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Abstract— In this paper, we proposed a Nonnegative Shifted
Tensor Factorization (NSTF) model considering multiple com-
ponent delays by time frequency analysis. Explicit mathematical
representation for the delays is presented to recover the patterns
from the original data. In order to explore multilinear shifted
component in different modes, we use fast fourier transform
(FFT) to transform the non-integer delays into frequency
domain by gradients search. The ALS algorithm for NSTF is
developed by alternating least square procedure to estimate
the nonnegative factor matrices in each mode and enforce the
sparsity of model. Simulation results indicate that ALS-NSTF
algorithm can extract the shift-invariance sparse features and
improve the recognition performance of robust speaker iden-
tification and structural magnetic resonance imaging (sMRI)
diagnosis for Alzheimer’s Disease.

I. INTRODUCTION

In many cases sequential data exists component shift-
s/delays, for example, speech signal in cocktail party problem
[1]. Various methods are proposed to estimate the delays
and recover the original patterns. Convolutive blind source
separation methods such as spatio-temporal fast ICA [2] have
often been proposed as possible solutions to estimate the time
delays between different microphones. Shifted nonnegative
matrix factorization (Shifted NMF) [3] is developed to extend
NMF naturally to handle the potential delays of biomedical
data. Shifted independent component analysis (Shifted ICA)
[4] is a kind of subspace analysis method considering non-
integer shifts by information maximization in the complex
domain. In order to capture shifts in the features, sparse
shift-invariant nonnegative matrix factorization (ssiNMF) al-
gorithm is given in [5] with efficient computation by FFT.

For tensor structure data, above subspace methods are
no longer suitable. After matricization or vectorization of
data, the spatial structure of higher order data is destroyed.
How to extract latent component from higher order tensor
structure data has potential applications in neuroscience,
signal processing and machine learning fields. As stated in
[6], [7], fMRI data often contain dimension of trial, subject,
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group, time and spatial etc. Multiple-modality patterns from
EEG data [8] are also efficient for brain computer interface
and ERP analysis. Various tensor decomposition approach
have been developed for multilinear analysis, for example
Nonnegative Tensor Factorization (NTF), PARAFAC, Tucker
model and its extension HOSVD and HOOI algorithms [9].

However latent component delays exist across multilinear
data [7], [10], [11] such as time shifts in fMRI data because
of hemodynamic delay, shifts across trials in EEG data
when onsets changes were not locked to the event, these
component delays will cause degeneracy problem of tensor
decomposition [7], [12]. Several algorithms are proposed
to solve the tensor decomposition considering component
delays. Mørup presents the Shifted CP algorithm [7] to
estimate time or trial delays and extract latent components
in fMRI and ERP experiment. N-way shifted factor analysis
model including PARAFAC and Tucker is investigated in
[12]. Convolutive Nonnegative Tucker Decomposition model
is given in [13] to explore the patterns across columns of
different modes.

In this paper, we investigate the nonnegative tensor factor-
ization model considering the delays across different modes
to avoid the degeneracy problem. The multilinear shifted
component in different modes are extracted by alternating
least square procedure. In order to estimate the non-integer
shifts, FFT is employed to transform the component delays
into time frequency domain and Newton-raphson method is
used to find optimal solution. Finally, ALS-NSTF algorithm
is developed to calculate the factor matrices and component
delays. Experimental results confirm the validity of ALS-
NSTF algorithm and show that it can extract efficient shift-
invariance feature for robust speaker identification task and
sMRI-based AD diagnosis.

II. MULTILINEAR ALGEBRA

Multilinear algebra is the theory of higher order tensor
which is an extension of matrix. Let X ∈ RI1×I2···×IN

denote a tensor. The order of X is N . The elements of X
is defined as Xi1,...,iN . The survey of multilinear algebra in
detail can be found in [9]. Some basic notations of multilinear
algebra are described in Table I.

The n-mode matricized of an N order tensor
X ∈ RI1×I2...×IN is a matrix X(n) ∈ RK×L, where
K = In and L =

∏
i̸=n Ii. We denote the n-mode

matricizing of X as X(n).

