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Abstract—This work proposes an approach for solving the
linear regression problem by maximizing the dependence be-
tween prediction values and the response variable. The proposed
algorithm uses the Hilbert-Schmidt independence criterion as a
generic measure of dependence and can be used to maximize both
nonlinear and linear dependencies. The algorithm is important in
applications such as continuous analysis of affective speech, where
linear dependence, or correlation, is commonly set as the measure
of goodness of fit. The applicability of the proposed algorithm
is verified using two synthetic, one affective speech, and one
affective bodily posture datasets. Experimental results show that
the proposed algorithm outperforms support vector regression
(SVR) in 84% (264/314) of studied cases, and is noticeably faster
than SVR, as an order of 25, on average.

I. INTRODUCTION

Regression analysis considers the problem of parameter
estimation for a model with continuous response variables and
a set of explanatory variables. The most commonly used model
for regression is the linear model, described by y = β0 +
β1x1 + . . .+βpxp, where y is the response variable, x1 . . . xp
are the explanatory variables, β0 is the bias term, and β1 . . . βp
are the linear coefficients. A common approach for estimating
the β coefficients is to solve the optimization problem that
minimizes the squared prediction error via shrinkage methods
[1]. These methods add a regularization term to the cost
function to penalize those explanatory variables that, in relative
terms, do not contribute to lowering of the prediction error. A
popular shrinkage algorithm is support vector regression (SVR)
[1], [2]. SVR minimizes a regularized squared prediction error
that is insensitive to errors smaller than a certain amount [3].

However, there are situations where in addition to minimiz-
ing the prediction error, the strength of association between ex-
planatory and response variables is important (e.g., continuous
analysis of affective speech [4], [5]). In such cases, maximizing
a dependence measure between the explanatory and response
variables is favored over minimizing the prediction error.
Furthermore, the linear model, may not be the best choice
when the response and explanatory variables are related in
a nonlinear fashion, or when the linearity assumption does
not result in an accurate enough approximation. To address
this shortcoming, various solutions such as generalized linear
models [6] and kernel methods [3] are employed.

In this work, we propose a novel regression approach
that makes predictions based on a mapping of explanatory
variables that maximizes statistical dependencies with the
response variable. The maximization identifies a hypersurface
along which minimizing the prediction error preserves the
maximum dependencies between the mapped explanatory vari-
ables and the response variable; resulting in a prediction that
is maximally correlated with the response variable and has
the minimum error. This is in contrast to conventional linear
regression approaches, where prediction error is minimized.

The conventional approach does not guarantee maximum cor-
relation between the predictions and response variables.

In particular, we distinguish between linear and nonlinear
dependencies by using the Hilbert-Schmidt independence cri-
terion (HSIC), a generic statistical dependence measure, and
propose a solution for the regression problem in two stages:
1) extract a set of orthogonal transformations of explanatory
variables that maximizes the nonlinear dependency with the
response variable, and 2) construct a linear transformation over
the mapped explanatory variables that maximizes the linear
dependence between these variables and the response variable.
HSIC has been previously used for dimensionality reduction
[7], [8].

The performance of the proposed approach is evaluated
and compared with the state-of-the-art SVR using synthetic
datasets. Synthetic datasets enable examining the regression
performance at different levels of nonlinearity, noise, and
sample size. Furthermore, to validate the efficacy of the
proposed approach for real-life applications, we apply it to
predict affective dimensions for affective speech (VAM [9])
and affective posture (UCLIC [10]) datasets, and compare the
results with those of SVR.

This paper is organized as follows: Section II describes
the proposed regression approach and Section III presents the
experimental procedure. Experimental results are presented in
Section IV and discussed in Section V. We close the paper by
conclusions and directions for future work in Section VI.

II. METHODOLOGY

Given a set of explanatory variables x ∈ X (X ⊂ Rp) and
a response variable y ∈ Y (Y ⊂ R), the objective is to find
a dependence-maximizing linear mapping of X onto Y . This
can be formulated as the following optimization problem:

argmax
β

Dependence(y,Xβ) (1)

where y is an N × 1 vector, X an N × p matrix, and β a
p× 1 vector, with N and p being the number of instances and
the number of explanatory variables, respectively. We assume
that the explanatory and response variables are standardized,
i.e., each variable is normally distributed with a zero mean and
standard deviation of one.

