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Abstract—The stability of vertical mill raw meal grinding 
process affect the yield and quality of cement clinker. Due to 
the nonlinear of grinding process, random variation of working 
conditions, and large lag of the offline index test, it is difficult to 
establish an accurate mathematics model, thus cannot collect 
the optimizing operating parameters of vertical mill in time. In 
this paper, based on the principal component analysis (PCA) 
for the related variables, a production index prediction model 
of vertical mill raw meal grinding process was established using 
wavelet neural network (WNN) and compared with the BP 
network model, and the validity of the novel model was verified. 
Then, based on the prediction model and related constraint 
conditions, the parametric optimization model was established, 
wherein, the optimal operating setting value under typical 
working conditions was obtained by using particle swarm 
optimization algorithm, and an optimal case base was 
established; through the case inquiry and revision, the optimal 
set points under the current conditions was obtained. The 
simulation results showed that, the novel wavelet neural 
network model and the parameter optimizing setting method 
could adapt to the changing of process indicators, and could 
provide optimal parameter value to make the production 
performance meet expectations, meanwhile achieved the 
optimizing goal. 

I. INTRODUCTION 
AW material grinding process is an important section of 
modern cement production, and the raw material quality 

and the stability of production process directly affect the yield 
and quality of the cement clinker. Vertical mill is a new type 
of grinding equipment, which combines multiple functions 
that include broken, grinding, drying, separating, and 
transporting, and is energy efficient grinding equipment [1]. 
Stability of the grinding pressure and suitable raw meal 
fineness are the key factors to determine the normal operation 
of the mill [2]. However, in the actual production, parameter 
is usually operated and adjusted manual according to the 
experience of the personnel, so the actual production is full of 
subjectivity and arbitrariness, and thus cause the production 
fluctuation and excess power consumption. At the same time, 
the vertical mill raw meal grinding process is a complex 
physical and chemical process, which has the characteristics 
of nonlinear, strong coupling, multi input; thus it’s difficult 
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to establish an accurate model according to the traditional 
method, and difficult to find rules from a large number of real 
time production data. Therefore, how to establish the vertical 
mill grinding raw material index model and to determine the 
optimal operating parameters to guide the production has 
become an urgent problem to be solved for all enterprises. 

Artificial neural network has great advantages in solving 
non-linear problems, and the modeling method has been 
widely used. The literature [3] and [4] respectively 
established RBF neural network and Elman neural network 
model for the process of sugar clarification. A production 
index prediction model was established by GDFNN for sugar 
clarification in literature [5]. Wavelet neural network (WNN) 
is a feed-forward neural network based on wavelet analysis, 
in which the hidden activation function is replaced by wavelet 
function, and the scaling factor and the translation factor is 
introduced; the function has strong approximation ability and 
high prediction accuracy. The wavelet neural network was 
used to fault diagnosis for underwater vehicle in literature 
[6]. 

In this paper, the study begins from the mill process, using 
a large number of production data, by the method of Principal 
Component Analysis (PCA) to screen out the main factors 
which affect the operation stability of the grinding, then a 
wavelet neural network was used to establish the production 
index prediction model of the vertical mill raw material 
grinding; finally, the optimization model was made under 
this prediction model and relevant constraint conditions, and 
the optimal operation parameters under typical settings was 
obtained by a particle swarm optimization algorithm. The 
optimal case base was established, through case finding and 
correcting, and then got the optimal operation parameters 
value of the current condition. 

II. DESCRIPTION OF VERTICAL MILL RAW MEAL GRINDING 
PROCESS 

Vertical mill raw meal grinding process has four main 
steps: feeding, grinding, powder-selection, and dust 
collection. 

The process is shown in Fig. 1. The material is transited 
through the conveyor belt, then enters and accumulates into 
the middle of the mill plate. The rotating disc drives the 
grinding roller rotates and the material moves to the edge of 
the grinding disc under the action of centrifugal force, and 
filled into the bottom of the grinding roller and was smashed. 
The material is crushed in the mill, and pushed to the disk 
edge, across the material barrier ring into the wind ring, 
taken up by high-speed stream; hot air drying is introduced at 
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the same time, so large particles drop down back to the 
grinding disc, and small particles flow into a separator by the 
air flow for further separation. Coarse powder goes back to 
the grinding disc for regrind, and the qualified (fine powder) 
is collected outside of the machine as products by air flow. 
Under the stable production situation, the mill pressure 
difference is controlled between 4500-6500 kPa as usual, and 
the meal size is generally maintained at 80 μm for screen 
margin ≤25%, general controlled at 20%. 

