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Abstract—Controller parameter tuning is an integral part of
control engineering practice. Existing tuning methods usually
start with an accurate mathematical model of the controlled
system, which may pose some challenges for practicing engineers
dealing with real systems. As such, parameter optimization
and adaptation are treated as two independent steps during
tuning. To address these issues, we propose a new, online
parameterized controller tuning method for a general nonlinear
dynamic system. This tuning method is based on direct heuristic
dynamic programming (direct HDP), a model-free algorithm
in the approximated dynamic programming (ADP) family. By
using a Lyapunov stability approach, we provide uniformly
ultimately bounded (UUB) results under some mild conditions
for controller parameters, the critic neural network weights, and
the action neural network weights. Simulation studies based on
the benchmark cart-pole system demonstrate adaptability and
optimization capabilities of the proposed controller parameter
tuning method.

I. INTRODUCTION

APPROXIMATE dynamic programming (ADP) [1], or
adaptive dynamic programming [2], [3], serves as a

powerful tool for optimal policy searching in a Markov de-
cision process (MDP). ADP overcomes limitations suffered
by classic dynamic programming such as the “curse of
dimensionality” [1], [4] by using learning and function
approximation techniques. In [5], ADP design approaches
are categorized into heuristic dynamic programming (HDP),
dual heuristic dynamic programming (DHP), globalized dual
heuristic dynamic programming (GDHP) and their action
dependent variants of ADHDP, ADDHP and ADGDHP. The
value function and its derivative are approximated in HDP
and DHP, respectively. GDHP approximates both the value
function and its derivative. In the action dependent versions
of ADP, control variables are taken into account in the value
function approximation. Excellent surveys on ADP can be
found in [1], [2], [3].

Optimal adaptive control is an important application field
of ADP. A variety of ADP based optimal adaptive control
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methods have been developed, including adaptive critic de-
signs (ACD) [5], direct HDP [6], goal representation based
ADP [7], time-based ADP [8], and the optimal adaptive control
based on policy iteration and value iteration [2], [9], [10].
In these methods, neural networks (NNs), such as multilayer
perceptrons (MLPs) and radial basis functions (RBFs), are
used extensively to approximate control policies. Such neural
network based controllers are effective owing to their universal
approximation capability. However, neural networks are con-
sidered “black box” models in parameters and functional basis,
which is not intuitive for result interpretation and gaining
insight. On the other hand, the proportional-integral-derivative
(PID) controller has been the work horse in engineering fields
for its structural simplicity and straightforward interpretations.
Tuning PID controllers in real time however, still poses
challenges. Taking the best of the two world, the optimal
online learning and tuning based on ADP and the structural
simplicity of existing controllers such as the PID, we propose
a generic method of parameterized controller tuning based on
ADP.

Great attention has been paid to incorporate the learning
capability of ADP into some existing controllers. In [11], the
action neural network in direct HDP is replaced by a phase-
shift neural network to imitate the classic lead-lag control.
A novel neural network with augmented states is developed
in [12] for utilizing the prior knowledge of a well-designed
PID controller. In [13], adaptive-heuristic-critic (AHC) based
learning algorithm is used to tune the PID controller of an
unmanned ground vehicle. It should be noted that the methods
in [11], [12], [13] are all designed for specific controllers, such
as PID or lead-lag controllers. Besides, a reference model is
required in [13].

In [14], the authors proposed a direct HDP based tuning
method for the PD-type virtual inertia control (VIC) of doubly
fed induction generators (DFIGs). The proposed method shows
great potential in tuning parameterized controllers. In this
paper, we extend the work in [14] to a general model-free
online tuning method for parameterized controllers. An analy-
sis based on Lyapunov approaches is made to prove uniformly
ultimately bounded (UUB) convergence of the proposed tuning
method.

In fact, great effort has been made in the classic con-
trol community to develop systematic tuning methods for
parameterized controllers. Taking the most widely used PID
controller for example, its tuning methods include opti-
mization method [15], [16], heuristic method [17], [18],
frequency domain based method [19], [20], time domain
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based method [21], methods based on internal model control
(IMC) [22] and model predictive control (MPC) [23]. Com-
pared to these methods, the proposed ADP tuning method in
this paper has the following advantages. 1) The mathematic
model of the controlled system is not required. 2) The design
is online conducted to optimize a designer-specified objective
function. 3) Controller parameters can be adapted to system
changes. In summary, the proposed method is an online model-
free optimal adaptive tuning method for general parameterized
controllers.