The mode-n matrix product defines multiplication of a
tensor with a matrix in mode n. Let X ∈ RI1×...×IN
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TABLE I
NOTATIONS IN MULTILINEAR ALGEBRA

Notation Description
⊙ Khatri-Rao product
~ Hadamard product
X matrix
[U]i ith column of matrix U
[U]j,: jth row of matrix U

U(n) the nth factor
Ũ matrix U after FFT
(·)T transpose
(·)H conjugate transpose
X tensor
X(n) n-mode matricized of tensor X
×n mode-n matrix product of tensor and matrix
U⊙ U(N) ⊙ · · · ⊙ U(1)

U⊙−n U(N) ⊙ · · · ⊙ U(n+1) ⊙ U(n−1) ⊙ · · · ⊙ U(1)

and A ∈ RJ×In . Then the elements of Y ∈
RI1×...×In−1×J×In+1×...×IN tensor defined by

Y = (X×n A)i1,...,in−1,j,in+1...,iN

=
∑
In

(Xi1,...,in,...,iNAj,in) (1)

In this paper we simplify the notation as

X×1 A1 ×2 A2 × . . .×AN = X
N∏
n=1

×nAn (2)

and

X
N∏

n=1,n ̸=i

×nAn = X×iAi (3)

Considering a tensor X ∈ RI1×I2×···×IN ≥ 0, the
Nonnegative Tensor Factorization model can be described
as

X = Λ×1 U
(1) ×2 U

(2) · · · ×N U(N) (4)

where Λ is a diagonal tensor with 1 on the main diagonal
and U(n)|Nn=1 ∈ RIn×K are the factor matrices. X,Λ and
U(n)|Nn=1 are restricted to have only nonnegative elements
in the factorization.

After unfolding we can obtain matrix forms of equation
(4) expressed by the Khatri-Rao product:

X(n) = U(n)Z(n) (5)

where X(n) ∈ RIn×Ln , Z(n) ∈ RK×Ln , Z(n) = U⊙−nT ,
U⊙−nT is transpose of U⊙−n , Ln = ΠNi̸=nIi.

III. NONNEGATIVE SHIFTED TENSOR FACTORIZATION

In order to investigate the component delays model of
tensor factorization, we introduce shifted operation in each
factor matrices. The tensor factorization model (4) can be
extended into following model

X = Λ×1 Û
(1) ×2 Û

(2) · · · ×N Û(N) (6)

where
Û(n) = [U(n)]in,jn+τn

in,jn
(7)

and τnin,jn is the shift step of element of matrix U(n) at
(in, jn). In real application, the shift step can be the time
delay of ERP across different trials. We rewrite equation (6)
in element-wise form

[X(n)]in,pn =

Jn∑
jn=1

[U(n)]in,jn+τn
in,jn

[Z(n)]jn,pn

=

Jn∑
jn=1

[U(n)]in,jn [Z
(n)]jn,pn−τn

in,jn
(8)

where pn = 1, · · · , Ln. In equation (8), the model considers
component delays in tensor structure and it can be seen as
an extension of Shifted NMF proposed in [3]. We can give
following equivalent model in frequency domain using FFT

[X̃(n)]in,f =

Jn∑
jn=1

[U(n)]in,jn [Z̃
(n)]jn,fe

−i2π f−1
Ln

τn
in,jn (9)

Above equation (9) can be rewritten in matrix form as

[X̃(n)]f = Ũ
(n)
(f)[Z̃

(n)]f (10)

where ωn = 2π f−1Ln
, Ũ

(n)
(f) = U(n) ~ e−iωnτ

n

,
[e−iωnτ

n

]in,jn = e−iωnτ
n
in,jn , i.e. τnin,jn is the element of

τn.
In order to find the approximate tensor factorization, we

construct following cost function for NSTF model based on
least square error

JLS(U
(n)|Nn=1, τ

n|Nn=1)

=
1

2Ln
∥[X̃(n)]f − Ũ

(n)
(f)[Z̃

(n)]f∥2F (11)

We estimate the factor matrices U(n)|Nn=1 and delay
τn|Nn=1 by alternating least square method. Multiplicative
learning algorithm for factor matrices can be derived by
exponential gradient similar to NMF. The monotonic con-
vergence analysis in [14] can be applied to our case as well.
The optimization procedure and update rules derivation are
described as following in detail.