First we solve for the maximum correlation solution, that
is linear dependence, and then we extend to the general
notion of dependence using the Hilbert-Schmidt independence
criterion (HSIC). There we get a series of vectors that are
highly dependent on the response variable and are linearly
independent among themselves. Therefore, to obtain the max-
dependence solution, we use the solution obtained by maximiz-
ing correlation. In the following, we use lower and uppercase
letters to denote scalars, lowercase bold-face to denote vectors,
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and uppercase bold-face to denote matrices. Moreover, we
follow the convention of using Greek letters for parameters,
and Latin letters for data.

A. Pearson Correlation Coefficient

We start by considering the linear dependence criterion,
i.e., the Pearson’s correlation coefficient.

r(y, ŷ) =
σyŷ
σyσŷ

, (2)

where σy represents the standard deviation of the variable y,
and σyŷ denotes the covariance of the two variables y and ŷ.
Given that we are seeking the linear mapping β that maximizes
r(y, ŷ = Xβ), we can formulate the optimization problem as
follows:

argmax
β

σyXβ
σyσXβ

. (3)

We can disregard the first term in the denominator, i.e., σy,
since it is independent of β. We force the standard deviation
of the other term in the denominator to be one, since it only
affects the optimal β by a scaling factor. We then have:

argmax
β

σyXβ ,

subject to σXβ = 1.
(4)

Using Lagrange multipliers and replacing the covariance and
standard deviation with their estimates, we have

1

N − 1
y>Xβ + λ(1− 1

N − 1
β>X>Xβ) = 0. (5)

Then, by taking the derivative with respect to the control
parameter β, we have

y>X− 2λβ>X>X = 0, (6)

which through some algebraic manipulation leads us to the
solution of the optimization problem:

βCC ∝ (X>X)−1X>y. (7)

This solution is identical to the solution of the ordinary
least squares (OLS) estimator. That is to say, the OLS estimate
maximizes the Pearson’s correlation coefficient, which could
be advantageous due to the well-behaved properties of the
OLS, and moreover the variety of methodologies that are
developed around ordinary least squares [1].

Despite the upsides of OLS, it is unable to account for
a more general sense of dependence. However, if one could
capture those dependencies in the form of a number of linearly
independent components, then OLS built on those components
would be a valid solution to the problem. To address shortcom-
ing of OLS, we consider another notion of independence, the
Hilbert-Schmidt independence criterion (HSIC). The promise
of HSIC is that it defines dependence in the general sense,
since it is established on the kernel spaces of the explanatory
and response variables.

B. Hilbert Schmidt Independence Criterion

Assuming F and G to be two separable reproducing kernel
Hilbert spaces [11] and Z := {(x1,y1), . . . , (xN ,yN )} ⊆
X × Y , HSIC is defined as follows:

HSIC(px,y,F ,G) = Ex,x′,y,y′ [k(x, x
′)l(y, y′)] (8)

+Ex,x′ [k(x, x′)]Ey,y′ [l(y, y
′)]

−2Ex,y[Ex′ [k(x, x′)]Ey′ [l(y, y
′)]],

where pairs of (x, y) are drawn from the joint probability
distribution of X and Y represented by px,y. E denotes the
expectation operator. To enable approximation given a finite
number of samples, the empirical estimate of HSIC [12] is
introduced as follows:

HSIC(Z,F ,G) = (N − 1)−2tr(KHLH). (9)

Where K,L,H ∈ RN×N , Kij := k(xi,xj), Lij := l(yi,yj),
and H := I − N−1eeT , where e is a vector of N ones. It
can be shown that the HSIC of two independent variables is
zero. Therefore, by assuming that K represents a kernel of the
linear projection, that is Xβ, and L a kernel of the response
variable y, what is of interest is the mapping β that maximizes
tr(KHLH)[8]. By further assuming that the two kernels are
linear, i.e., K = Xββ>X> and L = yy>, we have:

tr(KHLH) = tr(Xββ>X>Hyy>H)

