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Abstract—As sea level rises and coastal populations continue
to grow, there is an increased demand for understanding the
accurate position of the shorelines. The automatic extraction
of shorelines utilizing the digital elevation models (DEMs)
obtained from light detection and ranging (LiDAR), aerial
images and multi-spectral images has become very promising.
In this paper, we propose a new algorithm that can effectively
extract shorelines from fused LiDAR DEMs with aerial images
depending on the availability of training data. The LiDAR data
and the aerial image are fused together by maximizing the
mutual information using the genetic algorithm. The extraction
of shoreline is obtained by segmenting the fused data into water
and land by means of the support vector machines classifier.
Compared with other relevant techniques in literature, the
proposed method offers better accuracy in shoreline extraction.

Keywords: Remote sensing, LiDAR, DEM, Support vector ma-
chines, Genetic algorithms, Mutual information

I. INTRODUCTION

Shoreline is a spatial varying separation between water
and land [1]. Its erosion and accretion play an essential role in
coastal protection design, sea level rise monitoring, historical
rate of change quantification and coastal zones developments
policies formulation [2]. The mapping of a shoreline is based
on selection of good features that can robustly handle both
temporal and spatial variations of its positions within the
available data sources. Several data sources such as: histor-
ical land-based photographs, coastal maps and charts, aerial
images, beach surveys, multispectral/hyperspectral images,
LiDAR DEM data and microwave sensors can be used to
extract the shoreline locations.

Aerial images typically have broad spatial coverage but
their temporal coverage is limited by the acquisition time.
The Hyperspectral images provide broad spectral coverage
but they are limited due to low pixel resolution. LiDAR
data can cover a wide spread of regions in short periods
of time and provide high resolution digital elevation mod-
els that are both accurate and cost effective. Unlike the
aerial photographs that utilize the wet-dry boundary as a
shoreline proxy which is affected by tidal effects and wave
movements, LiDAR DEM data can be used to extract true
shoreline positions as they are referenced to tidal datum
gauge measurements [3]. Additionally, a single LiDAR DEM
data acquired at the lowest tide can be used to extract
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shorelines referenced to different datums such as mean high
water (MHW), mean low water (MLW), mean higher high
water (MHHW), mean lower low water (MLLW) and mean
surface water (MSW) which can not be achieved through
aerial images or hyperspectral images [3].

There have been many attempts to effectively automate
the shoreline extraction. Descombes et al. [4] presented an
edge detection algorithm for extracting shorelines from a
satellite Synthetic Aperture Radar (SAR) image. Ryan et
al. [5] proposed an image segmentation approach that was
tested on scanned U.S. geological survey (USGS) aerial
photographs. Mason and Davenport [6] employed an edge
detection method based on a coarse-fine resolution process-
ing strategy and applied it to satellite SAR images. Liu
and Jezek [7] developed an automated shoreline extraction
method based on a locally adaptive thresholding algorithm
that was used on both optical and radar images. The fusion
of multi-modal remotely sensed data to extract shoreline
position has been reported in literature. Wu et al. [8] extracted
water features from aerial images fused with LiDAR data.
They constructed a triangular irregular network (TIN) from
LiDAR points by means of quad-edge based incremental
insertion algorithm. Rough water features are obtained by
analyzing the area of the generated TIN. They utilized
the mean shift segmentation algorithm [9], [10] to obtain
a finer classification of the rough water areas. Lee et al.
[11], [12] proposed a method for shoreline extraction from
integrated LiDAR point cloud data and aerial orthophotos
using mean shift segmentation. They trained the mean shift
segmentation on the LiDAR elevations only to select the best
bandwidth parameter that maximizes the total true positive
classification rate. Since the mean shift segmentation serves
as a segmentation rather than a classification algorithm, they
manually digitize a partial shoreline segment to serve as
a ground truth that is used in classifying the segmented
land and water regions. Their classification is based on the
homogeneous nature of the elevation and color distribution of
a water surface which is expected to give inaccurate results
in areas where the water may submerge lands.

