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Abstract—There is an extensive literature on value function ap-
proximation for approximate dynamic programming (ADP). Mul-
tilayer perceptrons (MLPs) and radial basis functions (RBFs),
among others, are typical approximators for value functions in
ADP. Similar approaches have been taken for policy approxi-
mation. In this paper, we propose a new Volterra series based
structure for actor approximation in ADP. The Volterra approx-
imator is linear in parameters with global optima attainable.
Given the proposed approximator structures, we further develop
a policy iteration framework under which a gradient descent
training algorithm for obtaining the optimal Volterra kernels
can be obtained. Associated with this ADP design, we provide
a sufficient condition based on actor approximation error to
guarantee convergence of the value function iterations. A finite
bound of the final convergent value function is also given. Finally,
by using a simulation example we illustrate the effectiveness of
the proposed Volterra actor for optimal control of a nonlinear
system.

I. INTRODUCTION

PPROXIMATE dynamic programming (ADP) [1], [2],

[3] is a powerful tool to solve for the optimal policy of
a multistage decision process problem. As is well known, the
“curse of dimensionality” [4] greatly hinders the application
of classical dynamic programming in large-scale problems. To
circumvent this problem, ADP uses function approximation
structures such as neural networks to approximate both the
value and the policy functions. In the past decades, several
ADP algorithms have been developed [5], [6], [7], [8], [9],
[10], [11], [12], [13], [14]. For recent results and reviews on
ADP, readers can refer to [1], [2], [3].

In control theoretic terms, ADP opens new opportunities
to approximately solve the Hamilton-Jacobi-Bellman (HJB)
equation to obtain optimal control. Value iteration and policy
iteration are two important ADP approaches. The convergence
of a value iteration based heuristic dynamic programming
was provided in [6]. The idea of policy iteration [15] is
to improve the initial admissible control policy by iterative
policy evaluation and policy improvement. Policy iteration is
used to obtain the optimal control policy of continuous-time
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systems and discrete-time systems in [7] and [16], respectively.
Furthermore, policy iteration based ADP for continuous-time
systems with input constraint is studied in [8]. A novel
ADP algorithm for unknown constrained-input systems is
proposed in [17] using policy iteration. Some important and
unique properties are associated with policy iteration. They
include non-increasing and convergent value functions, and
stable iterative control policies. These properties have made
policy iteration a good candidate for improved control system
performance measured by the value function as long as the
initial policy is admissible.

Among some early developments of ADP algorithms, an
intuitive idea is to place state and control variables into a
discretized grid space and thus a look-up table can be used
to map states to controls. This approach is apparently not
scalable due to its exponentially increasing demand on the stor-
age space and computation burden. Approximate approaches
such as actor-critic methods [18] were then proposed that
has held great promise. In the actor-critic framework, func-
tion approximation structures, such as multi-layer perceptron
(MLP) networks [5], [19] and radial basis function (RBF)
networks [19] among others, are introduced to approximate the
value function and the policy. By learning through examples,
the inherent structures of the value and the policy functions can
be obtained and approximated. These approaches effectively
circumvent the dimension explosion caused by large scale state
and control problems.

The problem of value function approximation (VFA), or
critic approximation, has been intensively studied in the ADP
community. An excellent survey on algorithms of parametric
VFA can be found in [20]. Convergence proof as well as ap-
proximation error bound of VFA in temporal-difference (TD)
learning is presented in [21]. Recently, much attention has
been paid to improve the generalization capability and learning
efficiency of VFA. Support vector machine (SVM) [22] and
sparse kernel machine [23], are introduced into ADP for
efficient selection of VFA basis functions.

On the other hand, policy approximation, or actor approx-
imation, has not received the same attention as the value
approximation. Usually, artificial neural networks (ANNs)
such as MLP networks and RBF networks are routinely used
in actor approximation. In [19], it is shown heuristically by
simulations that HDP with RBF networks outperforms HDP
with MLP networks in the synchronous generator control.
Some problems may arise when using a generic approximator
such as MLP or RBF. For MLP, one may encounter local
minima in network training and thus cannot guarantee solution
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optimality [21]. According to [20], a learning algorithm may
diverge when a nonlinear function approximator is employed.
When a RBF is used as generic approximators in ADP, it
typically requires a large number of basis to achieve good
approximation [24]. This in turn creates a curse of dimension-
ality of its own. There have been some studies to cleverly
place appropriate basis with appropriate parameters. But a
cookbook type design approach still is lacking. This motivates
our research to seek a new mathematic model for actor
approximation.