= tr(β>X>Hyy>HXβ)

Hence, we are interested in the solution of the following
optimization problem.

argmax
β

tr(β>Qβ),

subject to β>β = I,
(10)

where Q = X>HLHX. The constraint is to make the
optimization problem well defined, since in its absence, it is
unbound. Through a set of algebraic manipulations, it can
be shown that the solution to this optimization problem is
the eigenvectors of X>HLHX that correspond to the top
eigenvalues.

If the kernels are linear, maximizing HSIC is equivalent to
maximizing the Pearson’s correlation coefficient. Extension to
nonlinear kernels is straightforward [8].

C. Max-Dependence Regression

With the objective of maximizing the dependence between
the response variable and the linear mapping of the explanatory
variables, as a solution to the regression problem, we propose
the following algorithm:

1. Q← X>HLHX

2. Let columns of V be the eigenvectors of Q

3. βHSIC ← VS , where S represents the selected subset
of V columns.

4. X̂← XβHSIC

5. βCC ← (X̂>X̂)−1X̂>y

6. βMDR ← βHSIC · βCC
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Steps 1-3 encapsulate the required operations for extracting
components that are maximally dependent on the response
variable. At this stage nonlinear dependence is of interest.
Steps 4-5 find a linear combination of the components from the
previous stage that maximizes the overall correlation with the
response variable. Finally, Step 6 aggregates the two stages.

III. EXPERIMENTAL SETUP

The performance of MDR is evaluated and compared with
SVR using synthetic and real datasets.

A. Synthetic Datasets

Synthetic datasets were used to enable assessment of the
proposed approach at varying levels of non-linearity, noise,
and size. Different synthetic datasets were tested. For the sake
of brevity, we present results from two of these datasets.

1) Dataset.1: the regression model is defined as:

Y = X1(sin(2πfX2) + 1) + ε, (11)

2) Dataset.2: the regression model is defined as:

Y = sinc(2πfX2) + ε. (12)

In these synthetic datasets, X1 ∈ [0, 1] and X2 ∈ [0, 1] are
uniformly distributed random variables, f is the frequency, and
ε is a normal additive noise ε ∼ N(0, σ2). σ2 is the variance
of the normal noise.

B. Affective datasets

To evaluate the performance of the proposed MDR ap-
proach with real datasets, it is applied on two affective datasets:
1) affective speech [9], 2) affective posture [10], and its
performance is compared with that of SVR.

Using the dimensional representation approach, affective
expressions are described as points in a continuum of a low-
dimensional space [13]. For instance, the Circumplex model
[14] represents affective expressions in a two dimensional
space defined by arousal and valence. The arousal (activation)
dimension represents the level of activation, mental alertness,
and physical activity, whereas the valence dimension ranges
from negative (unpleasant) to positive (pleasant). In this work,
the dimensional representation of affective expressions is used.

1) Speech Dataset: VAM [9] is a spontaneous emotional
speech dataset, collected from the recordings of the German
talk show Vera am Mittag. A total of 47 subjects, 36 female and
11 male, take part in the recordings, and their ages range from
16 to 69, where 70% of the actors are 35 or younger. VAM-
Audio includes two modules, VAM-Audio I and II, comprising
about 50 minutes of recording in total. The division into two
modules is based on the quality of the conveyed emotions.
VAM-Audio I, classified as very good, contains 19 speakers,
making 478 utterances. This is the part of the dataset that we
use. On the other hand, VAM-Audio II, classified as good,
contains 28 speakers and a total of 469 utterances. Various
studies of emotional speech have been conducted based on
VAM [9], [15], [16], [17], and [18], [19].

In VAM-Audio I, each sample is annotated by 17 observers
on three affective dimensions: activation, dominance, and

TABLE I. CRONBACH’S ALPHA AS A MEASURE OF AGREEMENTS
BETWEEN THE OBSERVERS’ RATINGS FOR THE SPEECH AND POSTURE

DATA.

