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Abstract— Recent development of neuromorphic hardware
offers great potential to speed up simulations of neural net-
works. SpiNNaker is a neuromorphic hardware and software
system designed to be scalable and flexible enough to implement
a variety of different types of simulations of neural systems, in-
cluding spiking simulations with plasticity and learning. Spike-
timing dependent plasticity (STDP) rules are the most common
form of learning used in spiking networks. However, to date very
few such rules have been implemented on SpiNNaker, in part
because implementations must be designed to fit the specialized
nature of the hardware. Here we explain how general STDP
rules can be efficiently implemented in the SpiNNaker system.
We give two examples of applications of the implemented
rule: learning of a temporal sequence, and balancing inhibition
and excitation of a neural network. Comparing the results
from the SpiNNaker system to a conventional double-precision
simulation, we find that the network behavior is comparable,
and the final weights differ by less than 3% between the two
simulations, while the SpiNNaker simulation runs much faster,
since it runs in real time, independent of network size.

I. INTRODUCTION

IMULATIONS of spiking neural networks (SNN) are an

important tool for neuroscientists to test hypotheses of
how the brain functions. In order to speed up simulations,
different types of neuromorphic hardware and neuro-inspired
hardware have been developed [9], [14], [26], one of them
being SpiNNaker [16]. SpiNNaker is based on a large num-
ber of conventional digital processors, interconnected by a
network optimized for quickly transmitting small spike-like
packets between the processors. In a SpiNNaker simulation,
the neuron model is implemented by conventional code
running on the processors, in contrast with other neuromor-
phic hardware systems which typically implement a specific
neuron model directly in the hardware. This architecture thus
offers the promise of being able to run simulations with
arbitrary neuron models.

SpiNNaker has only recently started to become available
for use and so far only a few types of STDP rules have been
implemented on SpiNNaker. Three STDP rules are currently
provided by the SpiNNaker package [7], [15], [24]. One is
a rule where weight updates depend only on presynaptic
spike times, using the postsynaptic membrane potential as
a surrogate for postsynaptic spike time information. Another
is a standard “nearest neighbor” spike-pair rule, where weight
changes occur whenever either the presynaptic or postsynap-
tic neuron spikes, with the change depending on the time
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since the other neuron spiked. The third rule implements
an all-to-all spike-pair rule, but it is relatively inefficient.
These rules are suitable for some STDP simulations, but for
larger networks more efficient implementations are needed
which can handle more general types of spike pair rules [20],
or even more complex STDP learning rules that depend
on other factors, such as synaptic traces [21], spacing of
spike-triplets [22], or even spike-quadruplets [31]. In this
paper we present an approach for efficiently implementing
these classes of STDP rules. We will illustrate our approach
specifically for synaptic trace-based rules, but the same
method can be applied to any of these types of rules.

One challenge of the SpiNNaker simulation framework
is that the synaptic data is easily accessible only at the
times when a presynaptic spike event arrives [24], shown in
figure 1 by grey vertical bars. However, due to axonal delay,
the arrival of the biological spike at the simulated synapse
will only happen after the delay has passed. This means that
when the synapse code is triggered, it is still too early to
process the spike that triggered it. For example, looking at
the fourth presynaptic spike in figure 1, we can see that at
the synapse, this presynaptic spike (dotted red line) occurs
just after a postsynaptic spike (dotted blue line), and this
timing can be critical for the STDP rule. However, at the time
of processing, this postsynaptic spike has not yet occurred,
even at the soma, and so it is clear that any processing of
the presynaptic spike at this time would be premature.

Therefore on SpiNNaker it is not possible to implement
STDP rules in a naive manner, i.e. by performing the weight
updates for presynaptic spikes at the time the presynaptic
spike event is received. Instead an approach similar to the
deferred-event model presented in [24] has to be used, in
which spike times are stored for deferred processing at the
time of the next event following them. The implementation
here uses the deferred-event approach for both presynaptic
and postsynaptic spikes, allowing the incorporation of both
axonal and dendritic delays. Compared with the three STDP
rules provided with the SpiNNaker package, our approach is
much more flexible, as well as being more efficient than the
two rules which use postsynaptic spike times.

