimension of the template,
M -number of instances per bag, N -number of bags and
SNR-signal to noise ratio), we perform numerical experi-
ments to analyze the mean squared error (MSE) of the iter-
ative implementation of the ML estimator against different
setups of parameters. Then, we also perform a detection task
based on a maximum a-posterior probability (MAP) detector
using the estimated patterns.

B. Estimation Performance Evaluation on Synthetic Dataset

To analyze the estimation performance with respect to
different parameters, we start with the nominal setting of
N = 50 sets with M = 20 D = 100-dimensional elements
in each set for SNR 2 {�20dB,�18dB, . . . , 20dB}. Then
we vary one parameter (D, M , and N ) at a time as
D 2 {100, 400} and M,N 2 {10, 50} to evaluate the
MSE of the ML estimator as a function of SNR. For each
combination of parameters {N,M,D, SNR}, we generate
50 independent Monte-Carlo (MC) realizations based on our
mixture model. Since EM is sensitive to the initialization,
we use 10 iterations of different random values of ↵

0
k and

s

0
k and choose the estimate yielding the largest likelihood

value. Using the 50 MC runs, we compute the sum of each
k empirical MSE with the mean and its confidence interval.
In Fig. 4, we present the MSE as a function of the SNR of
the iterative implementation of the ML estimator. Increasing
SNR and the number of bags N yields a decrease in the
relative MSE, while increasing template dimension D and the
number of instances in each bag M yields a small increase
in the relative MSE when SNR is less than �10dB. We also
notice that it is possible to achieve an under �10dB relative
MSE, for fairly low values of SNR by either increasing the
dimension D or the number of sets N . This suggests that
using more sets compensate for the performance degradation
when choosing larger number of elements in each set.

C. Detection Performance Evaluation on Synthetic Dataset

We designed a GLRT framework for detecting the position
J of unknown patterns {s1, s2, . . . , sK} given a new dataset
X = {x1,x2, . . . ,xM}. We denote xj⇤ as an instance
in the set that contains one of the true templates sk 2
{s1, s2, . . . , sK}. Our goal is to detect the position j in
each bag and analyze the performance of our detectors as
a function of k.

By maximizing the posterior probability of J and K,
which can be written as P (J = j,K = k|X) =

f(X|J=j,K=k)·P (J=j)P (K=k)P
M

j=1

P
K

k=1 f(X|J=j,K=k)·P (J=j)P (K=k)
/ f(X|J = j,K =

k)P (J = j)P (K = k), we can directly obtain the detector
as

max

J,K
P (J = j,K = k|X).

To simplify the notation, we omit the dependence of P (J =

j,K = k|X;↵, s) on ↵ and s and write it as P (J =
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Fig. 4. MSE of the ML estimator as a function of SNR in (i)-(iii) and
detection error vs. K in (iv) .

j,K = k|X). Since for each bag, f(Xi|J = j,K = k) =QM
j=1 f0(xj) · f1(xj

|s
k

)
f0(xj

) , and based on the Gaussian model
for f1 and f0, the log of the posterior probability can be
rewritten as:

log(f(X|J = j,K = k)) = � ||xj � sk||2
2�

2
+

||xj ||2
2�

2
+ C;

log(P (J = j)) = � log(M);

log(P (K = k)) = log(↵k).

By taking the negative logP (J = j,K = k|X), we obtain
the detector as:

min

j,k

2s

T
k xj � ||sk||2

2�

2
+ log(↵k). (22)

In this experiment, we apply this detector to the synthetic
data set with 50 bags and we detect the position of the pattern
based on the K-pattern estimation results of ˆ

sk, ↵̂k. If the
position of a pattern is true, we count it as a hit, otherwise,
we count it as a miss. The error given by P (J 6= j|X) is
presented in Fig. 4(d) as a function of the number of the
templates.

D. Real World Dataset

We use the same dataset as described in [10]. The Pecan
Street dataset contains four homes (PS025, PS029, PS046,
PS051) voltage peak to peak measurements and power sub-
meter measurements. In [10], the dataset is divided into train-
ing data within the period 11/17/2012-11/25/2012 and test
data within the period 11/26/2012-12/11/2012. Moreover,
it is shown that the blind joint delay estimation for single
activation pattern yields mean AUC around 75%. However,
for some appliances such as oven, the AUC is as low as
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50%. Our goal is jointly identify multiple activation patterns
together for the same appliance in a multiple bag setting.
We show an example of oven (in Fig. 5) with two activation
patterns repeated multiple times.

(e) Oven Activations

Fig. 5. Examples of Identifying Two Activation Patterns of Oven.

To make the comparison fair, we use the same amount
of training examples and choose a window of size 700 (i.e.,
D = 700) during the training phase. We compare the ROC
and AUC in [10] with those of the K-pattern model for both
single activation appliances and multi-activation appliances.

E. Detection Performance Evaluation on Real-World

Dataset

Since not all appliances have multiple activation patterns,
we test the performance of our proposed algorithm by in-
creasing K (the number of patterns). Based on the activation
patterns estimated during the training phase, we apply the
same detector max⌧

PT
t=1(ytest(t) � ȳtest(t))(s(t � ⌧) �

s(t� ⌧))

H1

?
H0

⇢

00 as in [10] to each hourly file in the test data

with a period of more than ten days and acquire the ROC
curve for each appliance in each of the four homes. In [10],
because the model is not robust to outliers, the training data
has been filtered. To make the comparison fair, we also apply
the filtering process to the training data such that the training
examples are free from outliers. The corresponding AUCs for
all appliances available in each home on both single pattern
model and K-pattern model is present in the TABLE I.