Speech Posture
Activation Dominance Valence Arousal Avoidance Potency Valence

0.97 0.94 0.85 0.88 0.52 0.54 0.81

valence, and the median of observers’ annotations for each
dimension is used as the measure of that affective dimension
(response variable) in our experiments. As a measure of
agreement between the observers, the Cronbach’s alpha (α)
is computed for each of the dimensions (Table I).

We use the power spectrum filter banks of the signal,
summarized by their statistics for the low level speech de-
scriptor, to make for a vector of 595 features. We assume
that these features collectively have a high correlation with
affective dimensions [20], and form non-linear regression
models of activation, dominance and valence as a function of
the extracted feature vector.

2) Posture Dataset: The posture dataset contains 110 affec-
tive postures representing the most expressive frames in affec-
tive movements from the UCLIC dataset [10]. These move-
ments are captured from thirteen demonstrators who freely
expressed movements conveying anger, happiness, fear, and
sadness, without any kinematic constraints on the movements.
The most expressive frame of the movement was selected
by its demonstrator. There are 32 markers attached to bodily
landmarks and their 3D Cartesian coordinates are collected
using a motion capture system; hence a total of 96 Cartesian
coordinates for each posture. There are 25 sad, 21 happy, 40
fearful, and 24 angry postures in the posture dataset.

The affective postures were rated by 10 observers
along arousal, valence, potency (dominance), and avoidance
(avoid/attend to) dimensions using 7-point Likert scales. The
Cronbach’s alpha (α) is computed for each affective dimension
to assess the strength of agreement between the observers
(Table I).

For our analysis, the affective postures are centered hori-
zontally and rotated to align their torso line (lateral waist mark-
ers) along the positive x-axis followed by minmax normaliza-
tion of the postures’ Cartesian coordinates. For each posture,
the median of observers’ ratings for an affective dimension
is used as the measure of that affective dimension (response
variable). We assume that postures are highly correlated with
the affective dimensions and formulate non-linear regression
models for each affective dimension as a function of posture.

C. Experimental procedure

The performance of the proposed MDR approach is evalu-
ated and compared with that SVR using 10 repetitions of 10-
fold cross validation (referred to as 10×10FCV, hereafter) on
the synthetic and real datasets. 10-fold cross validation is used
for its reliability in model selection and accuracy estimation
[21], [22]. The same settings for the folds are used to test the
performances of both approaches.

The synthetic datasets, as described by Equations 11 and
12, are generated using different combinations of 3 sample
sizes (50, 100, 500), 10 frequencies (0.125, 0.25, 0.5, 1, 2, 4,
8, 16, 128, 1024), and 5 noise ratio levels (0.0125, 0.025,
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0.05, 0.5, 1), for a total of 150 cases. For the synthetic
datasets, to equalize conditions under which MDR and SVR
are compared, the linear implementation of both approaches is
tested. It is clear that a kernelized implementation of SVR
and MDR is more suited for cases where a high-level of
nonlinearity is introduced in the synthetic datasets. However,
implementing kernelized SVR and MDR requires selecting a
suitable kernel and tuning its hyper-parameters, which adds to
the number of conditions under which the two approaches are
compared. While we recognize the importance of comparing
the relative performance of the kernelized SVR and MDR
with synthetic nonlinear datasets, for the sake of simplicity of
analysis (number of comparison conditions) and to maintain
an equal ground for comparing the two approaches, we only
implement linear versions of the two approaches in the present
work. An extended comparison based on kernelized SVR and
MDR with synthetic nonlinear datasets is a future direction for
this work.

For the affective datasets, the kernelized versions of MDR
and SVR are used, where we have considered linear, radial
basis, and polynomial kernels. The kernel types and their
hyper-parameters for MDR and SVR and the SVR’s slack
parameter are selected to optimize Pearson’s correlation co-
efficient in a cross validation test performed on the training
set1. In the experiments with the synthetic datasets, the SVR
slack parameter is selected in the same manner.