According to the literature [1], the two main indicators 
which determine success or fail of the vertical mill production 
are the grinding pressure difference (i.e., vertical mill 
pressure between the inlet and the outlet) and grain size of the 
raw material, and the influence variables of these two 
indicator are feeding quantity, feeding air temperature, rotary 
speed of the separator, circulating air baffle opening, the 
grinding pressure etc.. 

III. MODELING OF PRODUCTION INDEICES FOR VERTICAL 
MILL RAW MATERIAL GRINDING PROCESS 

A. Wavelet Neural Network 
Wavelet neural network (WNN) [7] is a feed-forward 

neural network which contains wavelet transform. As for 
single hidden layer neural network, the hidden layer 
activation function is replaced by the wavelet basis function 
which was positioned, and the alternative expansion factor 
and the threshold factor are replaced by the expansion factor 
and the translation factor based on wavelet, so the wavelet 
transform and the neural networks are connected through the 
mapping relationship between the layers. Multi input and 
multi output wavelet neural network model is shown in Fig. 
2.  

In which, ( 1,2, , )ix i M  is the input parameters of 

wavelet neural network, ( 1,2, , )iy i K   is the 

predicting output of the wavelet neural network, jk  and 

ij is the connection weights of the wavelet neural network. 
In this paper, we choose morlet wavelet as activation 

function in wavelet neural network hidden layer, and the 
mathematical expression is 

        2cos 1.75 exp 0.5x b a x b a x b a       (1) 

where a , b  are respectively the scale factor and shift factor 
of wavelet basis function. 

While the input is  1, 2, ,ix i M  , the input of 

hidden layer is 
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where 1, 2,j N  , ij  is the connection weights from  
neuron i  in the input layer to the neuron j  in the hidden 
layer. The hidden layer output formula is 

( )
( ) j

j
j

H j b
j

a
 

 
   

 
                        (3) 

where ia , ib  are respectively the scale factor and shift factor 

of wavelet basis function ( )j , N  is the number of 
neurons in the hidden layer of network. 

The output expression of network output layer is as 
followed 
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

                                (4) 

where 1,2, ,k K  , jk  is the weights of the output 

neurons from the j  hidden layer neurons to the k  output 

layer neurons，  j  is the j  output of the hidden layer 
neurons， K  is the number of output neurons. 

It shows the defined target error function as follow 
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where kd  is the expected network output, ky  is the actual 

network output,  PpP ,,3,2,1   is the output signal 
number of samples， ),,3,2,1( KkK   is the output 
neurons number of the network. 

The network weights and the parameters of wavelet basis 
function were adjusted according to the parameter weights 
error function. We substitute improved weight adjustment 
algorithm for original static optimization algorithm based on 
steepest descent. We superpose a part of last weight 
adjustment quantity at the weight adjustment quantity 
calculated according to error of this time, then using it as 

 
Fig. 1.  Process of vertical mill raw meal grinding 
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Fig. 2.  The model structure of WNN. 
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actual weight adjustment quantity of this time, that is 
( ) ( ) ( 1)W t E t W t                      (6) 

                   ( ) ( 1)E t E W t                                    (7) 
where  is the momentum factor and   is the learning rate; 
here (0,0.9)  and (0.001,10) . The momentum 
factor   can reduce oscillation trend during learning 
process and improve convergence. In the same way, we can 
get ( )a t  and ( )b t  as follow 

( ) ( ) ( 1)a t E t a t                            (8) 

( ) ( 1)E t E a t                                        (9) 
( ) ( ) ( 1)b t E t b t                           (10) 

( ) ( 1)E t E b t                                       (11) 
where ( )a t , ( )b t  are respectively the scale factor 

adjustment quantity and the shift factor adjustment quantity. 

B. Modeling Data Preprocessing 
The original data collected from the actual grinding 

process cannot be used directly, so it must be preprocessed. on 
the one hand, these original data contain gross errors caused 
by human factors, and the random errors due to measurement 
noise contaminated signals; on the other hand, in order to 
analyze the grinding process, the collected data may exist 
redundancy, and also there may be missing data, which will 
result in the inconsistent between the model and actual 
process, thus make the index prediction inaccessible.  