The rest of this paper is organized as follows. In Section II,
the parameter tuning problem is formulated in mathematical
terms. Framework and implementation details of the proposed
parameter tuning method are also presented. In Section III,
convergence results based on Lyapunov function analysis are
presented. A parameter selection guidance for the online
tuning method is also given. Simulation results on a bench-
mark cart-pole system are presented in Section IV. Conclusions
are drawn in Section V.

II. ADP BASED CONTROLLER PARAMETER TUNING

METHOD

A. Problem formulation

In this paper, we consider the discrete-time nonlinear system
(1) with the parameterized controller (2),

𝑥(𝑡+ 1) = 𝐹 (𝑥(𝑡), 𝑣(𝑡)), (1)

𝑣(𝑡) = ℎ(𝑥(𝑡),𝐾), (2)

where 𝑡 is the discrete time, 𝑥 ∈ ℝ
𝑛 is the state vector, 𝑣 ∈ ℝ

𝑚

is the control vector, 𝐾 ∈ ℝ
𝑙 is the control parameter vector,

𝐹 (⋅, ⋅) : ℝ𝑛 × ℝ
𝑚 −→ ℝ

𝑛 is the system state transformation
function, ℎ(⋅, ⋅) : ℝ𝑛 × ℝ

𝑙 −→ ℝ
𝑚 is the control policy.

For system (1), an instantaneous cost function at time 𝑡 can
be defined, which is denoted as 𝑟(𝑡), which satisfies that

0 ≤ 𝑟(𝑡) ≤ 𝑟𝑚, (3)

where 𝑟𝑚 is the upper bound of 𝑟(𝑡). The definition of 𝑟(𝑡)
is specified by the controller designer in accordance with the
application in mind. Usually, state deviation and control effort
are considered in 𝑟(𝑡).

Total cost function, or cost-to-go function, is defined as

𝐽(𝑡) =

∞∑

𝑖=1

𝛼𝑖−1𝑟(𝑡+ 𝑖), (4)

where 0 < 𝛼 < 1 is the discount factor. Note that 𝐽(𝑡) is the
total cost from time 𝑡+ 1.

The optimal parameter tuning problem for the parameterized
controller (2) is to find a control policy (2) as a function of
the parameter 𝐾 so that system (1) is stable and the cost-to-
go is minimized. Accordingly we have the optimal cost-to-go
function,

𝐽∗(𝑡) = min
𝐾
𝐽(𝑡), (5)

and the optimal control parameter can be computed from

𝐾∗ = argmin
𝐾
𝐽(𝑡). (6)

B. Tuning method based on ADP

In this paper, an ADP based controller parameter tuning
method is proposed for the optimal parameter tuning problem
formulated above. A schematic diagram of the ADP based
controller parameter tuning method is illustrated in Fig. 1.
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Fig. 1. Schematic of ADP based controller parameter tuning

In the proposed method, the state variable 𝑥 is taken
as input of the ADP tuner. A “proportional-integrator” type
structure [24] is employed to update the controller parameter,

𝐾(𝑡+ 1) = 𝐾(𝑡) + Δ𝐾(𝑡), (7)

where 𝐾(0) is the original controller parameter setting, and
the regulatory signal Δ𝐾 is obtained by

Δ𝐾(𝑡) =𝑀𝑢(𝑡), (8)

where 𝑀 ∈ ℝ
+ is a modulation factor, 𝑢(𝑡) is generated by

the ADP tuner.
The ADP tuner in Fig. 1 is based on direct HDP [6]. In

Fig. 1, the solid lines indicate paths for signal flow, while
the dashed lines are paths for network parameter tuning. Two
neural networks are involved in direct HDP, i.e., the critic
neural network and the action neural network.