There are different sources of variation in the expression of
affect, including person-specific and idiosyncratic variations.
In order to test the generalization ability of the proposed
approach to different subjects, leave-one-subject-out cross vali-
dation (LOSOCV) is also performed for the speech and posture
datasets, each including 19 and 13 subjects, respectively. In
each fold of LOSOCV, a subject is left out (testing subject) and
the models are trained using the remaining subjects (training
subjects).

Cross correlation (CC) and mean absolute percentage error
(MAPE) are used for evaluation. Additionally, training and
recall times are used to compare the computational complexity
of the algorithms.

IV. RESULTS

In this section, the results of the experimental evaluation
are reported for the synthetic datasets in Section IV-A and for
affective datasets in Sections IV-B and IV-C.

A. Synthetic Datasets

The results on the two synthetic datasets are shown in Fig.
1, where each point corresponds to an experiment with samples
generated given a sample size, a frequency, and a noise ratio,
and abscissa and ordinate of each point indicate the resulting
correlation coefficient by SVR and MDR, respectively. We
use the relative position of the points with respect to the
identity (1:1) line to assess the relative performance of the
two approaches in each scenario. Points that are on the top
side of the line favor MDR over SVR, and points that are on

1In each fold of 10×10FCV and LOSO, a separate 5-fold cross validation is
performed using only the training set, and kernels (and their hyper-parameters)
maximizing CC are selected to perform regression in that fold.

the bottom side favor SVR over MDR. The further a point gets
from the line, the more one approach is favored over the other.

1) Dataset.1: Fig. 1(a) presents the results of the first
synthetic dataset (Equation 11). According to this figure, in
more than 95% of cases (143/150), MDR produces higher
correlation than SVR. For 50 samples, MDR shows better
performance than SVR in all cases. By increasing the sample
size, we see an evident shift towards the identity line, and
despite the better performance of MDR in the sample size of
500, points are very close to the identity line. The sum of
distances of the points to the identity line for the sample sizes
of 50, 100, and 500, are 4.03, 3.13, and 1.12. For this dataset,
we could say that MDR shows better performance compared
to SVR when few data points are available.

Increasing the frequency and/or noise ratio, decreases the
overall performance of both methods. This is expected, given
that these two parameters contribute to nonlinearity and unpre-
dictability of data, respectively. However, the degree to which
the two methods are affected by these changes is different.
Fig. 2 shows the relative trend of changes of correlation with
respect to sample size, frequency, and noise ratio. The ordinate
of these figures indicates the percentage of cases where MDR
results in a higher correlation than SVR. As the frequency
or noise ratio increase, MDR’s performance monotonously
becomes better than that of SVR.

Average training and recall times are 106.4 and 0.6 mil-
liseconds for MDR, and 2700.5 and 0.8 milliseconds for SVR.
That is, MDR is more than 25 times faster than SVR in terms
of training time, with similar recall time.

2) Dataset.2: Fig. 1(b) presents the results of the second
synthetic dataset (Equation 12). According to this figure, in
more than 75% of cases (113/150), MDR results in a higher
correlation than SVR. In terms of sample size, a similar trend
to the first synthetic dataset is observed. For the lowest sample
size, MDR outperforms SVR, with increased sample size, they
tend to show more similar results, still in favor of MDR for
the higher sample sizes. The sum of distances of the points to
the identity line for the samples sizes of 50, 100, and 500, are
4.47, 2.49, and 0.54.

For this dataset, the trend does not seem to be as smooth
(Fig. 2), however, in this case too the average correlation for
MDR is higher than that of SVR. Despite the performance
deterioration with the increase in the frequency and noise ratio,
MDR results in a higher correlation than that of SVR. The only
exception is the results at f = 1024, where SVR demonstrates
a slightly better performance (Fig. 2). However, the correlation
coefficients at this frequency in all cases fall below 30% for
both approaches, hence, no conclusion can be derived on the
superiority of one approach over the other.