As a universal approximator, Volterra series [25] is a po-
tential candidate for actor approximation. Volterra series is
a powerful tool in nonlinear system analysis. It takes into
account historical data, or it is a system with memory, to
approximate a nonlinear dynamic mapping between inputs and
outputs. Under some mild conditions, a continuous function
can be approximated by a Volterra series [26]. Volterra series
is a linear summation of a series of terms from the first to high-
order mixed product terms of historical inputs. The linear-in-
parameter property of Volterra series makes globally optimal
parameter search attainable.

This paper focuses on discussing policy approximation or
actor approximation, in the framework of policy iteration.
Volterra series based actor is developed to approximate a
control policy in a multi-input-multi-output (MIMO) setting.
Gradient descent training algorithm is provided to search for
the optimal Volterra kernel.

Another main contribution of this paper is the convergence
analysis of policy iteration algorithm under inevitable but finite
actor approximation error. By making use of an error bound
idea [27], a sufficient condition on actor approximation error
is provided to guarantee the convergence of iterative value
function. At the same time, a finite bound of the convergent
value function is given.

The rest of this paper is organized as follows. In Section
I, the discrete-time nonlinear optimal control problem is
formulated in mathematical terms. The classic policy iteration
algorithm is also presented. In Section III, we present the
proposed Volterra series based actor and the implementation
of policy iteration algorithm using Volterra actor. In Section
IV, the convergence of policy iteration algorithm with actor
approximation error is analyzed. In Section V, simulation
studies are made on a nonlinear system. Conclusions are drawn
in Section VI.

II. PROBLEM FORMULATION
Consider a discrete-time nonlinear system of the form,
xk+1:F(xkyuk)yk:0;1727“' ) (1)
where x;, € R™ is the state vector, u; € R" is the control
vector, F'(zp,ur) : R™ x R™ — R"™ is the system state
transformation function.

For system (1), we define an instantaneous cost function at
time k as

Uz, ur) = Q(xp) +ul Rup,k=0,1,2,---, (2

where Q(x) : R™ — R is a positive definite function of
zr and R € R™*™ is a positive definite matrix. Total cost

function or value function from the state x; under the control
policy ug = u(xy) is defined as

Vi) = U (s, u(xs), 3)
i=k

where u(-) : R™ — R™ represents a control policy.

The objective of optimal control is to find a control policy,
which can stabilize system (1) and minimize value function
(3). Optimal value function can be represented by

V*(xr) = m&n V¥ (zg). 4)

According to Bellman’s optimality principle [28], we have the
following discrete-time HJB equation,

V*(xg) = H&in{U(xk, ug) + V*(xp1)}- (®))
The optimal control policy is computed from
(o) = argmin{U (e, u) + V*(@sn)}. - ©)

Generally speaking, the HIB equation (5) cannot be analyt-
ically solved. As an online learning approach, reinforcement
learning has been extensively used to solve the aforementioned
optimal control problem while bypassing directly solving
the HIB equation [1], [2]. Usually, an actor-critic structure
is employed for the reinforcement learning implementation,
which is illustrated in Fig. 1. The actor provides control input
for the controlled system. The critic evaluates the control input.

Critic
Evaluation of <
Control Policy

p——
/
. ,
Policy improvement ,

/
/

Actor
Implementation of Controlled System
Control Policy Control System
7 Input Output

/
>

Fig. 1. Actor-critic structure for reinforcement learning

In this paper, policy iteration [15] is employed as the
learning algorithm for the actor-critic structure in Fig. 1. The
algorithm starts from an admissible control policy [29], i.e.
the actor is initialized to be admissible.

Definition 1. (Admissible Control) A control policy uy =
u(xy) is admissible with respect to value function (3) on R™,
if up = u(zxy) is continuous on R”, u(0) = 0, up, = u(zk)
stabilizes system (1) and the corresponding value function (3)
is finite for Vry € R™.