Critic NN takes 𝑥(𝑡) and 𝑢(𝑡) as inputs. Output of critic
NN, 𝐽(𝑡), is used to approximate the cost-to-go function 𝐽(𝑡)
defined in (4). When critic NN is well trained, 𝐽(𝑡) should
satisfy the Bellman equation [4]

𝐽(𝑡− 1) = 𝑟(𝑡) + 𝛼𝐽(𝑡). (9)

That is

𝐽(𝑡) = 𝑟(𝑡+ 1) + 𝛼𝐽(𝑡+ 1) = ⋅ ⋅ ⋅ =
∞∑

𝑖=1

𝛼𝑖−1𝑟(𝑡+ 𝑖).

(10)
By comparing (4) and (10), there is 𝐽(𝑡) = 𝐽(𝑡) when critic
NN is perfectly trained.

Action NN converts the state variable 𝑥(𝑡) to the control
variable 𝑢(𝑡). Its objective is to minimize the difference
between the estimated cost-to-go 𝐽(𝑡) and its objective value
𝑈𝐶(𝑡). Without any loss of generality, 𝑈𝐶(𝑡) is set to 0 in this
paper.

From the above, we can see that critic NN evaluates the
current control policy and action NN tries to minimize the
estimated cost-to-go. Converged action NN and critic NN thus
provide a near optimal control policy.

257



C. Online learning implementation of action NN and critic
NN

Both critic NN and action NN are realized by three-layer
perceptrons. A sigmoid activation function is used for the
hidden layer nodes,

𝜑(𝑥) =
1− 𝑒−𝑥
1 + 𝑒−𝑥

. (11)

In the critic NN, 𝑤(1)
𝑐𝑖𝑗 is the network weight between the 𝑗th

input node and the 𝑖th hidden node, 𝑤(2)
𝑐𝑖 is the network weight

between the 𝑖th hidden node and the output node, signals 𝑞 and
𝑝 are the input and output of the hidden nodes, respectively.
The approximation function of critic NN can be expressed as

𝐽(𝑡) =

𝑁ℎ𝑐∑

𝑖=1

𝑤
(2)
𝑐𝑖 (𝑡)𝑝𝑖(𝑡)

𝑝𝑖(𝑡) = 𝜑(𝑞𝑖(𝑡)), 𝑖 = 1, ⋅ ⋅ ⋅ , 𝑁ℎ𝑐

𝑞𝑖(𝑡) =

𝑛∑

𝑗=1

𝑤
(1)
𝑐𝑖𝑗 (𝑡)𝑥𝑗(𝑡) +

𝑛+𝑙∑

𝑗=𝑛+1

𝑤
(1)
𝑐𝑖𝑗 (𝑡)𝑢𝑗−𝑛(𝑡),

𝑖 = 1, ⋅ ⋅ ⋅ , 𝑁ℎ𝑐,

(12)

where 𝑁ℎ𝑐 is the number of hidden nodes in critic NN,
subscript of 𝑝(𝑡), 𝑞(𝑡), 𝑥(𝑡), 𝑢(𝑡) denotes the element number
in the corresponding vector. For example, 𝑝𝑖(𝑡) is the 𝑖th
element in 𝑝(𝑡).

In the action NN, the weight 𝑤(1)
𝑎𝑖𝑗 connects the 𝑗th input

node and the 𝑖th hidden node, and 𝑤(2)
𝑎𝑖𝑘 connects the 𝑖th hidden

node and the 𝑘th output node, signals ℎ and 𝑔 are the input and
output of the hidden nodes, respectively. The approximated
function of action NN can be expressed as

𝑢𝑘(𝑡) =

𝑁ℎ𝑎∑

𝑖=1

𝑤
(2)
𝑎𝑖𝑘(𝑡)𝑔𝑖(𝑡), 𝑘 = 1, ⋅ ⋅ ⋅ , 𝑙

𝑔𝑖(𝑡) = 𝜑(ℎ𝑖(𝑡)), 𝑖 = 1, ⋅ ⋅ ⋅ , 𝑁ℎ𝑎
ℎ𝑖(𝑡) =

𝑛∑

𝑗=1

𝑤
(1)
𝑎𝑖𝑗(𝑡)𝑥𝑗(𝑡), 𝑖 = 1, ⋅ ⋅ ⋅ , 𝑁ℎ𝑎,

(13)

where 𝑁ℎ𝑎 is the number of hidden layer nodes in action
NN, subscript of 𝑔(𝑡), ℎ(𝑡), 𝑥(𝑡), 𝑢(𝑡) denotes the element
number in the corresponding vector. For example, 𝑔𝑖(𝑡) is the
𝑖th element in 𝑔(𝑡).