In this paper, we develop a new approach to extract
shorelines from the fused liDAR DEMs and their correspond-
ing coverage of aerial images with the support of training
data. The multi-modal data are fused by maximizing their
mutual information by means of the genetic algorithm [13].
Additionally, support vector machines classify the fused data
and segment it into land and water pixels. This approach
can work without reference to a tidal datum and can extract
the MHW shoreline but if tidal datum exist, it can be used
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to extract other shorelines (MLW, MLLW, etc.) as well. We
assess the accuracy of the proposed approaches by comparing
to a ground truth. In addition, we compare our approach with
recent shoreline extraction methods such as Lee et al. [11].

The rest of this paper is organized as follows: In section
2, we describe the LiDAR DEM. In section 3, we describe
the Mutual information-based data fusion using genetic al-
gorithm. Section 4 demonstrates the SVM based approach
while section 5 discusses the results introduced in this work
and section 6 concludes the overall study.

II. LIDAR DEMS

The LiDAR data is a cloud of irregularly distributed
points with X, Y, Z coordinates. Generally, to create digital
elevation models, the LiDAR point cloud is processed in
several steps. The cloud data is filtered and interpolated into
a grid with the required spatial resolution. If one or more
LiDAR points are found in a grid cell, the median Z for those
points is taken as the value for the grid cell. For any grid cell
where no LiDAR points are found, a Z value is determined
using an inverse distance weighted interpolation with the
surrounding neighboring points. The horizontal co-ordinates
of the LiDAR points are referenced to the North American
Datum of 1983 (NAD83). In our study, we downloaded
the DEM data from the NOAA Coastal Services Center
(http://csc.noaa.gov/digitalcoast/data/coastallidar/index.html)
with point density of 0.1 to 8 pts/meter2 and elevations
accuracy of 30 centimeters at 95% confidence interval.

In the processed DEM files, there are segments with
”not a number” (NAN) values in LiDAR data acquisition
which will affect the subsequent steps of automatic shoreline
extracting. Accordingly, we use locally weighted scatterplot
smoothing (Lowess in Cleveland [14]) nonparametric re-
gression method to estimate the LiDAR data of the NAN
elevation regions based on their neighborhoods. We limit
Lowess’s method to work on a window that is four times
larger than the NAN region. The window is centered around
the NAN region. The advantage of using Lowess’s method
is that it doesn’t require a specific model to fit all the data
and is flexible enough to handle complex models within the
sample. We used a tri-cube weight function as defined by:
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where x is the predictor value associated with the response
value to be smoothed, xi are the nearest neighbors of x
as defined by the span, and d(x) is the distance along
the abscissa from x to the most distant predictor value
within the span. Close inspection shows that the NAN data
are located in water and land bodies and away from the
coast. Consequently, use of regression method will not affect
accuracy of the extracted shorelines.

III. MUTUAL INFORMATION-BASED DATA FUSION USING

GENETIC ALGORITHM

Both aerial images and the corresponding DEM data
should be referenced to a common grid and have the same
spatial resolution. The liDAR DEMs and their correspond-
ing aerial coverages are fused by maximizing their mutual
information using a genetic algorithm. Mutual information
combines the data, where better classification is usually
obtained from diverse data. So, mutual information is used
to in order to maximize superposition of the information
contained in multi-modal data and hence the discrimination
rate can be higher than using individual data sources.

A. Genetic algorithms

Genetic Algorithms are non-linear optimization tech-
niques that finds an optimum solution by defining a cost
function controlled by a set of parameters. To obtain an
optimum solution, GA uses multiple search paths instead
of doing a regular grid search which in turn will reduce
time and space. Continuous genetic algorithms (CGA) define
the solution in terms of real numbers and they involve
6 elements [13]: (1) cost function; (2) initial population;
(3)natural selection; (4) mating; (5) mutation; and (6) next
generation.

The Cost function is minimized with respect to floating
point variables or parameters known as chromosomes. Each
chromosome is represented with an N-dimensional vector
P = [p1, p2, . . . , pN ]. Since the GAs are search techniques,
there should be some constraints on the defined variables.

To start the CGA, an initial population matrix of dimen-
sion Npop×N is defined where Npop is the population size.
Each chromosome is evaluated by the cost function. The
chromosomes are ranked according to their costs and only
strong chromosomes are kept for the mating step while the
others are discarded.