Average training and recall times are 108.3 and 0.6 mil-
liseconds for MDR, and 1465.1 and 0.8 milliseconds for SVR.
That is, SVR is more than 13 times slower than MDR in terms
of training time, however, they are similarly fast in the recall
phase.

B. Speech Dataset

Table II shows average CC(± std) and MAPE(± std) for
the predicted affective dimensions obtained by 10×10FCV. For
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Fig. 1. Relative performance of MDR versus SVR for different combinations of sample size (50, 100, and 500), frequency (f ), and noise ratio (ε). Points that
are above (below) the line are those that favor MDR (SVR).

both SVR and MDR, the best results were obtained with the
radial basis kernel. The high CC and low MAPE resulting
from both approaches in the prediction of the activation
and dominance dimensions show the high accordance of the
predicted values with those perceived by the observers.

Unlike the activation and dominance dimensions, for which
MDR and SVR perform equally well, the performance is
significantly poorer for valence. This is in spite of the fact
that the Cronbach’s alpha for valence is in the good range,
meaning that the agreement between the observers is relatively
high (Table I). A possible explanation is that the observers’
evaluation is based on both the audio and visual modalities, and
that the two modalities are not equally effective in conveying
different dimensions of affect. Since only the audio part of

the dataset is used for regression, the low level of correlation
in predicting valence might be due to the insufficiency of the
explanatory variables.

To further examine the capability of the proposed approach
in generalizing to unseen subjects, leave-one-subject-out cross
validation experiments are conducted. The results of those
experiments are shown in terms of the CC and MAPE in Table
II. The trend here is very similar to that of the 10×10FCV,
where both MDR and SVR show similar performance in
predicting the activation and dominance dimensions of unseen
subjects, and considerably lower performance in predicting
the valence. Although the two approaches do not show a
meaningful difference in predicting activation and dominance,
the difference is noticeable for the valence.
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Fig. 2. Trends of changes of CC with respect to sample size, frequency, and noise ratio. Disk and triangle correspond to the dataset.1 and 2, respectively.

C. Posture Dataset

Table III shows average CC(± std) and MAPE(± std) for
the predicted affective dimensions, obtained by 10×10fold
cross validation (10×10FCV). Similar to the previous case,
for both SVR and MDR, the best results were obtained with
the radial basis kernel. The high CC and low MAPE of
both approaches in the prediction of the arousal and valence
dimensions show the high accordance of the predicted values
with those perceived by the observers.

Although MDR outperforms SVR in predicting potency,
both approaches perform poorly for potency and avoidance.
This poor prediction could be due to the poor agreement
between observers in rating these dimensions (Cronbach α’s
reported in Table I). The perception of these dimensions
might be ambiguous from postural cues alone, and additional
modalities might be needed to correctly evaluate avoidance and
potency. Nevertheless, the proposed MDR performs similarly
to SVR in modeling human perception of affective dimensions
and predicting these dimensions from postures. Despite the
performance similarities, MDR demonstrates lower variations
in predicting the affective dimensions as compared with SVR
across the 10×10FCV folds (Table III).

To further evaluate the generalization ability of the MDR
model in predicting affective dimensions from person-specific
postures, LOSOCV was conducted. The resulting CC and
MAPE are shown in Table III2.

Fig. 3 shows average (± std) training and recall times for
MDR and SVR across 10×10FCV folds. MDR training and
recall times are significantly shorter than those of the SVR.

V. DISCUSSION

The experiments with the synthetic datasets were designed
to evaluate the relative performance of MDR and SVR at
varying levels of non-linearity, unpredictability, and sample
size. Non-linearity and unpredictability were introduced by
varying frequency and noise ratio, respectively. Based on the
results reported in Section IV-A, we can make the following
hypotheses: 1) MDR outperforms SVR when few samples are

2Due to the imbalance in the number of postures from each subject, the
computation of average performance metrics (CC and MAPE) is problematic.
To overcome this problem, predictions from each fold of LOSOCV are
concatenated and then an average CC and MAPE over all the predictions
is computed; hence, no std for LOSOCV folds.

available and the two approachs perform more similarly as the
sample size increases, 2) SVR performs better than MDR at
smaller noise ratios; at higher noise ratios MDR outperforms
SVR, 3) the performance of both approaches deteriorates as the
frequency (viz. nonlinearity) increases. The third hypothesis is
weak due to the lack of experiments with kernelized MDR and
SVR for the nonlinear datasets in the present work.