In [25], it is proved that if the number of hidden layer
nodes is large enough, and the input-to-hidden layer weights
are randomly initialized and fixed, then approximation error
of the neural network can be arbitrarily small by adjusting
the hidden-to-output layer weights. Based on this result, we
only consider updating the hidden-to-output layer weights
of the critic NN and the action NN in direct HDP. For
the ease of discussion, we denote the estimated 𝑤(2)

𝑐 as
�̂�𝑐 ∈ ℝ

𝑁ℎ𝑐 , and the estimated 𝑤(2)
𝑎 as �̂�𝑎 ∈ ℝ

𝑁ℎ𝑎×𝑙. The
hidden layer outputs of critic NN and action NN are denoted
as 𝜙𝑐 = (𝑝1, 𝑝2, ⋅ ⋅ ⋅ , 𝑝𝑁ℎ𝑐)𝑇 and 𝜙𝑎 = (𝑔1, 𝑔2, ⋅ ⋅ ⋅ , 𝑔𝑁ℎ𝑎)𝑇 ,
respectively. Then the output of critic NN, action NN and the
estimated controller parameter �̂� can be expressed as

𝐽(𝑡) = �̂�𝑇𝑐 (𝑡)𝜙𝑐(𝑡), (14)

𝑢(𝑡) = �̂�𝑇𝑎 (𝑡)𝜙𝑎(𝑡), (15)

�̂�(𝑡+ 1) = �̂�(𝑡) +𝑀�̂�𝑇𝑎 (𝑡)𝜙𝑎(𝑡). (16)

The approximation error of critic NN is defined as the
Bellman residual [4]

𝑒𝑐(𝑡) = 𝛼𝐽(𝑡)− [𝐽(𝑡− 1)− 𝑟(𝑡)]. (17)

Critic NN is trained to minimize the following square error

𝐸𝑐(𝑡) = 𝑒
2
𝑐(𝑡)/2. (18)

Gradient decent algorithm is employed to train critic NN,

�̂�𝑐(𝑡+ 1) = �̂�𝑐(𝑡)− 𝛼𝑙𝑐𝜙𝑐(𝑡)
[𝛼�̂�𝑇𝑐 (𝑡)𝜙𝑐(𝑡) + 𝑟(𝑡)− �̂�𝑇𝑐 (𝑡− 1)𝜙𝑐(𝑡− 1)],

(19)

where 𝑙𝑐 is the learning rate for critic NN.
For action NN, the approximation error is defined as

𝑒𝑎(𝑡) = 𝐽(𝑡)− 𝑈𝐶(𝑡). (20)

Action NN is trained to minimize the square error

𝐸𝑎(𝑡) = 𝑒
𝑇
𝑎 (𝑡)𝑒𝑎(𝑡)/2. (21)

The gradient decent training algorithm for action NN is

�̂�𝑎(𝑡+ 1) = �̂�𝑎(𝑡)− 𝑙𝑎[�̂�𝑇𝑐 (𝑡)𝜙𝑐(𝑡)]𝜙𝑎(𝑡)[�̂�𝑇𝑐 (𝑡)𝐶(𝑡)],
(22)

where 𝑙𝑎 is the learning rate for action NN, and the elements
of 𝐶(𝑡) ∈ ℝ

𝑁ℎ𝑐×𝑙 are

𝐶𝑖𝑗(𝑡) =
1

2
(1−𝜙2𝑐𝑖(𝑡))𝑤(1)

𝑐𝑖(𝑛+𝑗), 𝑖 = 1, ⋅ ⋅ ⋅ , 𝑁ℎ𝑐; 𝑗 = 1, ⋅ ⋅ ⋅ , 𝑙.
(23)

For convergence consideration, the estimated parameters of
critic NN and action NN, �̂�𝑐 and �̂�𝑎, are confined in an
appropriate range by