A. Update U(n)|Nn=1

Let Z
(n)
(t) denote the shifted version of matrix Z(n), and

corresponding to frequency domain Z̃
(n)
(f) = Z̃(n) ~ e−iωnτ

n

.
According to equation (8), we have

[X(n)]in,: = [U(n)]in,:Z
(n)
(t) (12)

Because U(n)|Nn=1 and Z(n) are still nonnegative after
shifting a given amount, we can use the regular NMF update
rules given in [14].

[U(n)]in,jn ← [U(n)]in,jn
[X(n)]in,:[Z

(n)
(t) ]

T
jn,:

[U(n)]in,:Z
(n)
(t) [Z

(n)
(t) ]

T
jn,:

(13)
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B. Update Z(n)

Considering the model given in equation (10), we can
calculate the gradient of the cost function in frequency
domain:

Gf =
∂JLS

∂[Z̃(n)]f

= − 1

2Ln
[Ũ

(n)
(f)]

H (
[X̃(n)]f − Ũ

(n)
(f)[Z̃

(n)]f

)
(14)

Similar to [3], we separate the gradient in the frequency
domain into two parts which relate to positive or negative
component of corresponding gradient. The update rules are
given as

G̃+
f =

1

Ln
[Ũ

(n)
(f)]

H
Ũ

(n)
(f)[Z̃

(n)]f (16)

G̃−f =
1

Ln
[Ũ

(n)
(f)]

H
[X̃(n)]f (17)

Then we can calculate the inverse FFT of G̃+
f and G̃−f as

G+ and G−. As a result, we can update Z(n) as

[Z(n)]jn,pn = [Z(n)]jn,pn

(
G−jn,pn
G+
jn,pn

)α
(18)

where α is the step size and tuned to keep cost function
decreasing.

C. Update τn|Nn=1

For the uncertainty of shift factor τn|Nn=1, we estimate
these shift steps by the Newton-Rhapson method as stated
in [4]. As described in equation (11), the least square cost
function for NSTF model can be rewritten as equation (15).

Let Tn = vec(τn) ∈ RInJn×1, i.e. Tn
in+(jn−1)∗In =

τnin,jn . Further we define

[Q̃n]in,jn,f = [Ũ
(n)
(f)]in,jn [Z̃

(n)]jn,f (19)

[Ẽn]f = [X̃(n)]f − Ũ
(n)
(f)[Z̃

(n)]f (20)

Then the gradient of JLS with respect to τnin,jn is derived
as

gnin+(jn−1)∗In =
∂JLS

∂Tn
in+(jn−1)∗In

=
∂JLS
∂τnin,jn

= − 1

Ln

∑
f

ωnI
(
[Q̃n]in,jn,f [Ẽ

n]in,f

)
(21)

The Hessian matrix is described in equation (26), where
s = in + (jn − 1)In and s′ = i′n + (j′n − 1)In. Then the
shifted steps τn can be estimated by the Newton-Raphson
method as

Tn ← Tn − η(Hn)−1gn (22)

where the step size parameter η is tuned to guarantee the
cost function deceases.

However this updating rule is not stable and sensitive
to local minima. So we employ cross-correlation procedure
for estimation of shifted steps to reduce the effect of local
minima as stated in [3], [4]. Let

R̃n
in,f = [X̃(n)]in,f −

Jn∑
jn=1,jn ̸=j′n

[Ũ
(n)
(f)]in,jn [Z̃

(n)]jn,f (23)

Further define c̃nf = [R̃n
in,f

]∗[Z̃(n)]j′n,f as cross-correlation
between the j′nth source and inth sensor and we can esti-
mate τnin,j′n as the delay corresponding to maximum cross-
correlation.

tn = argmax
pn

cnpn , τnin,j′n = tn − (Ln + 1) (24)

By this shifted step, we update [U(n)]in,j′n by

[U(n)]in,j′n =
cntn

[Z(n)]j′n,:[Z
(n)]Tj′n,:

(25)

In order to ensure finding the optimal solution, we re-
estimate τn|Nd=1 by the cross-correlation procedure after
every 20th iteration. The detailed description of ALS Non-
negative Shifted Tensor Factorization Algorithm is presented
in Algorithm1.

