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Abstract—The problem of pitch detection consists of estimating
the dominant frequency present in a certain time window. This
paper demonstrates and analyzes the use of a non-negative matrix
factorization technique with a frequency basis formed with a
correntropy kernel. This offers the advantage that the frequency
basis is adaptable, allowing the matrix factorization to fit the data
precisely, as well as including a dictionary specifically to account
for noise. Using non-negative matrix factorization also allows
an increase in dimensionality, which increases the frequency
resolution of the algorithm.

The method is tested on a database of trumpet notes and com-
pared to other current methods, improving on their performance
for noisy signals.

Index Terms - Correntropy, non-negative matrix factorization,
pitch detection, spectral representation

I. INTRODUCTION

A fundamental part of music transcription is pitch detection
for note determination. This can be accomplished through
various methods, including both time domain and frequency
domain analysis. One common time domain technique is the
autocorrelation function, which is a measure of similarity.
The lags at which peaks occur in the autocorrelation function
correspond to the dominant frequencies found in the signal.
The maximum peak in the autocorrelation function (with a
nonzero lag) can be used to find the dominant frequency in
the signal, which is then used to classify the note.

R[m] =
1

N −m+ 1

N∑
n=m

x[n]x[n+m] (1)

The autocorrelation function only takes second order mo-
ments into account, so one way to improve upon it is by
using a function that also uses higher order moments. This
is accomplished using a correntropy kernel, which adds a free
parameter (the kernel size) that determines the combination
of moments in the resulting signal. The correntropy function
has the advantage of being much peakier than autocorrelation,
which helps avoid misclassification due to overlapping peaks
[3],[6].

V [m] =
1

N −m+ 1

N∑
n=m

1√
2πσ

exp(−||x− y||
2

2σ2
) (2)

Another set of techniques used to estimate the dominant
frequencies in a signal is spectral estimation. These take the

signal and estimate the power spectral density of the signal,
from which the dominant frequencies can be determined. The
power spectral density is found by taking or approximating
the Fourier transform of the autocorrelation of the signal.

Although the autocorrelation function has been used suc-
cessfully with spectral estimation techniques, the autocorren-
tropy function poses an interesting problem. The inclusion of
extra moments in the new signal creates more peaks in the
frequency domain [11]. Where the spectrum of the autocor-
relation function of a pure sinusoid will only have a peak at
that specific frequency, the spectrum of the autocorrentropy
function will have many more resulting peaks at harmonics
of that frequency with their respective sizes depending on the
kernel and parameters used.

This paper studies a proposed method for estimating the
power spectral density using the autocorrentropy function,
called the correntropy spectral density. Using non-negative
matrix factorization with a correntropy based frequency dic-
tionary, a representation of the correntropy spectral density is
obtained that avoids the problem of adding harmonics in the
frequency domain. This algorithm is then tested as a pitch
detection algorithm on a database of musical notes.

In this paper, the use of a new correntropy spectral estimator
is studied. Section II presents the method used to estimate
the spectrum. Section III contains results comparing the new
method with established pitch detection algorithms. Finally,
Section IV concludes the paper and lays the basis for future
work on this topic.

II. METHOD

This section details the method used to create a new spectral
estimator using the autocorrentropy function of a signal instead
of the autocorrelation. Whereas previous autocorrentropy spec-
trum suffered from multiple harmonics, this new technique
eliminates those while providing the benefits of using the
correntropy function, namely peakiness and data from higher
order moments.

A. Non-Negative Matrix Factorization

The principle behind non-negative matrix factorization is
that a matrix can be approximated as the product of two
matrices whose outer dimensions are the same as the original
matrix. That is,
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V ≈ V̂ = WH (3)

where W is defined as the dictionary matrix, and H as the
coefficient matrix [7]. If V has dimensions M x P, then we
define W as having dimension M x K and H as having K x P,
so the product between W and H has the same dimensions as
the original matrix. The ability to set K is powerful: setting K
low reduces dimensionality and improves processing time, but
setting K high (especially in the case where W is a frequency
dictionary) results in an overcomplete dictionary, which leads
to sparser results. For this purpose, V is the autocorrentropy
function of the original signal instead of the signal itself.

fk =
k

TL
, k = 0, ...,

LN

2
(4)

Eq. (4) shows the frequency grid, with T being the time span
of the input signal and L as the overcompleteness parameter
[11]. As L is increased over one, the frequencies as sampled
more finely than in a standard frequency transform, resulting
in a high resolution spectrum.

In standard non-negative matrix factorization, a cost func-
tion is defined and then the matrices are updated in order to
minimize this cost function.

minL(V ||WH) (5)

W and H are both defined to be strictly non-negative. The
cost function used in this case is the Frobenius norm, which
is defined as:

DF (V ||WH) =
1

2

∑
ij

(Vij − [WH]ij)
2 (6)

Since both W and H are optimized to approximate V, this
is normally split into two separate problems, where W and
H are optimized separately in alternating steps using gradient
descent [8].

min
1

2
||HTWT − V T ||2F (7)

min
1

2
||V −WH||2F (8)

As an alternative to traditional gradient descent algorithms,
two multiplicative update steps can be used. These alternative
steps actually function as gradient descent algorithms with an
adaptive step size [9].