We observe that mixture model with K = 1 attains a
reasonable ROC curves and the similar AUCs compared to
the single pattern model in [10]. We also notice that AUCs
for most appliances in the mixture model is slightly higher
than the single pattern model (10/14 entries are higher in the
mixture model in Table I). This suggests that the mixture
model, built upon the single pattern model, is not decreasing
the performance of the single pattern model. Moreover,
we concentrate on increasing the AUCs for the appliances
revealing more than one activation pattern.

By increasing the number of activation patterns K in the
model, more than one activation pattern can be identified, but
each pattern would be more coarse. This is due to the effect
of averaging with less bags for each pattern. To capture the

House ID App. Name AUC (Single) AUC (MixtureK = 1)
PS025 Air-Cond. 0.95066 0.95228
PS025 Oven 0.52177 0.52076
PS029 Air-Cond. 0.91496 0.91496
PS029 Fridge 0.71906 0.68795
PS029 Furnace 0.86338 0.86519
PS029 Dryer 0.99142 0.98460
PS029 Microwave 0.87869 0.87926
PS029 Oven 0.91030 0.91602
PS046 Air-Cond. 0.84892 0.85882
PS046 Fridge 0.49252 0.49680
PS046 Furnace 0.53887 0.57652
PS046 Oven 0.91824 0.95471
PS051 Air-Cond. 0.91311 0.91418
PS051 Oven 0.78501 0.77505

TABLE I
AUCS OF SINGLE PATTERN MODEL VS. MIXTURE MODEL WITH K = 1

ON TEST DATASET

variation among patterns and maintain the completeness of
the training data, we train the mixture model on the unfiltered
training data. Then, we apply the same detector to test for
different K.

For appliances with only one activation pattern, such
as air-conditioning, furnace, and microwave, considering a
larger K model would not affect the performance signif-
icantly (see Fig. 6(a) and (c)). For those appliances with
multiple activation patterns, such as oven, dryer and fridge,
mixture model captures more variations of the activation
patterns yielding a significant improvement in detection
accuracy (see Fig. 6(b) and (d)).
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(c) PS029 Furnace ROC
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(d) PS046 Fridge ROC

Fig. 6. ROC plots for Single pattern detection and for multiple pattern
detection.

In the case of K = 1, the performance of single pattern
model and mixture model is similar (see TABLE I). To test
the performance of mixture model by the effect of varying
K, we present the AUCs for K = 1, K = 2, K = 3 and
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K = 4 in four homes which is shown in TABLE II. Even
though increasing the number K in the training phase is
more time consuming, the detection accuracy has increased
in the testing phase. The computation complexity of training
the mixture model with K components is K times more
than the single pattern model. However, the AUCs improved
significantly for K = 3 than the single pattern model,
especially for those appliances containing multiple activa-
tion patterns (see Table I and Table II). Moreover, without
manually filtering the training data, we can save time and
avoid human intervention.

House ID App. Name AUC
(K = 1)

AUC
(K = 2)

AUC
(K = 3)

AUC
(K = 4)

PS025 Air-Cond. 0.91536 0.94718 0.96430 0.94521
PS025 Oven 0.62589 0.77490 0.77117 0.78919
PS029 Air-Cond. 0.89135 0.93373 0.93373 0.93373
PS029 Fridge 0.69454 0.82033 0.82255 0.77734
PS029 Furnace 0.92872 0.87298 0.92531 0.92872
PS029 Dryer 0.14849 0.98840 0.96926 0.97028
PS029 Microwave 0.70571 0.94661 0.93492 0.92364
PS029 Oven 0.92116 0.95478 0.95478 0.91151
PS046 Air-Cond. 0.27775 0.85115 0.94300 0.95887
PS046 Fridge 0.50963 0.72579 0.81084 0.87933
PS046 Furnace 0.50576 0.55790 0.57826 0.52459
PS046 Oven 0.45611 0.85403 0.81768 0.87384
PS051 Air-Cond. 0.91362 0.93661 0.96314 0.96314
PS051 Oven 0.77862 0.78036 0.75660 0.79800

TABLE II
AUCS OF MIXTURE MODEL BY VARYING K

We observe that the AUCs for most appliances change
slightly when varying K from 1 to 4, while some appliances
change significantly, such as oven in home PS025, fridge,
dryer and microwave in home PS029 and air-conditioning,
fridge in home PS046. We notice that the AUC may not
increase by increasing K because outliers can be recognized
as a pattern introducing more ’false alarms’. Even if some ap-
pliances have only one activation pattern, the mixture model
approach increases the AUC by capturing the variations in
patterns. In practice, K can be selected using cross-validation
to prevent overfitting.

VI. DISCUSSION AND CONCLUSION

In this paper, we introduced a statistical mixture model for
finding multiple patterns across multiple sets. We provided
an EM-based inference framework with robust initialization
approach. We tested the performance of our proposed algo-
rithms on both synthetic dataset and real world dataset. The
results on synthetic data showed that for high SNR, MSE
for multiple patterns would achieve a similar performance
as that of the single pattern. In real world dataset, for some
appliances, we observed a significant performance increase
when using the K pattern model instead of the single pattern
model. Moreover, if a home appliance has only one activation
pattern, using the mixture model maintained the performance
of the single pattern model. The mixture model introduces
significant performance improvement relative to the single
pattern model when an appliance exhibits multiple activation
patterns.
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