In the next sections we will explain in detail how our
approach works in the context of the SpiNNaker system. We
also evaluate both the speed and accuracy of our approach
as compared with previous approaches. To demonstrate the
type of simulation enabled by our method, we present two
applications: using STDP to quickly balance excitation and
inhibition, and using STDP to learn a temporal sequence.
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Fig. 1. For one synapse, this shows the relation between pre and

postsynaptic somatic spike times (red and blue dots), spike traces at the
somata (outer jagged lines), spike traces at the synapse (inner jagged lines),
times relevant for computing changes in the synapse weight in STDP theory
(vertical red dotted lines and blue dashed lines), and the times at which the
synapse can be updated in the SpiNNaker framework (vertical gray lines).
The spike trace is a function used in many STDP rules, which decays
exponentially but increases whenever there is a spike. The presynaptic
somatic trace (topmost jagged line) can be seen to increase with every
presynaptic spike (red dot), and decays at all other times. The same trace
can also be computed at the synapse (second jagged line), where it is the
same but shifted by the “axonal delay,” the time it takes the spike to go
from the neuron to the synapse. The lower three graphs similarly show,
from the bottom up, the postsynaptic spikes, somatic trace, and synaptic
trace. STDP rules update the weight at the synapse according to the timing
of the pre and postsynaptic spikes, shown in the middle as dotted red and
dashed blue vertical lines. The SpiNNaker routing system delivers the spike
within microseconds, orders of magnitude faster than biological axonal or
dendritic delays, which are generally on the order of 0-10ms [17]. This
means that the spike arrives at the postsynaptic cell essentially at the time
of the presynaptic somatic spike (vertical gray lines). Since the arrival of the
spike is what triggers the brief availability of synaptic data for processing,
the code must then update the synapse for all the red and blue lines that
have occurred in the interval between the previous and current gray lines.

II. STDP

Long-term  synaptic plasticity (LTP) mechanisms,
i.e. mechanisms that change the synaptic weight in a way
that lasts for more than a few seconds, have been found to
be necessary for memory and learning in biology [19]. One
of the most studied LTP models is spike-timing dependent
plasticity (STDP) [2], which has been demonstrated
in simulation to be capable of many useful types of
learning [1], [23], [27], [29]. The main idea of STDP is
that changes to the weight of a synapse occur based on
the relative timing of pre and postsynaptic spikes. How
exactly the weight is changed depends on the specific STDP
rule being used, and many such rules have been found in
neuroscience experiments [5], [10], [18] and modeled in the
literature [4], [12], [21].

The most general form of an STDP model is that there is
some set of state information stored at the synapse, which
is affected by the occurrance of a pre or postsynaptic spike,
and which can also change passively with time. This state
information suffices for calculating the EPSP produced by
each incoming spike. Our implementation approach supports

any rule of this form.

One broad class of STDP rules fitting this general form
is the class of trace-based rules [20], [21]. These can be
modeled by the application of a weight change function

w+=7- fpre(Tpost7 ’lU) (1)
whenever there is a presynaptic spike, and
w+=1- fpost (Tpr57 ’LU) (2

whenever there is a postsynaptic spike, where 7 is the
learning rate, and T),,.. and T, are the traces, i.e. filtered
versions of the pre and postsynaptic spike trains (see fig. 1).
The functions fp,. and fpos: are typically mathematically
fairly simple [21].

The synaptic traces decay exponentially with time con-
stants 7,,e and Tp,s¢, and are increased at the time of a pre
or postsynaptic spike either by a constant value, allowing
efficient implementation (due to linear summation of effect)
of an “all-to-all” rule, or fo a constant value, yielding a
“nearest pair” rule [20].

We will describe our SpiNNaker implementation for a
trace-based rule, which has a relatively simple state (consist-
ing of a scalar weight and two traces) and simple dynamics
(consisting of the spike-induced changes to the traces and
weight, and the exponential decay of the traces). More
complicated state and dynamics can easily be substituted if
desired.