�̂�𝑐(𝑡) =
�̂�𝑐(𝑡)

𝑚𝑎𝑥∣�̂�𝑐(𝑡)∣ , 𝑖𝑓 𝑚𝑎𝑥∣�̂�𝑐(𝑡)∣ > �̂�𝑐𝑚, (24)

�̂�𝑎(𝑡) =
�̂�𝑎(𝑡)

𝑚𝑎𝑥∣�̂�𝑎(𝑡)∣ , 𝑖𝑓 𝑚𝑎𝑥∣�̂�𝑎(𝑡)∣ > �̂�𝑎𝑚, (25)

where 𝑚𝑎𝑥∣ ⋅ ∣ is the largest absolute value of the components
of the argument �̂�𝑐𝑚 and �̂�𝑎𝑚 are the weight bounds for
critic NN and action NN, respectively. The estimated controller
parameter �̂�(𝑡) is also bounded by

∣�̂�𝑖∣ ≤ �̂�𝑚𝑖, 𝑖 = 1, ⋅ ⋅ ⋅ , 𝑙. (26)

where �̂�𝑚𝑖 > 0 is the bound for the 𝑖th controller parameter.

III. CONVERGENCE PROOF

Let 𝑤∗𝑐 and 𝑤∗𝑎 be the optimal parameters of critic NN and
action NN, respectively, where,

𝑤∗𝑐 = argmin
𝑤𝑐
{𝛼𝐽(𝑡)− [𝐽(𝑡− 1)− 𝑟(𝑡)]} (27)

𝑤∗𝑎 = argmin
𝑤𝑎
𝐽(𝑡) (28)

Then we define the parameter estimation error as �̃�𝑐(𝑡) =
�̂�𝑐(𝑡)−𝑤∗𝑐 and �̃�𝑎(𝑡) = �̂�𝑎(𝑡)−𝑤∗𝑎. The controller parameter
estimation error is denoted as �̃�(𝑡) = �̂�(𝑡)−𝐾∗. Similar to
[26], the UUB convergence properties of �̃�𝑐(𝑡), �̃�𝑎(𝑡) and
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�̃�(𝑡) are studied by the use of Lyapunov method. Taking the
controller parameter error �̃�(𝑡) for example, the definition of
UUB is stated as:

Definition 1. (Uniformly Ultimately Bounded
(UUB) [27]) The parameter �̃�(𝑡) is said to be UUB if
there exists a compact set Ω ⊂ ℝ

𝑙 so that for ∀𝐾(𝑡0) ⊂ Ω,
there exists a bound 𝜖 and an integer 𝑇 (𝜖) > 0 such that
∥�̃�(𝑡)∥ ≤ 𝜖 for ∀𝑡 ≥ 𝑡0 + 𝑇 (𝜖).

The following assumption is made before the analysis.

Assumption 1. The optimal parameter 𝑤∗𝑐 for critic NN in
(27), 𝑤∗𝑎 for action NN in (28), and 𝐾∗ for parameterized
controller in (6) are bounded, respectively,

∥𝑤∗𝑐∥ ≤ 𝑤𝑐𝑚, ∥𝑤∗𝑎∥ ≤ 𝑤𝑎𝑚, ∥𝐾∗∥ ≤ 𝐾𝑚, (29)

where ∥ ⋅ ∥ is the 2-norm, 𝑤𝑐𝑚, 𝑤𝑎𝑚 and 𝐾𝑚 are constants.

Then we have the following lemmas.

Lemma 1. Consider the critic NN with output (14) and update
formula (19). Let

𝐿1(𝑡) =
1

𝑙𝑐
�̃�𝑇𝑐 (𝑡)�̃�𝑐(𝑡). (30)

Then the first-order difference of 𝐿1(𝑡) satisfies that

Δ𝐿1(𝑡) ≤ −𝛼2𝜁2𝑐 (𝑡)− 𝛼2(1− 𝛼2𝑙𝑐∥𝜙𝑐(𝑡)∥2)(𝜁𝑐(𝑡) +
𝐸

𝛼
)2

+ 2(𝐸 +
1

2
𝜁𝑐(𝑡− 1))2 +

1

2
𝜁2𝑐 (𝑡− 1),

(31)
where

𝜁𝑐(𝑡) = �̃�
𝑇
𝑐 (𝑡)𝜙𝑐(𝑡) ∈ ℝ, (32)