The policy iteration algorithm is an iterative process be-
tween two interleaving steps [30]:

Policy evaluation:

VO (2) = U, 0D (zx)) + VO (2341),0 = 0,1,2, -+ .
(7
In the above equation, i is the iteration number; @(") () is
the control policy in the ith iteration; V(¥ (z}) is a value
function of the form (3) corresponding to the control policy
ug = ' (x,), and V¥ (2,) is a positive definite function of
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x. Note that in the first iteration step ¢ = 0, the control policy
uy, = @\®) () is initialized to be an admissible control policy
of system (1) under value function (3).

Policy improvement:

a7 (z,) = arg muin (U, we) + VO (zps1) ). )

Based on the necessary condition of optimal control from

policy improvement (8), we have the following,

U (zg, ug) + 4%
auk

()] _

€))

By substituting (1) and (2) into (9), a control policy can be
obtained as
8F(mk7 uk)

1 _
=——R! TV (F (2, up)).
S B (G TV O (B )
Note that (10) is implicit in the control u;. Hence, a function
approximation structure is introduced to represent the control

policy as shown in (10),

ug (10)

) (1)

where S is a function approximation structure and K is the
parameter vector of S. For linear systems, actor (11) can
be easily selected as linear state feedback. But for general
nonlinear systems, how to construct actor (11) may not be
straightforward. MLP network and RBF network have been
proposed to serve as an actor approximator [5], [9], [19].
Their limitations were discussed in the previous section.
Different from those ideas, Volterra series is employed for
actor approximation in this paper.

U = S(Kaxk7xk—l7xk—27”'

III. PoLiCcY ITERATION WITH VOLTERRA SERIES BASED
ACTOR

A. Volterra series based actor

Under some mild conditions, a scalar function with multiple
inputs can be approximated by a Volterra series within any
desired accuracy [26].

The nonlinear controller approximation for system (1) is
a multi-input-multi-output (MIMO) problem. However, the
Volterra series is a multi-input-single-output (MISO) approxi-
mator. As was in [31], we first decompose the original MIMO
problem into several MISO problems. Then, we employ one
Volterra series for each component of the control vector.

Taking a scalar-output controller for example, the Volterra
series based actor is of the following infinite series form

uk—ZZk’(
i=1 7=0
i1 M M

+ Z Z Z Z S (74, 7o)k, (61) Ty (i2)

21 11,2 17’1—07’2 0

n i1 12 M M M o
153535 35 DD 3D ML LR

i1:1 i2:1 i3:1 T1:O 7'2:0 T3:0

Lk—m, (il)xk’—ﬁ (iz)xk—‘l's (13) +o

xk:‘r)

3

(12)
where z, € R™, M is memory length Zp—r(7) is the ith
component of x at time k — 7, k: ( ), k(“’”)(ﬁ,m), and
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kéil’iQ’iS)(Tl,Tg,Tg) are the 1st, 2nd, and 3rd order Volterra
coefficients or Volterra kernels, respectively. Note that state
feedback control is a special case of the Ist order Volterra

actor and can be directly represented by Volterra actor (12).

B. Policy iteration using Volterra series based actor

By using Volterra series (12) as actor, the policy iteration
algorithm in (7) and (8) becomes

V(l) (‘xk) = U(Ik, u(l) (xk)) + V(i)(xk"rl)?i = Oa 1a 27 Tty
4 4 (13)
D (z),) = arg melr;/ (U (z1,ur) + VO (2r41)], (14)
U

where V() (z;,) is the value function of the form (3) corre-
sponding to the control policy uy = u(¥ (z}), and it is positive
definite, 7 is the set of all controllers represented by Volterra
series in (12). The difference between the policy improvement
formula (14) and (8) is that (14) is an optimization constrained
on ¥, while (8) is an unconstrained optimization.

C. Implementation of policy evaluation

The discussion of this paper is focused on actor approxi-
mation. Hence, without any loss of generality, the following
linear value function approximation structure (15) is used for
implementation of policy evaluation (13),

L
= Z wipi(Tk) =
i=1

where W € RE is the weight vector and ¢(z) € RL is
the basis function vector, which can be polynomial function,
sigmoid function, radial basis function, to name a few. For
linear systems, ¢(x) can be selected as quadratic functions
of state variables.