III. SPINNAKER

In recent years neuromorphic systems have gained interest
as a tool for simulating SNNs. Different projects include
both real-time [14] and accelerated-time ([32], [3]) analog
VLSI neuromorphic circuits, including the Neurogrid [26]
and the BrainScaleS project [9]. In contrast to these, the
SpiNNaker hardware does not take the pure neuromorphic
approach of using analog circuits to emulate ionic neural
currents, but rather uses a large number of conventional dig-
ital processors, interconnected with a unique communication
system optimized for very fast transmission of small packets
(5 or 9 bytes, including routing information and control bits),
intended to be used like spikes in biological neural networks.

A SpiNNaker system consists of one or more SpiNNaker
boards, each containing up to 48 SpiNNaker chips, and each
chip has 16 ARM9 processors running at 200MHz available
for use in a neural simulation [16]. Each core is equipped
with 32KB of instruction memory and 64KB of fast-access
data memory. Additionally, as shown in figure 3, each
SpiNNaker chip contains 128MB of SDRAM which is shared
by the 16 simulation cores on the chip. This SDRAM is slow
compared to the local core memory, using an interrupt-based
protocol to allow cores to store and retrieve memory blocks
asynchronously.

The SpiNNaker software system includes a convenient
interface for implementing neural networks [11]. First, the
end-user describes the network in a high-level language
like PyNN [8] or Nengo [28]. Algorithmic parts of the
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main types of events: a timer tick and a presynaptic event. The timer tick (which is asynchronous among different processors) triggers an update of the
state of the neuron. This update can elicit the firing of a spike. The spike is then routed to the destination chips. For every incoming spike the synaptic data
is requested using DMA. Subsequently the corresponding data is fetched from the SDRAM and is then processed by the receiving core. This processing
includes calculating and adding the postsynaptic potential and performing STDP-related updates. The dendritic spike buffer (DSB, blue) and axonal spike
buffer (ASB, red) and the parts of the code relating to them have been introduced to enable the use of the trace-based STDP rule (see also figure 3).

model, such as a leaky integrate-and-fire algorithm or STDP
algorithm, are written in C and can be referred to from
the high-level network description via a binding. Several
common neural models are provided in the SpiNNaker
package, and more can be added by the user. Then, using
the PArtition and Configuration MANager (PACMAN), the
high-level description and C code are used to automatically
generate assignments of neurons to cores, routing tables for
sending spikes according to the connectivity of the network,
and code to run on the SpiNNaker cores.

Neural simulations are processed in an event-driven man-
ner as shown in figure 2. Each core receives a timer event
once per millisecond, triggering an update of all the neurons
on that core. In a typical neural model, excitatory and
inhibitory post-synaptic potentials (EPSPs and IPSPs) are
scheduled by being placed into the PSP buffer (PSPB, shown
on the left in figure 2), in which they are summed and
eventually added to the membrane voltage, which also decays
due to the leak. If the spiking threshold is reached, the
membrane voltage is reset and a spike is sent out to the
SpiNNaker routing system. The only information carried by
the spike is the ID of its source neuron, and this is used by the
routing tables to send the spike to all cores containing at least
one of its postsynaptic target neurons. As the spike travels
from chip to chip, the routing tables can make it branch and
travel in multiple directions to multiple targets, similar to the
branching in a biological axon.

When a spike arrives to a core containing a synaptic
target, the routing system sends an interrupt to that core.
The interrupt routine (shown at the top center of figure 2)
does nothing beyond making a request to the memory system

to load all synapses from that axon. This is done with the aid
of the “afferent pointers™ also shown towards the bottom left
of the data structures shown in figure 3. In fact, the structure
and use of the afferent pointer data is more complicated than
shown in the figures, since this pointer information needs to
have a small memory footprint even when there are tens of
thousands of axons projecting to the core. However, for our
purposes we can ignore the internal complexity and simply
treat it as an opaque data structure from which it is possible
to extract the correct pointer.