Therefore, in the process of data preparation, additional 
work must be done. Firstly, gross error must be eliminate, 
according to the variable in the practical production 
operation range, by using the method of limiting culling to 
exclude the data which is not within the range, when the 
deviation between the data sample and the average value is 
greater than 3 times of the standard deviation the data must 
be eliminated; Secondly, the random error must be decreased, 
the data were smoothed using Seven Point Linear Smoothing 
Method commonly used in project so as to eliminate the 
random noise. This method is a data remedial measures to 
make the original data filling and smooth; Finally, using the 
method of Principal Component Analysis (PCA) [8], [9] to 
compress the data and reduce the dimension.  

The 281 groups online and offline production index data of 
a vertical mill was obtained by using the method mentioned 
above from a large cement factory at Shandong province. The 
results of principal component analysis are listed in Table I. 

As shown in Table I, we simply select the 3 principal 
component variables which can reflect the information of the 

original variables 92.6826%. We therefore chose the feeding 
quantity, grinding temperature, and rotary speed of the 
separator as input variables, meanwhile, mill pressure 
difference and raw meal fineness as output variables. 

C. Simulation Results and Analysis 
The processed data were divided into two parts: 200 groups 

of randomly selected data as network training data, and the 
remaining 81 groups of data as network test data. The WNN 
adopted 3-30-2 structure. The generalization performance is 
shown in Fig. 3 and Fig. 4. 

In order to verify the validity of the model, the same 
training data and test data were used to establish the BP 
network prediction model. The BP network also adopted 
3-30-2 structure, training 2000 times, and the learning rate 
was 0.01. The generalization results of BP network is shown 
in Fig. 5 and Fig. 6. 

Through the comparison between WNN and BP, we can 
see clearly that the WNN forecasting model is effective, and 
has smaller error and shorter training time than those based 
on BP. Performance comparison of the two kinds of 
prediction model are shown in Table Ⅱ. 

TABLE I 
THE OUTCOME OF PRINCIPAL COMPONENT ANALYSIS 

Variables Contributio
n rate 

Cumulative 
contribution rate 

Feeding quantity 42.3937% 42.3937% 
Grinding temperature 37.5704% 79.9641% 

Rotary speed of the separator 12.7185% 92.6826% 
Circulating air baffle aperture 7.3199% 100.0000% 
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Fig. 3. The generalization curve based on raw meal fineness in WNN 
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Fig. 4. The generalization curve based on grinding pressure difference in 
WNN 
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IV. INTELLIGENT OPTIMAL SETTING METHOD OF OPERATING 
PARAMETERS 

A. Description of Intelligent Optimal Setting Method 
In this paper, an intelligent optimal setting method on 

vertical mill operating parameters of raw meal grinding 
process was done, based on the production index prediction 
model and the particle swarm optimization(PSO) algorithm. 
The diagram of optimizing setting method of grinding 
process is shown in Fig. 7. 

Firstly, we established the optimization model based on the 
production index prediction model and variable constraint 
range; then, solved the optimization model according to the 
typical working conditions and expected production index; 
finally, gave the optimal operation parameters under typical 
conditions, and both into the case base. In the current 
working condition, firstly, go through the query case library 
and give the preset point of the operating parameters; then, 

put the preset points into the production index prediction 
model to get a forecast index. If the errors between the 
forecast indexes and the expected index meet the allowable 
range, the preset point is put into the controller as the final 
point to guide production, and is stored in the optimization 
model base; Otherwise, the preset points are modified by the 
expert rules and the data is used and stored until the error 
range meets the need. 

B. The application of intelligent optimization setting 
method 
1) The establishment of optimization model and the 

solving of optimal operation parameters: According to the 
established index prediction model above, we determine the 
granularity of raw material 1y  and grinding pressure 

difference value 2y  as expected production index. 

1 220.7, 5700y y                              (12) 
where, the recommended value range of raw meal fineness 

1y  is 18% to 22%,，and the grinding pressure difference 

value 2y  is controlled under 5700 KPA. Accordingly, the 
optimization model is established for each typical working 
conditions, as follows 

1 1

2 2

min   20.7
min   5700

f y
f y

  


 
                            (13) 

2 3

1 2 1 2 3

135 185,37 41
. .