Based on value function approximation (15), policy evalu-
ation (13) becomes

WOT (o) — dansr) = Ulwn,u (i), (16)

where W) is the parameter of value function V(¥ (z}).
(16) can be solved by batch least square. For that purpose,
we first collect N sample data pairs, ¢(zr) — ¢(xk+1) and
U(zg,u®(zy)), for k, k+1, ---, k 4+ N, where typically
N > L, align them in rows and denote as v(x;) € REXV
and pu(zy, u? (z1)) € RN, respectively. Then W) can be
obtained as

WTo(xy), (15)

where ¢ (zy)" is the pseudo inverse or Moore-Penrose in-
verse [32] of ¥ (z). (16) can also be solved by recursive least
square (RLS) method [20].

7)

D. Implementation of policy improvement

Volterra series based control policy (12) can be rewritten as

up = u(zy) = K o(xp, 2h—1, Th-nr),  (18)

where K and o(zy,xg—1, - ,Zk—_n) are the kernel vector
and the basis function vector of Volterra series, respective-
ly. Since the structure of the Volterra control policy, i.e.



(g, xp_1, - ,Tr—pr) is fixed, a Volterra control policy is
determined by its kernels. The goal of policy improvement is
essentially to solve the optimal Volterra kernels.

In this paper, the optimal Volterra kernels are obtained by
gradient decent method

(i+1) _ -(i+1)
K =K+ AK
_ gt Ol @, up) + VO (2541)]
! 0K
(i+1) (19)
= K —lo(zk, Tp—1,+  Th-m)
OF (z,u ;
[2Ruy, + [%}TW&T(:@H)W( T
U,
where K and o(zy, k1, -+ ,Tx—n) are the kernel vector

and the basis function vector in (18), [ is the learning rate for
K, and index j means the jth policy update in the (i + 1)th
policy improvement.

Remark 1. If we consider a nonlinear affine system, i.e.,
rpe1 = f(wg) + g(wg)ug, then %’:um = g(@k). Then,
similar to [2], policy improvement formula (19) only requires
partial dynamics of the system, i.e. g(xy). The policy iteration

algorithm using Volterra actor can be partially model-free.

Remark 2. In the above content, the instantaneous cost
function (2) is considered, which is quadratic in the control uy.
If we consider a general instantaneous cost function defined
as

U(I’k,uk) :Q(l'k)+R(Uk),k:0,1,2, ) (20)

where R(uy) : R™ — R is a positive definite function. The
proposed Volterra series based actor is still applicable for
such general instantaneous cost function. The Volterra kernels
update formula in (19) is modified to

KJ(-fll) = K;Hl) —lo(zp, Te—1,- - , Th_101)
OR(ug) OF (g, uk) o 1 (T @D
(L) (Pt g )00

In the (i + 1)th policy improvement step, updates of (19)
continue until maz(|AK]|) is less than a specified tolerance
or the maximum update number is reached.

IV. CONVERGENCE ANALYSIS

As discussed above, the difference between the policy iter-
ation with Volterra actor (13) and (14) and the regular policy
iteration of (7) and (8) is that the policy improvement (14) is an
optimization constrained on all the Volterra series represented
control policies, while the policy improvement (8) is an
unconstrained optimization on all control policies. In practical
implementation, Volterra series is usually of finite order, and
training error is inevitable. Hence, there is an approximation
error for Volterra actor in each policy improvement step even
though Volterra series is a universal approximator. It is well
known that the policy iteration converges to the optimal value
function. However, when conducting the policy improvement
on ¥, there is an approximation error compared to the
unconstrained optimization. Such approximation error exists
in every iteration step and may be accumulated and amplified
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through iterations. Taking this into account, convergence of
the policy iteration with actor approximation is questionable.
In this section, we study the convergence of policy iteration
under actor approximation error by using an error bound
approach [27].

Before we proceed, the following assumptions are neces-
sary.

Assumption 1. System (1) is controllable and system dynam-
ics F(xy,ug) is Lipschitz continuous for Vay, u.

Assumption 2. Control policy u, = u(xy) satisfies that uy =
0 for x; = 0. State x, = 0 is an equilibrium of system (1)
under the control u = 0, i.e. F'(0,0) = 0.

Assumption 3. There exists a compact set of Volterra kernels,
Qg, s.t., for VK € Q, the corresponding Volterra controller
(12) is a stable controller for system (1).