When the chip’s memory system has loaded the requested
afferent axon data structure (shown on the center right of
figure 3) from the SDRAM into the core memory, it sends
a signal to that core, triggering an interrupt handler which
just enqueues the processing of this data structure. This
processing is shown in the large center box of figure 2.
Among other actions, based on the synapse weight it adds
an EPSP or IPSP into the PSP buffer (PSPB), so that it will
be added to the soma’s membrane potential after the correct
delay. This is also the place where the STDP rule must be
implemented.

IV. IMPLEMENTING AN STDP RULE

The limited availability of the synaptic data on SpiNNaker
imposes constraints on the implementation of the STDP
rule, i.e. the postsynaptic event has to be processed at the
moment a presynaptic spike arrives. Therefore instead of
performing the weight update the moment a postsynaptic
spike is fired, the postsynaptic spike time is stored. Since it
is possible that multiple postsynaptic spikes occur before the
next presynaptic spike arrives, it might be necessary to store
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Fig. 3. Data structures used in SpiNNaker simulations, including structures
used by the trace-based STDP implementation. Although a SpiNNaker chip
contains 18 cores, only 16 are shown since only 16 are available for neural
simulations. The chip memory (SDRAM) is shared across all cores, whereas
the core memory (fast local memory) is only available on the corresponding
core. In order to implement trace-based STDP rules, we added the DSB and
ASB and expanded the state of the synapse to include the traces themselves.
We also included dendritic delays, both for postsynaptic potentials (PSP
delay) and for backpropagating action potentials (BAP delay), to allow more
detailed simulations. The numbers in the synapse data structure in the lower
right represent the number of bits used to store the given data.

the time of more than one postsynaptic spike. To achieve
this, we employ a circular buffer for each neuron on the
core to store postsynaptic spike times, which is stored on the
local data memory. Note that the size of postsynaptic data is
independent of the number of synapses, i.e. it depends only
on the number of neurons on one core and on the buffer
size. In contrast, the synaptic data (the state of the synapse
and the time of the last presynaptic spikes) is stored on the
SDRAM since this could take too much space on the local
data memory, depending on the number of synapses.

The actual weight update takes place when a presynaptic
spike arrives, see algorithm 1. The main idea of the algorithm
is to process the pre-/postsynaptic events in chronological
order for each synapse of the afferent axon. At each time
a spike arrives at the synapse, the synaptic state (including
the weight) is updated. This way we also can take axonal
and dendritic delays into account. Note that dendritic delays
are in the order of tens of milliseconds from the soma to the
dendrites [17] and therefore maybe important to consider. For
implementing a trace-based rule (see section 2) it suffices

Algorithm 1: executed at presyn. spike arrival at the core

1 for each synapse on core with corr. presyn. neuron do
2 find next presynaptic spike (incl. axonal delay);

3 find next postsynaptic spike (incl. dendritic delay);
4 while next spike is before current time do

5 if next spike is presynaptic then

6 update synaptic state (including weight);

7 find next presyn. spike (incl. axonal delay);
8 end

9 if next spike is postsynaptic then

10 update synaptic state (including weight);

11 find next postsyn. spike (incl. dendr. delay);
12 end

13 end

14 update synaptic state to current time;

15 end

16 store current time in presynaptic spike time buffer;

that the synaptic state consists of a presynaptic trace, a
postsynaptic trace and the synaptic weight.