( , ) ( , , )
x x

s t
y y F x x x
   

 
              (14) 

Where, 1x  is the feeding quantity， 2x  is the grinding 

temperature, and 3x  is the rotary speed of the separator. 
The particle swarm optimization (PSO) [10] was used for 

each condition; the whole procedure is as follows: 
a. Initialization, we set the population size is 20, the 

maximum number of iterations is 100, learning 
factor 1 2 2 c c , and restrict the search speed of particle in 
the in-flight space. 

b. Among the randomly generated 200 particles in the 
range of particle position and velocity, the fitness value of 
each particle was calculated. According to the fitness 
function, we calculated the optimal fitness value of individual 

0 20 40 60 80
10

15

20

25

30

35

number of sample

ra
w

 m
ea

l f
in

en
es

s(
%

)

 

 
actual
predicted

 
Fig. 5. The generalization curve based on raw meal fineness in BP 
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Fig. 6. The generalization curve based on grinding pressure difference in 
BP 

TABLEⅡ 
THE PERFORMANCE COMPARISON OF WNN AND BP MODEL 

Items WNN BP 

RMSE of raw meal fineness 0.0106 0.0135 
RMSE of grinding pressure difference 1.7845 2.5753 

Training time 1.44S 4.84S 
Number of iterations 38 374 

 

 
Fig. 7.  Diagram of intelligent optimal setting method 
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particle, and the corresponding fitness value of the global 
optimum location. 

c. For each particle in the population, we compared its 
fitness value with the current optimum value and global 
optimum value, and then we continued to guide the particle 
flying towards the optimal direction. 

d. Updated the position and velocity of the particle. 
e. Check whether the maximum number of iterations was 

reached, if not, transfer to c. to continue the optimizing, 
otherwise, output and store the optimal value as the 
optimization value. 

2) Determination of the preset operation parameters value: 
Each of the typical conditions in F  and the obtained optimal 
operation parameters 2J  are combined into a typical case 

{ , }C F J , and the typical case was stored in the case 
database. When a new condition F   comes, we check the 
query case library; if the conditions are the same, we directly 
call the corresponding operation parameters as the optimal 
setting points; if the conditions are different, we find out the 
two most similar conditions of 1F , 2F  and the corresponding 

operation parameter 1J , 2J ，and calculate the preset points 
of the operating parameters as follow 

2 2

1 1
( , ) ( , )k k k

k k
J sim F F J sim F F

 

     
 
     (15) 

where, J   is the preset point of operating parameter of 
condition F  . ( , )ksim F F  is the similarity between the 

current working condition F   and the query conditions 

kF ，as follows 
2 8

,
1 1

( , ) ( , )k i i i k i
i i

sim F F sim f f 
 

        (16) 

 , , ,( , ) 1 max( , )i i k i i k i i ksim f f f f f f     (17) 

where ， if   and ,i kf  are characteristics of working 

conditions of F   and kF ， i  is determined by the 
experience of the expert. 

Put the preset point into the production index prediction 
model, if the forecast indexes meet the expectations, there is 
no need to correct; otherwise, the preset value must be 
modified due to the expert experiences until the result is 
satisfied, and then choose the correction value as the optimal 
operating parameters of current condition and assign the 
value to the controller. 

C. The Effect of Optimization 
Using the intelligent optimization method mentioned 

above, we optimized the operation parameters under each 
working conditions of the vertical mill raw material grinding. 
Fig. 8 and Fig. 9 respectively show the changes of the two 
production indexes about the raw meal fineness and grinding 
pressure difference after artificial adjustment and 

optimization setting while the working conditions vary. 

From Fig. 8 and Fig. 9 we can see that, through the 
optimization of operating parameters, the raw material 
granularity and the mill pressure difference can still close to 
or meet the expecting production index under random 
working conditions, and achieve better production results 
than that get from artificial operating parameters. 

V. CONCLUSION 
This paper focused on the problems of strong nonlinearity 

of vertical mill raw meal grinding process, complex 
characteristics of strong coupling, and the lack of accurate 
mathematical model, arbitrariness of artificial parameter 
setting in the actual production process, so we built a 
production index prediction model of vertical mill raw 
material grinding using wavelet neural network, and 
compared the results with those collected in the BP neural 
network model. Then, based on the prediction model and the 
constraint conditions, the index optimization setting model of 
grinding process was established, and realized the function of 
providing the optimal setting values under continuous 
changing working conditions. The simulation results showed 
that, the established wavelet neural network model in this 
paper has higher generalization accuracy and smaller root 
mean square error than the BP model. The intelligent optimal 
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Fig. 8. Distribution curve of raw meal fineness values before and after 
optimization 
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Fig. 9. Distribution curve of grinding pressure difference before and after 
optimization 
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setting method could avoid the subjectivity and arbitrariness 
artificial setting to some extent; so it has certain reference 
meanings in optimizing the industrial production process 
with the similar complex characteristics.  
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