For the ease of discussion, we define a new iterative control
policy as

V) (1) = argmin [U(zg, u) + VO (2p41)],  (22)
U

where V() (z},) is the value function of the Volterra control
policy u® defined in (13). Compare (22) to the Volterra
actor based policy improvement (14), it can be noted that
v+ (2;) is the unconstrained optimal control policy in the
(i 4+ 1)th iteration while u(*+Y)(x}) is the optimal Volterra
control policy. Define the value function of v(*+1)(z;,) as

A(ZJrl)(xk) - U(xkv U(iJrl) (lk))+A(l+1)(xk+1)az = 07 ]-7 23 e

(23)
where ACF1 () is a positive definite function of . Since
v+ (2;) is better than u(+1) (x,), one has

V(i+1) (-rk) > A(i+1) (xk)

where V(+1)(z;,) is defined in (13). Assume that the approx-
imation error of Volterra actor in a single iteration is finite,
ie.

(24)

A(H—l)(xk) < V(H_l)(l‘k) < nA(H—l)(xk) (25)

holds uniformly, where 1 > 1.
The relationship between the iterative value function and the
optimal value function is presented in the following theorem.

Theorem 1. Let Assumptions 1-3 and (25) hold. Let VO ()
be defined by (13) and V) (x},) be defined by (7). If there
exist 0 < v < oo and 1 < p < oo that make

V*(F(xg,ur)) < yU(xg, uk),
V() < VO (zg) < pV* (),

(26)
27)

hold uniformly for Vk, where V*(x;) is the optimal value
function satisfying the discrete-time HJB equation (4), then

i USERY URERY: n *
VO @) < (o 0 Y o)

v+1

Proof. The theorem is proved by mathematical induction. Due
to space limitations, we only sketch the proof of the theorem.

First, for i = 0, u(9) (x;) and @(®)(2;,) are initialized as the
same admissible control policy. According to the condition



(27), there is V(O () =
holds for ¢ = 0.

Then, by assuming that (28) holds for ¢ and using equations
(22), (23), (25), (26), we can obtain that (28) holds for 7 +
1. O

VO (x) < pV*(xx). Theorem 1

Based on Theorem 1, a sufficient condition for convergence,
as well as a bound for final convergent value function, is given
in the following theorem.

Theorem 2. Let Assumptions 1-3 and (25) hold, and there
exist 0 < v < oo and 1 < p < oo that make (26) and (27)
hold uniformly, respectively. Let the iterative value function
V@ (x),) be defined by (13). If the following condition is
satisfied,

1
1<n< % (29)

then as i — oo, V() (x;,) converges to a bounded neighbor-
hood of the optimal value function V*(zy), i.e

n

lim VO (z) = V) (23) < ————V*(x1).  (30)

i VO () = VO (1) € sV o)
Proof. For (28), if the condition (29) holds, (30) can be easily
obtained as i — oo. O

Next, we are ready to present value function convergence
result under Volterra actor approximation error.

Theorem 3. Let Assumptions 1-3 and (25) hold, and there
exist 0 < v < oo and 1 < p < oo that make (26)
and (27) hold uniformly, respectively. Let the iterative value
function V() (z;) be defined by (13). Let dul**1) () denote
the function approximation error of Volterra control policy
w1 (z;,) with respect to v+ (zy), ie.,

w ) (21) = 0D (2) 4+ 0wl (24). 31
If the following condition holds,
) A(i+1 T
Ry
where w is the functional derivative of the value
Sv(+D) (z)

function AU+ (z;,) defined in (23) with respect to the control
policy vt (z), || - || is the function norm, then as i — oo,
V(@ () converges to a bounded neighborhood of the uncon-
strained optimal value function V*(zy), i.e

V(oo) (Jik) < "

lg, VO ) = ST 5m-D

i—00

V(i) (33)

Proof. By the proposition of functional derivative, we have

5/\ (i+1) (xk) T )
e e\ 24 (i+1)
p(i+1) (xk)} ou (xk)

(5A i+1) (:Ck)
Sylit+l) ($k)

V(z+1)($k) _ A(i+1)(l,k) +[

< A (@) + (| sy 156t ().
(34)

Then by substituting (32) into (34) and using Theorem 2, (33)

can be obtained. O

V. SIMULATION STUDY

In practical engineering systems such as chemical engineer-
ing processes, a 2nd order Volterra series has been frequently
used and usually suffices for control purposes [31], [33], [34],
[35]. Given such considerations, a 2nd order Volterra series is
used as the actor of policy iteration algorithm in the following
simulations.