There are many approaches for doing the mating between
the selected chromosomes. The simplest method is to ran-
domly select a crossover point and all the genes to the right of
the selected point are swapped. Since the CGA may converge
to non global minimum, mutations or changes in the variables
are introduced to void the stuck at a local minimum.

The initial population is then ranked and the top chro-
mosomes will be selected for the next population while the
bottom ranked chromosomes are replaced with the initially
discarded chromosomes. The process continues until the
CGA converges to a global minimum [13].

B. Mutual Information

The entropy of random variable is the amount of in-
formation required to represent that variable. For two ran-
dom variables X and Y with joint probability distribution
p(x, y) and their marginal distributions are p(x) and p(y)
respectively, the mutual information I(X ;Y ) is the relative
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entropy between the joint distribution and the product of their
marginal distributions as given by:

I(X ;Y ) =
∑

x

∑

y

p(x, y) log
p(x, y)

p(x)p(y)
(2)

The mutual information can be written as:

I(X ;Y ) =
∑

x

∑

y

p(x, y) log
p(x|y)

p(x)

= −

∑

x

p(x) log p(x) (3)

+
∑

x

∑

y

p(x, y)logp(x|y)

= H(X)−H(X |Y )

= H(Y )−H(Y |X)

where H(X) is the entropy of the random variable X and
H(X |Y ) is the entropy of X with the knowledge of Y . It can
be seen that the mutual information represents the reduction
in the information of one of the random variables with the
knowledge of the other one.

C. Fusion Cost Function

Suppose that the aerial image is A(x, y) and its cor-
responding LiDAR DEM is L(x, y), then the fused image
F (x, y) which will also represent the GA cost function is
defined by:

F (x, y) = CaA(x, y) + ClL(x, y) (4)

where Ca and Cl are the corresponding coefficients required
to maximize the total mutual information between the fused
image and both the aerial image and the liDAR DEM. The
GA should find the optimum values of both Ca and Cl to
maximize the total mutual information I defined by

I = I(F ;A) + I(F ;L) (5)

where I(F ;A) and I(F ;L) are the mutual information
between the fused image and both the aerial and liDAR DEM
respectively.

According to Equation 3, maximizing the mutual infor-
mation between two random variables may result in a loss of
the information symmetry. In image fusion, this loss can be
evaluated by measuring the fusion symmetry (FS) as given
by [15]

FS = 2−
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IV. SHORELINE EXTRACTION USING SVM CLASSIFIER

We propose an efficient and accurate method to extract
the shoreline from the fusion of different remotely sensed
data sources including: LiDAR data, aerial images and multi-
spectral images. Our approach uses both aerial images and
DEM data but it can be easily adjusted to handle other
data sources. In our proposed algorithm, we use the SVM

classifier due to its high accuracy, speed and minimal user
interactive needs [16].

A. Support Vector Machines

1) SVM classifier: In this section we give a short review
on the support vector machines. Let (xi, yi)1≤i≤N be the
set of training samples, where x ∈ ℜ

d, d is the dimension
of the feature space and yi ∈ {−1, 1} is the class labels. If
the training samples are linearly separable, and there exists a
weight vector w then the classification criteria (CC) is given
by [17]:

CC =

{

yi = −1 w · xi ≥ 1
yi = −1 w · xi ≤ −1

(7)

An optimum separating hyperplane can be found by mini-
mizing the squared norm of the hyperplane as given by

Minimize Φ(w) =
1

2
‖w‖

2
constrained with yi(w

T
xi+b ≥ 1)

(8)
where b is defined as bias . The quantity ‖w‖

2
is convex and

can be minimized using Lagrange multipliers. The optimiza-
tion problem reduces to:

W (α) =
N
∑

i=1

αi −
1

2

N
∑

i,j=1

αiαjyiyjxi · xj (9)

After solving for the Lagrange multipliers, the optimum
separating hyperplane is given by:

wo =

N
∑

i=1

αyixi (10)

and the decision criterion for the samples under test is given
by

f(x) = sgn (wo · x+ b) (11)

If the data contain misclassified samples and are not linearly
separable then the SVM classifier may not find any separating
plane. Such a problem can be solved using positive slack
variables ξi and the new classification scheme is given by
[18]:

CC =

{

yi = 1− ξi w · xi ≥ 1
yi = −1 + ξi w · xi ≤ −1

(12)

and the new minimization problem becomes:

Minimize

{

1

2
‖w‖

2
+D

N
∑

i=1

ξi (13)

For misclassified instance to occur, the value ξi must be
greater than 1 and hence

∑

i is an upper bound for the
training errors. The term D is used to compensate for the
misclassified instances and can be determined using SVM
training. In many realistic cases, there will not be a hyper-
plane that can classify non-separable instances unless they
are mapped to higher dimensional space where the training of
the SVM should take place. If xi is replaced by its mapping
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φ(xi) then equation 9 becomes:

W (α) =

N
∑

i=1

αi −
1

2

N
∑

i,j=1

αiαjyiyjφ(xi) · φ(xj) (14)

The training algorithm thus, will depend upon the dot product
of the mappings rather than depending on φ(x) themselves.
This can be achieved through a predefined kernel K(xi,xj)
such that K(xi,xj) = φ(xi) · φ(xj) and consequently,
φ(xi) is not required to be known explicitly [19]. Once the
kernel is chosen the optimization problem is solved then by
minimizing:

W (α) =

N
∑

i=1

αi −
1

2

N
∑

i,j=1

αiαjyiyjK(xi,xj) (15)

and the classifying criterion becomes:

f(x) = sgn

(

N
∑

i

αiyiK(xi,xj) + b

)

. (16)

2) SVM training: The aerial images are fused on the
corresponding LiDAR DEM data. To reduce the compu-
tational complexity and memory requirements required for
the training and the classification steps, we split the raster
grids into non-overlapping partitions. Every partition will be
trained and tested independently from the other partitions.
Since every partition is self trained and classified, parallel
computations can be used to accelerate the whole process.
The training is done by means of 10-fold cross validation to
select the best kernel with its optimal parameters that can
achieve minimal classification error rate. Genton [20] has
defined several kernels that can be used in SVM classifier
but he did not specify the limitations of each kernel and to
what kind of problems it can be applied. Experimentally, we
found that the best results can be obtained by a radial basis
kernel defined by:

K(xi,xj) = exp (−γ ‖xi − xj‖
2
), γ > 0 (17)

We conducted a grid search on the parameters γ, C that can
achieve best by means of 10-folds cross validation on the
training samples. The experimental value for both γ and C is
1. Once the classifier is trained the resultant model is applied
to the test data. The selection of the training instances does
not require much experience of the user and it can be done
manually by selecting a number of samples that represent
water and land regions. The advantage of this step is that
the user can either train the classifier to extract the MHW
shoreline or any other shoreline that is referenced to other
datums. If a tidal datum is used, the DEM data are segmented
based on this threshold and then the user has to select the
water samples that fall below the threshold or the land pixels
that are above the threshold. After the training samples have
been selected, the SVM classifier with radial basis kernel is
applied to the training data and tested using 10-folds cross
validations to select its optimal parameters.

3) Shoreline Extraction: Once the SVM classifier has
been trained, it should be applied to the whole data to classify
it into water and land regions. Then a small area removal is
carried to eliminate the unwanted areas from the classified
image. Finally, The boundary between water and land is
extracted and smoothed using a Guassian kernel.

V. RESULTS AND ANALYSIS

We downloaded both LiDAR DEM and the corresponding
aerial images from NOAA Coastal Services Center
(http://csc.noaa.gov/digitalcoast/data/coastallidar/index.html).
The dates of data acquisition are 03/11/08-03/14/08. Both
the DEM files and the tidal datums are referenced to
NAVD88. The LiDAR data were collected by the NOAA
National Geodetic Survey Remote Sensing Division using a
Riegl Q680i-D system and they were in universal transverse
mercator (UTM), Zone 18 coordinates. The given example
extends from -74.98 W to -74.38 E and from 39.4 N to
38.91 S. Its horizontal accuracy is 1 m while its vertical
accuracies are 0.15 m. The DEM is a raster grid of elevation
values with 2074 columns and 2076 rows. The DEM
files are all horizontally and vertically referenced with
respect to NAD83 and NAVD88 respectively. We compare
the proposed approach against Lee et al. [11] approach.
Simulations are done using MATLAB 7.8 Release 2009a
program on on OPTIPLEX 780 (Intel(R) Core (TM)2 Quad
2.66 GHz CPU with 8.00 GB.