The first hypothesis also holds when comparing the re-
gression performance for the speech and posture datasets with
one another. The VAM Audio-I has 478 samples and the
posture dataset has 110 samples. MDR’s crossvalidated CC’s
are higher than those of SVR in the posture dataset (smaller
sample size), while crossvalidated CC’s for both approaches
are close for the speech dataset (larger sample size).

To further evaluate the first hypothesis, additional exper-
iments were conducted using the VAM dataset. A 10×10
FCV was conducted using 20% of samples randomly selected
from VAM Audio-I. The results from the experiment with a
subset of VAM Audio-I dataset show that SVR outperforms
MDR in terms of average cross-validated CC’s (SVR > MDR
by: 2.83% in Activation, 7.06% in Dominance, and 2.51% in
Valence). These results do not support the first hypothesis on
the advantage of MDR over SVR for small sample sizes.

A similar poorer performance of MDR in comparison with
SVR is also observed in the experiments with 50 samples of
the synthetic dataset 2. As can been seen in Figure 1(a), in
all such cases, the noise ratio is very low and as the noise
ratio increases and sample size remains fixed, MDR surpasses
SVR. A possible explanation is that there is an interaction
effect between the noise ratio and sample size such that the
effect of sample size varies at different levels of noise ratio.
To test this hypothesis, we have rerun the 10×10 FCV with
20% of samples randomly selected from VAM Audio-II where
there is a lower agreement between observers on conveyed
affective dimensions in comparison with VAM Audio-I; which
in turn makes it more noisy than VAM Audio-I. VAM Audio-
II contains 469 samples in total. On average, MDR performs
better than SVR on the subset of VAM Audio-II dataset in
terms of cross-validated CC’s from 10×10 FCV (MDR >
SVR by: 2.19% in Activation, 1.29% in Dominance, 1.66%
in Valence).

Therefore, the relative performance of MDR and SVR
on subsets of VAM Audio-I and VAM Audio-II shows that
at a similar sample size, SVR outperforms MDR at lower
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(d) Posture – Recall Time

Fig. 3. Average training time ± std over folds of 10×10FCV. The error bars indicate standard deviation.

TABLE II. RESULTS ON THE AFFECTIVE SPEECH DATASET. (CC: CORRELATION COEFFICIENT, MAPE: MEAN ABSOLUTE PERCENTAGE ERROR)

Activation Dominance Valence
CC MAPE CC MAPE CC MAPE

10×10-Fold Cross Validation
SVR 82.08 ± 0.45 5.92 ± 0.04 76.10 ± 0.45 5.64 ± 0.05 46.72 ± 1.29 8.04 ± 0.14
MDR 82.15 ± 0.29 6.01 ± 0.05 77.36 ± 0.26 5.72 ± 0.03 43.43 ± 1.62 9.30 ± 0.11

Leave-One-Subject-Out
SVR 81.68 6.00 74.95 5.76 40.83 8.59
MDR 81.23 6.17 75.07 5.99 33.09 9.79

TABLE III. RESULTS ON THE AFFECTIVE POSTURE DATASET. (CC: CORRELATION COEFFICIENT, MAPE: MEAN ABSOLUTE PERCENTAGE ERROR)

Arousal Avoidance Potency Valence
CC MAPE CC MAPE CC MAPE CC MAPE

10×10-Fold Cross Validation
SVR 73.44 ± 4.17 7.79 ± 0.46 41.68 ± 5.18 11.61 ± 0.51 20.39 ± 7.26 10.72 ± 0.48 63.00 ± 5.55 8.38 ± 0.47
MDR 77.10 ± 0.62 7.59 ± 0.12 42.08 ± 3.04 11.54 ± 0.27 37.38 ± 2.74 10.20 ± 0.26 59.66 ± 1.68 8.60 ± 0.24

Leave-One-Subject-Out
SVR 72.29 7.92 37.92 11.79 5.22 11.11 61.89 8.62
MDR 77.09 7.49 36.71 12.07 38.92 9.89 60.83 8.65

noise ratios (VAM Audio-I), while at higher noise ratios
(VAM Audio-II), MDR outperforms SVR, which is congruent
with the hypothesis on the interaction effect of noise ratio
and sample size. These results also support the hypothesis
regarding MDR’s advantage at higher noise ratios (Hypothesis
2).