The simulation study is carried out on system (35)
from [27], [36], a nonaffine nonlinear system with single state
and single control input,

rpr1 = F(xp, up) = 25 +sin(0.123 + ug). (35)

Since %’1’"’“” 0,0) = 1, system (35) is marginally stable at

the equilibrium z;, = 0 and this equilibrium is not an attractive
one.

Policy iteration with 2nd order Volterra actor is used to solve
the optimal control policy of system (35). The memory length
and the learning rate of Volterra series are M = 5 and | =
0.01, respectively. The numbers of the 1st and the 2nd order
Volterra kernels are 6 and 21, respectively. The instantaneous
cost is U(xk, u) = 7 +u?. The learning process is initialized
with an admissible control policy u(?)(z,) = —0.3z;. By
initializing the kernel of x; as —0.3 and other kernels as 0,
we can incorporate the existing control policy without training
the Volterra actor. Note that if we use an MLP network
or an RBF network as the actor approximator, we have to
train the network to approximate the initial control policy
u®(z) = —0.3x4, which is inconvenient and may cause
an approximation error. The basis function for value function
approximation is selected as ¢(zy) = [22, 2}, 29]T € R3. The
learning process lasts for 1,000 discrete time steps. Policy
evaluation is carried out on data samples collected in 20 time
steps. Policy improvement is terminated if maxz(|JAK]|) <
109 or the maximum policy updating step 200 is reached.

The weights in the value function during learning are
illustrated in Fig. 2. The Volterra kernels are illustrated in
Fig. 3. During 1,000 discrete time steps, 5 iterations of policy
evaluation and policy improvement take place. It can be clearly
seen in Fig. 2 and Fig. 3 that the weights of the value function
and the Volterra kernels converge.

25

: : : :
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Fig. 2. Value function weights
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0.1

Volterra kernels

06 i i i i i i i
0 0.5 1 1.5 2 25 3 35 4

Iteration step

Fig. 3. Volterra kernels of nonlinear controller

To further analyze the final Volterra kernels, histogram of
the final Volterra kernels is illustrated in Fig. 4. We can see
that most of the Volterra kernel values (25 of 27) are within
—0.1 ~ 0, and only 2 Volterra kernels have absolute values
greater than 0.1. The final Volterra controller with absolute
kernel value greater than 0.01 is

up = — 0.4869z), — 0.185z7 — 0.0193z 241

36
—0.012875_1 — 0.012877_;. (56)

From (36), we can see that the basis with absolute kernel value
greater than 0.1 are all based on the current state xj. In those
basis with absolute kernel values in 0.01 ~ 0.1, xp_9, Tg_3,
Z,—4 and x_5 do not appear, and only x; and x;_; contribute
to the Volterra controller (36). It implies that recent historical
information is more important for actor approximation.

25

20

Number of Volterra kernels

0 [ ‘
-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1
Value of Volterra kernels

Fig. 4. Histogram of final Volterra kernels

By implementing the final Volterra controller in each policy
improvement step into system (35) and simulating it for 20
discrete time steps, we can obtain the approximated total cost
of the Volterra controller in each iteration, which is illustrated
in Fig. 5. According to Fig. 5, the approximated total cost is
a non-increasing sequence. Actually the total cost is reduced

254

in each iteration and gradually approaches the minimal cost
specified by the optimal Volterra controller.

Total cost

0 0.5 1 15 2 25 3 3.5 4
Iteration step

Fig. 5. Total cost

Time domain responses under the original controller and the
optimal 2nd order Volterra controller are illustrated in Fig. 6.
It can be seen that the time domain response speed becomes
faster by using the policy iteration algorithm with Volterra
actor.

0.8f —oe— x-Volterra
—=— x-original
08 —v— u-Volterra| |
—%— u-original
0.4r u-original ||

0.8 i i i i i i
0 2 4 6 8 10 12 14 16 18 20

Discretet time

Fig. 6. Time domain responses

VI. CONCLUSION AND DISCUSSION

This paper focuses on developing a Volterra series based
actor in an approximate dynamic programming framework.
Specifically, we make use of Volterra series for actor approxi-
mation developed from policy iteration. Such Volterra actor is
linear-in-parameter, which is beneficial for obtaining globally
optimal parameters. We provide a convergence proof for the
policy iteration algorithm under Volterra actor approximation
error, a sufficient condition on the actor approximation error
to guarantee convergence of the iterative value function. Fur-
thermore, a bound on the final convergent value function is
given. Even though our results are focused on approximating
the actor, it is expected that the same concept of Volterra
series approximation can be applied in critic or value function



approximation. Results along those lines will be developed in
future studies.