Algorithm 1: Algorithm of ALS Nonnegative Shifted
Tensor Factorization
Data: Training data X ∈ RI1×I2×···IN ≥ 0, maximum

iterations T , error threshold ε.
Result: The projection matrix U(n) ≥ 0(l = 1, · · · , N),

the estimated shifts τn.
1 Initialization: Set U(n)

(0) ≥ 0(l = 1, · · · , r) randomly,
iteration index t = 1, α, η;

2 repeat
3 for n← 1 to N do
4 while t < T or update error e > ε do
5 %Update U

(n)
(t−1);

6 [U(n)]in,jn ←
[X(n)]in,:[Z

(n)

(t)
]Tjn,:

[U(n)]in,:Z
(n)

(t)
[Z

(n)

(t)
]Tjn,:

[U(n)]in,jn

7 %Update Z
(n)
(t−1);

8 [Z(n)]jn,pn = [Z(n)]jn,pn

(
G−

jn,pn

G+
jn,pn

)α
,

9 %Update τn;
10 Tn ← Tn − η(Hn)−1gn,
11 if mod(t,20) = 0 then

Re-estimate τn by cross-correlation
procedure.

until about 20 iterations;

IV. EXPERIMENTS

In this section, we illustrate two experiment results to
show the performance of ALS-NSTF algorithm compared
with other baseline methods without considering component
delays.
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JLS =
1

2Ln

∑
f

(
[X̃(n)]f − Ũ

(n)
(f)[Z̃

(n)]f

)H (
[X̃(n)]f − Ũ

(n)
(f)[Z̃

(n)]f

)
(15)

Hn
s,s′ =


1
Ln

∑
f ω

2
nR
(
[Q̃n]in,jn,f [Q̃

n]∗i′n,j′n,f

)
if in ̸= i′n ∧ jn ̸= j′n

1
Ln

∑
f ω

2
nR
(
[Q̃n

in,jn,f

(
[Q̃n]∗i′n,j′n,f + [Ẽn]∗in,f

))
, if in = i′n ∧ jn = j′n

(26)

A. Speaker Identification

Speaker identification is an important technology to find
the difference among speakers. While its performance degen-
erate rapidly in noisy environments, how to extract robust
speech features becomes the key to improve identification
accuracy. In this experiment, we tested the identification
performance on Grid Corpus which was designed for the
speech separation and recognition. Speech sentences of 34
speakers were used as training data to build speaker models.
In order to extract robust speech features, the cortical-
based feature extraction framework proposed in [15], [16]
was employed to explore the shift-invariance features for
recognition.

The sample rate of speech signal x(t) in Grid Corpus
was 8kHz. We used hamming window of 25ms with 10ms
shift over each sentence to segment the given speech signal.
256-points short time fourier transformation was employed
to calculate power spectrum P(f, t). We filtered the power
spectrum to extract the multiple resolution Gabor tensor
features G by four scales and four directions Gabor functions
and preserve the efficient frequency component by Mel filter
banks. Then we decomposed the higher order cortical rep-
resentation G by ALS-NSTF algorithm to obtain projection
matrices U(n)|Nn=1. The projection matrix in frequency mode
U(f) was used to project cortical representation G into fea-
ture subspace and obtain the efficient Gabor sparse feature F
with shift invariance characteristic. Finally, we matricized F
as Fm and employed Discrete Cosine Transformation (DCT)
on feature vectors to remove the correlation of components.

Based on extracted features, we built 34 speaker models
by GMM with random selected 1700 sentences (50 sentences
for each speaker) and tested the recognition accuracy with
2040 sentences (60 sentences for each speakers). In order
to evaluate the robustness of our proposed feature extraction
method, the testing speech signals were mixed with Babble,
Destroyerops, F16 and Pink noises in SNR intensities of -5
dB, 0dB and 5dB respectively.

We also tested the performance of ALSNTF algorithm,
MFCC and Spectral Substraction (SS) as baseline system.
Baseline system of ALSNTF algorithm was achieved by sim-
ilar feature extraction framework as ALS-NSTF algorithm.

The average identification accuracy of ALS-NSTF al-
gorithm and baseline system in all noisy conditions was
summarized in Fig.1. The identification performance were
tested on four types noises and in three different SNR
intensity (-5, 0, 5dB). The final accuracy in each SNR with
different noises was averaged on 10 different testing sets.

The overall average accuracy was across all the conditions
(different noise type and SNR intensity).