Another advantage of MDR over SVR is its computa-
tional efficiency. As shown in Section IV-A and Figure 3,
MDR’s training and recall times for the synthetic and real
datasets are significantly shorter than those of SVR. As can
be seen in Figure 3, MDR’s recall time for each affective
dimension is also more consistent across the 10×10FCV folds,
whereas SVR’s recall time shows a larger standard deviation.
Furthermore, there are higher variations in SVR recall time
across the affective dimensions, whereas MDR’s recall time is
consistently short (Figure 3).

Another important observation is that by decreasing the
number of explanatory variables from two (synthetic dataset 1)
to one (synthetic dataset 2), the average training time of SVR
is almost halved (from 2700.5 ms in dataset 1 to 1465.1 ms in
dataset 2), whereas MDR’s training time did not meaningfully
change (106.4 ms in dataset 1 and 108.3 ms in dataset 2). The

importance of this difference could be even more evident in
cases where the dimensionality of the feature space is large.

VI. CONCLUSION

In this work, we presented a new regression approach, max-
dependence regression (MDR), that aims to make predictions
that are maximally correlated with the response variable.
The proposed approach exploits HSIC measure and identi-
fies a mapping of explanatory variables that are maximally
dependant to the response variable. The mapped explanatory
variables are then linearly combined to produce the optimal
prediction for the response variable. As a result, MDR max-
imizes both linear and nonlinear dependencies between the
response and explanatory variables.

The proposed MDR approach was evaluated using syn-
thetic and real datasets and its performance was compared with
those of SVR. The synthetic datasets allowed us to evaluate
the performance of the proposed approach under varying levels
of noise, nonlinearity, and sample size in comparison with
an state-of-the-art regression approach, SVR. Two synthetic
datasets were examined and the prediction performance of
MDR was found to surpass SVR’s in majority of the cases.
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In particular, MDR demonstrates better performance than SVR
with lower samples sizes, with the two approaches demonstrat-
ing a similar performance as the sample size increases. In terms
of unpredictability and nonlinearity, MDR shows a better per-
formance than SVR in most cases where more unpredictability
and nonlinearity were introduced to the datasets by increasing
the noise ratio ans/or varying the frequency, respectively.

MDR was also applied to two affective datasets and its
performance compared to that of SVR using two cross vali-
dation tests: 10×10 FCV and LOSOCV. Results show a close
performance of the two regression approaches.

One clear advantage of MDR is its computational effi-
ciency. MDR’s training and recall times were shown to be
significantly shorter than those of SVR in the experiments on
both the synthetic and real datasets. Therefore, the proposed
MDR performs similarly to (and in many cases surpasses) the
state-of-the-art SVR, but with significantly shorter training and
recall time.

Further experiments with additional datasets will be con-
ducted in the future to examine the performance of MDR.
In particular, the hypothesized main and interaction effects
of sample size, noise ratio, and frequency will be further
explored in the future. Moreover, experiments on the relative
performance of kernelized MDR and SVR at varying levels
of nonlinearity is a future direction for this work. Another
direction for the future work is to extend MDR to sparsify
the regression coefficients to include only the explanatory
variables most relevant to the response variable. For this,
synthetic datasets with varying number of features will be used
where the response variable depends only on a subset of the
variables. The importance of sparsification becomes evident
in applications such as affective movement analysis where
there are different sources of variations (e.g., interpersonal and
kinematics) among which only a few are salient to affective
expressions [23], [13].
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