𝐸 = 𝛼𝑤∗𝑇𝑐 (𝑡)𝜙𝑐(𝑡) + 𝑟(𝑡)− �̂�𝑇𝑐 (𝑡− 1)𝜙𝑐(𝑡− 1) ∈ ℝ. (33)

Proof. By substituting (19) into

Δ𝐿1(𝑡) =
1

𝑙𝑐
(�̃�𝑇𝑐 (𝑡+ 1)�̃�𝑐(𝑡+ 1)− �̃�𝑇𝑐 (𝑡)�̃�𝑐(𝑡)), (34)

and applying the Cauchy-Schwarz inequality, (31) can be
obtained.

Lemma 2. Consider the action NN with output (15) and
update formula (22). Let

𝐿2(𝑡) =
1

𝑙𝑎
𝑡𝑟(�̃�𝑇𝑎 (𝑡)�̃�𝑎(𝑡)), (35)

where 𝑡𝑟(⋅) is the trace of a matrix. Then the first-order
difference of 𝐿2(𝑡) satisfies that

Δ𝐿2(𝑡) ≤2𝐹 2∥𝐶𝑇 (𝑡)�̂�𝑐(𝑡)∥2
+ 2∥�̂�𝑇𝑎 (𝑡)𝜙𝑎(𝑡)∥2 + 2∥𝑤∗𝑇𝑎 (𝑡)𝜙𝑎(𝑡)∥2
− 𝐹 2(1− 𝑙𝑎∥𝜙𝑎(𝑡)∥2)∥𝐶𝑇 (𝑡)�̂�𝑐(𝑡)∥2,

(36)

where
𝐹 = �̂�𝑇𝑐 (𝑡)𝜙𝑐(𝑡) ∈ ℝ. (37)

Proof. By substituting (22) into

Δ𝐿2(𝑡) =
1

𝑙𝑎
𝑡𝑟(�̃�𝑇𝑎 (𝑡+ 1)�̃�𝑎(𝑡+ 1)− �̃�𝑇𝑎 (𝑡)�̃�𝑎(𝑡)), (38)

and applying the property 𝑡𝑟(𝐴𝐵) = 𝑡𝑟(𝐵𝐴) and the Cauchy-
Schwarz inequality, (36) can be obtained.

Lemma 3. Consider the controller parameter update formula
in (16). Let

𝐿3(𝑡) =
1

𝑀
�̃�𝑇 (𝑡)�̃�(𝑡). (39)

Then the first-order difference of 𝐿3(𝑡) satisfies that

Δ𝐿3(𝑡) ≤2∥�̂�𝑎(𝑡)�̂�(𝑡)∥2 + 2∥�̂�𝑎(𝑡)𝐾∗(𝑡)∥2
+ ∥𝜙𝑎(𝑡)∥2 +𝑀∥�̂�𝑇𝑎 (𝑡)𝜙𝑎(𝑡)∥2.

(40)

Proof. By substituting (16) into

Δ𝐿3(𝑡) =
1

𝑀
(�̃�𝑇 (𝑡+ 1)�̃�(𝑡+ 1)− �̃�𝑇 (𝑡)�̃�(𝑡)), (41)

and applying the Cauchy-Schwarz inequality, (40) can be
obtained.

Based on Lemmas 1-3, the convergence of the proposed pa-
rameter tuning method is presented in the following theorem.

Theorem 1. Let the Assumption 1 hold, and the instantaneous
cost function be confined by (3). Critic NN with output (14) is
updated by (19) and confined by (24). Action NN with output
(15) is updated by (22) and confined by (25). The controller
parameter is updated by (16) and bounded by (26). Then under
conditions specified in (42), the errors between the estimated
parameter and the optimal parameter, �̃�𝑐(𝑡), �̃�𝑎(𝑡) and �̃�(𝑡),
are UUB.