[1]

(2]

(3]

[5

—_

(6]

(71

(8]

[9

—

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

REFERENCES

F. L. Lewis and D. Vrabie, “Reinforcement learning and adaptive
dynamic programming for feedback control,” IEEE Circuits Syst. Mag.,
vol. 9, no. 3, pp. 32-50, 2009.

F. L. Lewis, D. Vrabie, and K. G. Vamvoudakis, “Reinforcement
learning and feedback control: Using natural decision methods to design
optimal adaptive controllers,” IEEE Control Syst. Mag., vol. 32, pp. 76—
105, Dec. 2012.

F.-Y. Wang, H. Zhang, and D. Liu, “Adaptive dynamic programming: an
introduction,” IEEE Comput. Intell. Mag., vol. 4, pp. 39-47, May 2009.
J. Si, A. G. Barto, W. B. Powell, and D. Wunsch, Handbook of learning
and approximate dynamic programming: scaling up to the real world.
Piscataway, NJ: Wiley-IEEE Press, 2004.

J. Si and Y.-T. Wang, “Online learning control by association and
reinforcement,” IEEE Trans. Neural Netw., vol. 12, pp. 264-276, Mar.
2001.

A. Al-Tamimi, F. L. Lewis, and M. Abu-Khalaf, “Discrete-time nonlin-
ear HIB solution using approximate dynamic programming: convergence
proof,” IEEE Trans. Syst., Man, Cybern. B, vol. 38, pp. 943-949, Aug.
2008.

J. J. Murray, C. J. Cox, G. G. Lendaris, and R. Saeks, “Adaptive dynamic
programming,” IEEE Trans. Syst., Man, Cybern. C, vol. 32, pp. 140-153,
May 2002.

M. Abu-Khalaf and F. L. Lewis, “Nearly optimal control laws for
nonlinear systems with saturating actuators using a neural network HIB
approach,” Automatica, vol. 41, pp. 779-791, May 2005.

H. Zhang, Q. Wei, and Y. Luo, “A novel infinite-time optimal tracking
control scheme for a class of discrete-time nonlinear systems via the
greedy HDP iteration algorithm,” IEEE Trans. Syst., Man, Cybern. B,
vol. 38, pp. 937-942, Aug. 2008.

D. V. Prokhorov and D. C. Wunsch, “Adaptive critic designs,” IEEE
Trans. Neural Netw., vol. 8, pp. 997-1007, Sept. 1997.

H. He, Z. Ni, and J. Fu, “A three-network architecture for on-line
learning and optimization based on adaptive dynamic programming,”
Neurocomputing, vol. 78, pp. 3—13, Feb. 2012.

T. Dierks and S. Jagannathan, “Online optimal control of affine nonlinear
discrete-time systems with unknown internal dynamics by using time-
based policy update,” IEEE Trans. Neural Netw. Learn. Syst., vol. 23,
pp. 1118-1129, July 2012.

D. M. C. Cervellera, M. Gaggero, “Low-discrepancy sampling for ap-
proximate dynamic programming with local approximators,” Computers
and Operations Research, vol. 43, pp. 108-115, 2014.

M. Gaggero, G. Gnecco, and M. Sanguineti, “Dynamic programming
and value-function approximation in sequential decision problems: error
analysis and numerical results,” Journal of Optimization Theory and
Applications, vol. 156, no. 2, pp. 380-416, 2013.

R. A. Howard, Dynamic Programming and Markov Processes. Cam-
bridge, MA: MIT Press, 1960.

D. Liu and Q. Wei, “Policy iteration adaptive dynamic programming
algorithm for discrete-time nonlinear systems,” I[EEE Trans. Neural
Netw. Learn. Syst., vol. 25, pp. 621-634, Mar. 2014.

H. Modares, F. L. Lewis, and M.-B. Naghibi-Sistani, “Adaptive optimal
control of unknown constrained-input systems using policy iteration
and neural networks,” IEEE Trans. Neural Netw. Learn. Syst., vol. 24,
pp. 1513-1525, Oct. 2013.