Hnew
ij = Hold

ij

(WTV )ij
(WTWH)ij

(9)

Wnew
ij = W old

ij

(V HT )ij
(WHTH)ij

(10)

This multiplicative update actually serves as a gradient
descent update with an adaptive step size based on the current
state of the matrices. These update steps are then performed
until the multiplication of W and H approximate V within
specifications.

B. Noise Dictionary

The noise dictionary is the first addition to standard spectral
estimation using non-negative matrix factorization. The noise
dictionary consists of an identity matrix the same size as the
target vector; this serves as a kronecker delta dictionary to
account for any noise in the signal. This allows the frequency
dictionary to adapt to the signal while the noise dictionary
adapts to any anomalies that the frequency dictionary cannot
account for, leading to much lower fitting errors [10] [11].

With the addition of the noise dictionary, Eq. (3) now
becomes,

V ≈ V̂ = [W1,W2][H1, H2]T (11)

where H1 is the coefficient matrix associated with the fre-
quency dictionary and H2 is the coefficient matrix associated
with the noise.

C. Frequency Dictionary Update Procedure

For the specific case of frequency estimation, the dictionary
matrix W is initialized with frequency atoms, usually based on
the sine and cosine functions [10]. When the dictionary matrix
is initialized in this manner, it cannot be updated by a gradient
descent method, because doing so would destroy the frequency
basis of the matrix. Instead, only the coefficient matrix H is
updated to minimize the cost function.

For this implementation, the dictionary matrix was changed
to contain frequency atoms based on a generalized correntropy
kernel. In the majority of frequency based work for non-
negative matrix factorization, only the coefficient matrix could
be updated due to the definition of the frequency matrix [6]
due to the update destroying the frequency of each atom.
However, by defining the frequency matrix using a variant
of the Gaussian kernel, a pure frequency dictionary is created
where every atom has a free parameter: the kernel size [1].

W1(n, k) = exp(−2 sin2(πfkτn)

σ2
k

) (12)

In this kernel, fk is the frequency of the atom and τn
is the nth lag of the function. By initializing the frequency
dictionary with this kernel (using the initial kernel size given
by Silvermans Rule), it is possible to now update the frequency
dictionary using a gradient descent algorithm by changing only
the kernel size. This will not change the frequency content of
the dictionary matrix, but will adapt the shape of the atoms
to better fit the data. This allows the fit to be sparser and
more localized. The following three equations show the update
procedure for the kernel sizes [11].

∇k =
4H1(k)

σ2
k

M∑
m=1

εmW1(m, k) sin2(πτmfk) (13)

εm =
K∑
i=1

H1(i)W1(m, i) +
M∑
j=1

H2(j)W2(m, j)− vm (14)
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σt+1
k − σt

k = ∆σt+1
k = α∆σt

k − µ∇k (15)

Here, vm is the initial autocorrentropy value at lag m,
and α and µ are the momentum and learning parameters
respectively. This frequency dictionary update is important
because it automatically selects the kernel size used for each
frequency in the dictionary. Instead of searching across a
range of kernels, the dictionary uses gradient descent to find
the proper kernel size at each frequency to match the initial
autocorrentropy function, which is estimated using the value
given by Silverman’s Rule.

D. Algorithm

To determine the pitch of a musical note, a step by step
process can be followed to use correntropy spectral estimation;
namely, the correntropy-based non-negative matrix factoriza-
tion (CNMF). First, the autocorrentropy function of the time
series is estimated using Eq. (2). This functions as the V that
the non-negative matrix factorization will approximate. Once
this has been found, W1 and W2 are initialized to Equation
(8) and as the identity matrix of size MxM, respectively. H
is the initialized according to Eq. (14) and then split into H1

and H2 based on their respective sizes.

H0 = [W 0
1W

0
2 ]TV (16)

Once the dictionary and coefficient matrices have been
initialized, non-negative matrix factorization is performed,
alternating the multiplicative update in Eq. (8) for the total
coefficient matrix H and the kernel size update outlined in the
previous subsection for the dictionary matrix W1. Since W2 is
a kronecker delta dictionary meant to handle noise, it requires
no update. The dominant frequency in the signal can be found
once the update finishes by simply searching for the maximum
value in H1 and finding the frequency in the corresponding
frequency atom in the dictionary matrix.

This algorithm adds three parameters that need to be cho-
sen by the user: L, the overcompleteness parameter, µ, the
learning rate, and α, the momentum rate. The momentum and
learning rates affect only the convergence of the algorithm.
The overcompleteness parameter, if set higher than 1, should
increase performance by sampling the frequency domain finer,
leader to more precise results.

III. RESULTS

The algorithm was tested on the University of Iowa’s
musical instrument samples, specifically on the non-vibrato
trumpet sampled at medium volume. The notes were down-
sampled from the standard 44100Hz to 11025Hz. Each note
was then broken into windows consisting of 800 samples
and standardized before testing by subtracting the mean and
dividing by the standard deviation of each window.