1√
2
< 𝛼 < 1, 𝑙𝑐 <

1

𝛼2∥𝜙𝑐(𝑡)∥2 , 𝑙𝑎 <
1

∥𝜙𝑎(𝑡)∥2 . (42)

Proof. Construct a Lyapunov function candidate as

𝐿(𝑡) = 𝐿1(𝑡) + 𝐿2(𝑡) + 𝐿3(𝑡) + 𝐿4(𝑡), (43)

where 𝐿1(𝑡), 𝐿2(𝑡) and 𝐿3(𝑡) are defined in (30), (35) and
(39), respectively, and

𝐿4(𝑡) =
1

2
𝜁2𝑐 (𝑡− 1). (44)

According to Lemma 1-3 and Δ𝐿4(𝑡) =
1
2𝜁

2
𝑐 (𝑡)− 1

2𝜁
2
𝑐 (𝑡− 1),

there is

Δ𝐿(𝑡) ≤ −(𝛼2 − 1

2
)𝜁2𝑐 (𝑡)− 𝛼2(1− 𝛼2𝑙𝑐∥𝜙𝑐(𝑡)∥2)(𝜁𝑐(𝑡) +

𝐸

𝛼
)2

− 𝐹 2(1− 𝑙𝑎∥𝜙𝑎(𝑡)∥2)∥𝐶𝑇 (𝑡)�̂�𝑐(𝑡)∥2 +𝐷2,
(45)

where 𝐷 is bounded by a positive constant 𝐷𝑚, i.e. ∣𝐷∣ ≤
𝐷𝑚.

Then if the condition (42) holds and

∣𝜁𝑐(𝑡)∣ ≥ 𝐷𝑚√
𝛼2 − 1

2

, (46)

there is
Δ𝐿(𝑡) ≤ 0. (47)

Then the UUB conclusion can be made.
Based on Theorem 1, a more convenient convergence con-

dition is given in the following corollary.

Corollary 1. Let Assumption 1 hold. Consider the instan-
taneous cost as defined in (3), critic NN output defined in
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(14) and weights updated by (19) and bounded by (24), action
NN output defined in (15) and weights updated by (22) and
bounded by (25), the controller parameter updated by (16) and
bounded by (26). Under conditions specified in (48), the errors
between the estimated parameters and the optimal parameters
for �̃�𝑐(𝑡), �̃�𝑎(𝑡) and �̃�(𝑡), are UUB.

1√
2
< 𝛼 < 1, 𝑙𝑐 <

1

𝛼2𝑁ℎ𝑐
, 𝑙𝑎 <

1

𝑁ℎ𝑎
(48)

Proof. According to (11), there is ∣𝜑(𝑥)∣ < 1. Then ∥𝜙ℎ𝑐∥ ≤
𝑁ℎ𝑐 and ∥𝜙ℎ𝑎∥ ≤ 𝑁ℎ𝑎. The corollary can be adapted from
Theorem 1.

IV. APPLICATION IN THE CART-POLE SYSTEM

The proposed ADP based controller parameter tuning
method is tested on the cart-pole system, a benchmark system
in control theory and application.

A. The cart-pole control problem

The cart-pole system has a pole mounted on a cart, which
can move linearly on a track. The control objective is to
balance the system at its equilibrium point. Mathematic model
of the cart-pole system is [28]

𝜃 =
𝑔 sin 𝜃 + cos 𝜃[−𝑣 −𝑚𝑙𝜃2 sin 𝜃 + 𝜇𝑐𝑠𝑔𝑛(�̇�)]− 𝜇𝑝�̇�

𝑚𝑙

𝑙( 43 − 𝑚 cos2 𝜃
𝑚𝑐+𝑚

)

𝑠 =
𝑣 +𝑚𝑙[𝜃2 sin 𝜃 − 𝜃 cos 𝜃]− 𝜇𝑐𝑠𝑔𝑛(�̇�)

𝑚𝑐 +𝑚
,

(49)

where the state vector 𝑥 = [𝜃, 𝜃, 𝑠, �̇�]𝑇 has four variables:
the angle of pole with respect to the vertical position 𝜃, the
position of cart 𝑠, the angular velocity 𝜃, and the cart velocity
�̇�; the control input 𝑣 is the control force on the cart. All other
variables and the parameter settings are the same as [6].