As shown in the final results in Fig.1, the testing condition
in SNR intensity from -5dB to 5dB was very noisy and
the features extracted by ALS-NSTF algorithm provided
significantly better performance for Pink and F16 noises. But
the recognition accuracy for Babble and Destroyerops noises
was improved slight better than MFCC and SS methods.
The Babble and Destroyerops noises contained the same
frequency characteristic as clean speech signal and contam-
inated the whole spectral domain component. This caused
the identification accuracy in Babble and Destroyerops noises
degraded rapidly compared with other noise such as F16. The
ALS-NSTF algorithm assumed the processed data was sparse
and shift-invariant and made energy of clean signal only
concentrate on a few components. After sparse projection,
the noisy components without strong energy were reduced.
The final identification accuracy also indicated that our
proposed method based on ALS-NSTF algorithm provided
a better average accuracy than ALSNTF algorithm and other
traditional speech feature extraction methods.

B. MRI-based AD Diagnosis

In this experiment, we employed ALS-NSTF algorithm
to classify the Alzheimer’s Disease (AD) and Health Con-
trol (HC) subjects by their sMRI data. It was essential to
achieve accurate AD diagnosis for disease pathogenesis and
prevention research. The free public brain imaging data from
OASIS [17] was employed to test the performance of our
proposed feature extraction method and baseline system.
100 AD subjects and 109 HC subjects were selected as the
datasets for the classification task.

In pre-processing step, we use SPM8 toolbox to realign
and normalize all the sMRI data. 2×2×2 mm3 voxel-
size images were obtained by re-slice processing. Based on
all the pre-processed sMRI data, we constructed a 4-order
tensor X ∈ R34×39×34×209 to explore the factor correlations
of each coordinates x, y, z and subjects. The ALS-NSTF
algorithm was employed to decompose higher order tensor X
and extract efficient shift-invariance features for diagnosis of
AD. We extracted the features of sMRI data for AD and HC
subjects using the similar framework as proposed in [13]. The
row of factor matrix in subjects mode Usubject ∈ R209×30

was regarded as feature vector for each subject.
The training feature sets for building AD diagnosis model

was randomly selected from 75% feature vectors of AD and
HC subjects to train the SVM classifier. The remaining 25%
feature vectors of AD and HC subjects were used to test
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Fig. 1. Average identification accuracy of ALS-NSTF algorithm and baseline systems

the performance of classifier. We repeated the training and
testing procedure over 100 times by randomly selecting the
training and testing feature vectors to ensure the effective
recognition results. Except for recognition accuracy, we also
evaluate the sensitivity and specificity of recognition as
defined in [13]. In order to compare the performance with
other methods, we also provided the recognition accuracy of
HALSNTF and Shifted NMF algorithm as baseline system
for AD diagnosis. The 4-order tensor X was matricized with
two dimension subjects and samples and decomposed by
Shifted NMF to extract sMRI features.

By tensor based methods, the essential spatial structure
was preserved compared with Shifted NMF method by
unfolding or vectorization. Also the component delay as-
sumption of ALS-NSTF algorithm made sure that the higher
order shifted projection recovered the localized, parted-based
components.

The final recognition results of ALS-NSTF algorithm and
baseline system were presented in Fig.2. ALS-NSTF algo-
rithm based method provided better recognition performance
than ALSNTF and Shifted NMF algorithm. From the accura-
cy and sensitivity results, shift-invariance characteristic was
important for sMRI data feature extraction. It indicated that
our proposed sparse and shift-invariance feature extraction
method was potential for dealing with a wider variety sMRI
data diagnosis.

V. CONCLUSION

In this paper, we presented a new nonnegative tensor fac-
torization method considering component delay. This method
was data driven and able to extract sparse and shift-invariance
features for higher order complex data such as audio and
brain imaging data. In order to estimate the component
shift in different modes, we transform the non-integer delays
to frequency domain by FFT and explore multiple linear
patterns with shift-invariance characteristic. Based on the al-
ternating least square procedure, the component delays/shifts
and optimal solution of factorization matrices in each mode
were estimated by Newton-Rhapson and exponential gradient
method respectively. We evaluated the feature extraction

Fig. 2. Average accuracy, sensitivity, specificity results of AD diagnosis
based on sMRI

performance of our proposed algorithm on noisy speech
and AD sMRI data. Experimental results showed that NSTF
model reduced the effect of component delays to some extent
and improved the robustness and discriminant of multiple
factors patterns for speaker identification in noisy condition
and AD diagnosis.
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