255

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

(27]

(28]

[29]

(30]

[31]

[32]

[33]

[34]

[35]

(36]

I. Grondman, L. Busoniu, G. A. D. Lopes, and R. Babuska, “A
survey of actor-critic reinforcement learning: Standard and natural policy
gradients,” IEEE Trans. Syst., Man, Cybern. C, vol. 42, pp. 1291-1307,
Nov. 2012.

J.-W. Park, R. G. Harley, and G. K. Venayagamoorthy, “Adaptive-
critic-based optimal neurocontrol for synchronous generators in a power
system using MLP/RBF neural networks,” IEEE Trans. Ind. Appl.,
vol. 39, pp. 1529-1540, Sept./Oct. 2003.

M. Geist and O. Pietquin, “Algorithmic survey of parametric value
function approximation,” IEEE Trans. Neural Netw. Learning Syst.,
vol. 24, pp. 845-867, June 2013.

J. N. Tsitsiklis and B. V. Roy, “An analysis of temporal-difference
learning with function approximation,” IEEE Trans. Autom. Control,
vol. 42, pp. 674-690, May 1997.

A. K. Deb, Jayadeva, M. Gopal, and S. Chandra, “SVM-based tree-type
neural networks as a critic in adaptive critic designs for control,” IEEE

Trans. Neural Netw., vol. 18,&)}). 1016-1030, July 2007.
X. Xu, Z. Hou, C. Lian, and H. He, “Online learning control using

adaptive critic designs with sparse kernel machines,” IEEE Trans. Neural
Netw. Learning Syst., vol. 24, pp. 762-775, May 2013.

B. Liu and J. Si, “The best approximation to C? functions and its error
bounds using regular-center Gaussian networks,” IEEE Trans. Neural
Netw., vol. 5, pp. 845-847, Sept. 1994.

M. Schetzen, The Volterra and Wiener Theories of Nonlinear Systems.
New York, NY: John Wiley and Sons, 1980.

C. Lesiak and A. J. Krener, “The existence and uniqueness of Volterra
series for nonlinear systems,” [EEE Trans. Autom. Control, vol. 23,
pp. 1090-1095, Dec. 1978.

D. Liu and Q. Wei, “Finite-approximation-error-based optimal control
approach for discrete-time nonlinear systems,” IEEE Trans. Cybern.,
vol. 43, pp. 779-789, Apr. 2013.

R. E. Bellman, Dynamic Programming. Princeton, NJ: Princeton Univ.
Press, 1957.

R. W. Beard, G. N. Saridis, and J. T. Wen, “Galerkin approximation-
s of the generalized Hamilton-Jacobi-Bellman equation,” Automatica,
vol. 33, pp. 2159-2177, Dec. 1997.

D. P. Bertsekas, Abstract Dynamic Programming. Belmont, MA: Athena
Scientific, 2013.

D. Song, R. H. M. Chan, V. Z. Marmarelis, R. E. Hampson, S. A.
Deadwyler, and T. W. Berger, “Nonlinear dynamic modeling of spike
train transformations for hippocampal-cortical prostheses,” IEEE Trans.
Biomed. Eng., vol. 54, pp. 1053-1066, June 2007.

V. N. Katsikis, D. Pappas, and A. Petralias, “An improved method
for the computation of the Moore - Penrose inverse matrix,” Applied
Mathematics and Computation, vol. 217, pp. 9828-9834, Aug. 2011.
P. Koukoulas and N. Kalouptsidis, “Second-order Volterra system iden-
tification,” [EEE Trans. Signal Process., vol. 48, pp. 3574-3577, Dec.
2000.

R. K. Pearson, B. A. Ogunnaike, and I. F. J. Doyle, “Identification
of structurally constrained second-order Volterra models,” IEEE Trans.
Signal Process., vol. 44, pp. 2837-2846, Nov. 1996.

K. Kim, S. B. Kim, E. J. Powers, R. W. Miksad, and F. J. Fischer,
“Adaptive second-order Volterra filtering and its application to second-
order drift phenomena,” IEEE J. Ocean. Eng., vol. 19, pp. 183-192,
Apr. 1994.

F.-Y. Wang, N. Jin, D. Liu, and Q. Wei, “Adaptive dynamic programming
for finite-horizon optimal control of discrete-time nonlinear systems with
e-error bound,” IEEE Trans. Neural Netw., vol. 22, pp. 24-36, Jan. 2011.