The cart-pole system is a nonlinear system. However, when
the state trajectory is around its equilibrium point, it can be
approximated by a linear system. Linear controllers such as
linear quadratic regulator (LQR) can be applied to balance the
cart-pole system.

Let the performance index matrixes for LQR be 𝑄 =
𝑑𝑖𝑎𝑔(80, 0, 20, 0) and 𝑅 = 2. By solving the algebraic Riccati
equation, LQR controller of the system can be obtained as

𝑣(𝑡) = 39.1255𝜃(𝑡) + 9.8863𝜃(𝑡) + 3.1623𝑠(𝑡) + 4.4427�̇�(𝑡).
(50)

To test the online parameter optimization capability of the
proposed method, the original feedback gain of 𝜃, denoted as
𝐾𝜃(0), is set to 22. Then the original controller is

𝑣(𝑡) = 22𝜃(𝑡) + 9.8863𝜃(𝑡) + 3.1623𝑠(𝑡) + 4.4427�̇�(𝑡). (51)

When the initial state is set to 𝑥(0) = [2, 0, 0, 0]𝑇 , the time
domain response under the original controller is illustrated in
Fig. 2, which shows a very poor damping performance. In the
following the proposed tuning method is used to tune 𝐾𝜃.
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Fig. 2. Time domain response under the controller 𝑣(𝑡) = 22𝜃(𝑡) +
9.8863𝜃(𝑡) + 3.1623𝑠(𝑡) + 4.4427�̇�(𝑡)

B. Simulation results

For implementation of the proposed tuning method, the
following settings are used: the numbers of hidden layer nodes
𝑁ℎ𝑐 = 𝑁ℎ𝑎 = 6, the modulation factor 𝑀 = 5. According
to Corollary 1, let 𝛼 = 0.95 ∈ [1/

√
2, 1], 𝑙𝑐 = 0.05 <

1/(0.952 × 6), 𝑙𝑎 = 0.05 < 1/6. The instantaneous cost
function 𝑟(𝑡) = 80𝜃2(𝑡− 1) + 20𝑠2(𝑡− 1) + 2𝑣2(𝑡− 1). The
measured states are normalized by 𝑥𝑁 = [12, 120, 2.4, 1.5]𝑇

before presented to the action network and the critic network.
The ADP tuner is called every 0.02 s.

1) Case 1: In each simulation run, the system starts from
the initial state 𝑥(0) = [2, 0, 0, 0]𝑇 . With ADP tuner embedded
in the system, the time domain response during learning is
shown in Fig. 3. And the trajectory of 𝐾𝜃 is shown in Fig. 4.
It can be seen that the control performance is improved by
online tuning the parameter. Optimal 𝐾𝜃 is very close to the
value given by LQR. It is because that the error caused by
linearization can be ignored around the equilibrium point, and
the LQR controller is close to optimal.
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Fig. 3. Time domain response during learning
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Fig. 6. Time domain response during learning
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Fig. 7. Trajectory of 𝐾𝜃 after a large disturbance
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Fig. 4. Trajectory of 𝐾𝜃 during learning

2) Case 2: Then we test the proposed online tuning method
under a large disturbance. The cart mass is increased to 2
kg from 1 kg. When using the parameter obtained in case 1,
starting from 𝑥(0) = [2, 0, 0, 0]𝑇 , the time domain response
is shown in Fig. 5. It can be seen that the parameter is no

longer optimal when the controlled system changes. Then we
implement the ADP tuner. The time domain response during
learning is shown in Fig. 6. The trajectory of 𝐾𝜃 is shown in
Fig. 7. It can be seen that the performance is improved during
learning, which demonstrates the online adaptation capability
of the ADP tuner.
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Fig. 5. Time domain response after a large disturbance

V. CONCLUSION

In this paper, we have developed an online and model-
free controller parameter tuning method based on the direct
HDP. The online tuning capability provided by the proposed
method can complement an existing baseline controller beyond
its designed operating range. The UUB stability results of the
proposed method are proved by Lyapunov approaches for key
variables such as the weights in the online learning controller
and the overall controller gain.

By using a benchmark cart-pole system, we demonstrate the
effectiveness of the proposed learning controller.
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