The evolution of the GA is depicted in Figure 1. The
initial population size is 1003 and is set to a double vector.
The first and second columns in population matrix represent
aerial image and LiDAR DEM while the third one represents
the mutual information. The mutation function is set to
Gaussian. In each evolution of the GA, only 30 rows are
kept for mating and the others are neglected. The mutation
rate is set to 0.20, hence the total number of mutated

variables is 60. The GA stops at the 51th iteration. The

optimum solution is achieved at the 30th iteration and remains
unchanged till the 51th evolution. The fusion coefficients are
Ca = 0.9968 and Cl = 0.0042. The results of the multi-
modal data in addition to the results of the image fusion are
shown in Figure 3. Although the LiDAR fusion coefficient
is small compared to the optical image one, the accuracy
assessment shows an improved performance in terms of the
extraction error. Once the SVM classifier has been trained,
the network is applied to the whole data to classify it into
water and land regions. Then a small area removal is done
to eliminate the unwanted areas from the classified image.
Finally, the boundary between water and land is extracted
and smoothed using a Guassian kernel.

The extracted shoreline is depicted in Figure 4. Visually, it
can be seen from Figure 4(c) and 4(d) that the SVM approach
is closer to the ground truth and is better than the approach
proposed by Lee et al.[11]
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A. Accuracy assessments

We assess the accuracy of the proposed approach by com-
paring the extracted shorelines against manually extracted
ground truth. The NOAA website does not provide ground
truth data with matching dataset with exact date, time and
spatial resolution information. Accordingly, we traced the
MHW shoreline manually and used it as a ground truth. We
set a number of transect along the ground truth to calculate
the error difference between it and the extracted shorelines.
In this assessment, we used example 1 and the transects can
be seen as small black segments across the shoreline. We
plot error difference between the extracted shorelines and
the ground truth at every transects as shown in Figure 2. The
average of errors are 2.37 m and and 4.92 m for the SVM,
and Lee et al. approaches respectively. The accuracy of our
proposed approach is better than the other approach. In a
recent work by the authors [21], they utilized the same dataset
and the average error was 2.81 m. In their approach, they
utilized SVM classifier on both aerial images and LiDAR
data without fusion.

VI. CONCLUSIONS

In this paper we presented an efficient approach to extract
shorelines from remotely sensed data depending on the avail-
able data sources and training data. It’s assumed that both
the aerial images and LiDAR DEM have the same spatial
coveraage, the same spatial resolution and georeferenced to
a common grid. The proposed approach fuses the multi-
modal data by maximizing the mutual information between
the the fused image and both the aerial image and the liDAR
DEM. Then, the fused data are segemnted into land and water
by means of SVM classifier. The visual quality assessment
of the extracted shoreline is depicted by superimposing the
extracted shorelines on their corresponding aerial images and
comparing them to a ground truth. It was shown that the
SVM approach yields better performance and accuracy than
the approach proposed by Lee et al. [11]. Our SVM based
approach has an average shoreline position error of 2.37 m
while Lee et al. approach has an average error of 4.92 m.
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Fig. 1: Genetic algorithm iterations.

Fig. 2: Absolute error differences in the extracted shorelines from the ground truth at every transect.
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(a) Aerial image (b) LiDAR DEM

(c) Fused Data

Fig. 3: Gentic algorithm results
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(a) Extracted shoreline superimposed on an aerial image. Scale: 1 cm
to 300 m.

(b) Extracted shoreline shapes. 1 cm to 300 m.

(c) Area 1. Scale: 1 cm to 75 m. (d) Area 2. Scale: 1 cm to 75 m.

Fig. 4: Extracted Shoreline for the coordinates:-74.98W :-74.38E and 39.40N : 38.91S. Comparison between the different
approaches: Lee et al. [11], and SVM shoreline. (a) Extracted shoreline superimposed on aerial image; (b) Extracted shoreline
profiles; (c) Zoom in area 1 and (d) Zoom in area 2
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