Figure (1) shows the power spectral density and correntropy
spectral density of an E5 note played by a trumpet (with and
without noise). Though they both show the same dominant
frequency in the signal, the CSD has extremely narrow peaks

SNR (dB) 20 5 1
SWIPE .8457 .0536 .0328

Yin .9781 .6947 .3611
CNMFS No W2 .7352 .1663 .0427

CNMFS .9519 .8173 .5875
TABLE I

RESULTS WITH ZERO MEAN WHITE NOISE

SNR (dB) 20 5 1
SWIPE .7681 .0317 .0317

Yin .9781 .4628 .2177
CNMFS No W2 .7133 .0613 .0295

CNMFS .9617 .7429 .3972
TABLE II

RESULTS WITH ZERO MEAN OUTLIER NOISE

due to the overcompleteness of the algorithm, leading to the
fine frequency resolution. Also, the magnitude of all non-
dominant peaks in the CSD are relatively small compared to
the secondary peaks in the PSD, which is a result of using
correntropy. Both of these results could prove useful in a pitch
detection algorithm - the narrower peaks prevent interference
from two close notes, while smaller harmonics ensure that the
dominant frequency is not overwhelmed by the addition of
secondary peaks.

One interesting note is that the dominant peak in the PSD
spectrums is the second harmonic of E5 instead of E5. This
is a clear example of the advantages of using CSD, which
uses the kernel to help eliminate the harmonics present in
the spectrum. A drawback of the CSD, however, is that the
spectrum does contain more small peaks and fluctuations,
which could be due to the approximation inherent in non-
negative matrix factorization.

Also, the outlier noise has a much greater visual effect on
the PSD as opposed to the CSD. With non-zero mean outlier
noise with SNR = 1 added to the signal, the CSD shows a
few slightly increased secondary peaks and some fluctuation
in the low frequencies. The PSD, however, shows increased
power at every frequency in the spectrum and numerous small
peaks added.

In addition to the CNMF algorithm, the data was tested
with two state-of-the-art methods for comparison: SWIPE and
Yin. These techniques have both been proven to produce
exceptional results on monophonic music data, with steady
state note detections above 95% for musical notes [5][6].

After conducting the basic tests, noise was added in three
forms at different levels. The noise types were white noise
with a Gaussian distribution, the same white noise with 20%
outliers from a second distribution still with zero mean, and
white noise with 20% outliers and a non-zero mean. The
parameters used for CNMF are L = 10, µ = .05, and
α = .05. The algorithm was tested in two versions: one with
the noise dictionary (W2) and one without to study the affect
the dictionary has on adaptation to noisy signals.

These results show that the CNMF algorithm with the
noise dictionary performs consistently better than both Yin
and SWIPE once noise is introduced to the system, and is at
least on par with both when the noise level is low. When the
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(a) The clean trumpet note (b) The trumpet note with non-zero outlier noise
(SNR = 1)

(c) PSD of the clean note (d) PSD of the noisy note

(e) CSD of the clean note (f) CSD of the noisy note

Fig. 1. PSD and CSD results on an E5 note played by a trumpet.

SNR (dB) 20 5 1
SWIPE .7867 .0317 .0219

Yin .9781 .4737 .2451
CNMFS No W2 .7330 .0744 .0416

CNMFS .9606 .7418 .4136
TABLE III

RESULTS WITH NON-ZERO MEAN OUTLIER NOISE

noise dictionary is omitted from the CNMF algorithm, it loses
much of its advantage over the other algorithms, performing
similarly to SWIPE.

IV. CONCLUSION

This paper proposes the use of a correntropy based non-
negative matrix factorization technique for music note tran-
scription. By using correntropy kernels for the frequency basis,
the dictionary matrix can easily be adapted to fit the data

without altering the frequency structure of the matrix. In
addition, the use of a second dictionary to account for noise
makes this method extremely insensitive to even high noise
levels.

This technique provides an overcomplete spectral repre-
sentation of the correntropy function, with the benefit of
eliminating the harmonics inherent in estimating the Fourier
Transform of the correntropy function. Used as a pitch de-
tection algorithm, the results compare favorably with other
current techniques, such as SWIPE and Yin.

For future work, the parameter space will be studied so
the effect of choosing different parameters on the CSD is
known. Specifically, this will involve choosing different over-
completeness parameters, window sizes, stopping criteria, and
momentum and learning parameters. Once more is known
about how these parameters affect the CSD, CNMFS will
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become a much more powerful tool in pitch detection and
possibly other applications.

A future application for this algorithm includes testing it
on polyphonic sound sources. CNMF should lend itself well
to polyphonic music transcription due to the peakiness of the
data and lack of harmonics leading to less overlap, as well
as the ability to finely sample the frequencies. In addition
to simple note frequency estimation in polyphonic sources,
this algorithm may lend itself to note onset/offset detection by
simply finding the time windows where frequencies are above
a certain power threshold.
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