The for-loop of the algorithm iterates over all synapses
on the core which correspond to the afferent axon of the
arriving spike. It is important to keep in mind that the
stored presynaptic spike time (without the synapse-specific
axonal delay) is referring to the time the spike was fired at
the presynaptic soma, not to the time the spike arrived at
the synapse, see figure 1. In order to calculate the time a
presynaptic spike arrives at the synapse, we have to add the
axonal delay to the presynaptic spike time and to calculate
the time a postsynaptic spike arrives at the synapse we have
to add the dendritic delay (lines 2-3 in algorithm 1). The
pre-/postsynaptic spike times at the soma are fetched from
the SDRAM/local memory, see figure 2. In the presented im-
plementation the spike time buffers are searched backwards.
Since on average only one pre-/postsynaptic spike happened
since the last presynaptic spike, this backward search is
very efficient. However, if the network contains some highly
active and some almost inactive neurons, it might be more
desirable to have constant buffer access times, which can be
achieved by storing an additional pointer for each spike time
buffer to indicate the last processed spike. The while loop
in lines 4-13 is executed as long as there are spikes which
arrived at the synapse before the current time. Depending
if the next spike is a presynaptic or a postsynaptic one, the
corresponding update function is called. In both cases, the
update of synaptic state (including the synaptic weight) is
based on the time passed since the last update of the synaptic
state. Those updates in lines 6, 10 and 14 are the only parts
of the code which change for different STDP rules. If a pre-
/postsynaptic spike is being processed, the time of the next
pre-/postsynaptic spike is fetched from the corresponding
spike time buffer and the axonal/dendritic delay is added.
As the last step inside the loop, the state of the synapse is
updated to the current time. This update of the synaptic state
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is done to account for the changes of synaptic state between
the last spike which arrived at the synapse and the current
time. Finally, the current time is stored in the presynaptic
spike time buffer, since the current time is the presynaptic
spike time at the soma.

V. EVALUATION
A. Speed

Chapter 6 in [6] shows an analysis of the complexity of
previously implemented STDP mechanisms on SpiNNaker.
One of the results is that the STDP mechanism requires
at least an order of a magnitude more clock cycles than
updating the membrane potential of a neuron. Therefore it
is highly desirable to keep the computational complexity
low since it is a significant proportion of the total required
computation.

In this section we determine the costs of the implemented
STDP mechanism for one core theoretically and empirically.
The number of operations of pair-based STDP mechanisms
depends on the number of presynaptic neurons per core 7npy,
the number of postsynaptic neurons per core 7., the firing
rate of the presynaptic neuron fy.. and the firing rate of
the postsynaptic neuron fy.s:, i.e. the number of presynaptic
and postsynaptic events. Algorithm 1 is called once for each
presynaptic event (fpr. times ny..). The outer for-loop of
algorithm 1 is executed once per postsynaptic neuron and the
inner while-loop is executed once for each postsynaptic and
presynaptic spike. Note that the number of presynaptic events
which have to be processed per algorithm call is on average
only one per presynaptic event and therefore the dependence
on the number of presynaptic events is already accounted
for by the number of calls of the algorithm. This means
that the algorithm only needs a constant time to process
every synaptic event. Additionally the algorithm uses only
cost efficient operations such as addition, multiplication and
bit operations.

We tested the performance of the implementation empiri-
cally by comparing the number of processed presynaptic and
postsynaptic events per second as suggested in [25]. The re-
sulting numbers are then compared to the number of pre- and
postsynaptic events using the closest-pair and the all-to-all
STDP implementation and to the results without applying any
STDP rule, see figure 4. For this test we simulated 50 leaky
integrate-and-fire neurons on one SpiNNaker core. Those
neurons receive input from a varying number of presynaptic
input neurons with a connection probability of 20%, i.e. each
input neuron is connected to about 10 postsynaptic neurons.
The input neurons were simulated on a different core than
the postsynaptic neurons. The update rules we used are trace-
based as explained in section 2, hence we will use the name
trace rule in the following. We chose the update functions
of the traces and the weight such that a conventional all-
to-all STDP rule is simulated. For all simulations presented
in this work, we used a postsynaptic spike time buffer size
of 10. In figure 4 the number of synaptic events is plotted
as a function of the number of input neurons, each with a

— Without STDP
— STDP trace rule

Closest-pair STDP
All-to-all STDP

Number of synaptic events per second per core

Y N
4 ,’—‘*\ \ \\
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Fig. 4. Comparison of the performance of the STDP algorithm as a function
of the number of the input neurons. Each input neuron has a probability
of 20% to connect to a postsynaptic neuron. For the same number of input
neurons the same connection pattern was used. Black lines denote the results
without applying a STDP rule, green lines the results for applying the STDP
trace rule presented here, red/blue lines show results of the performance
of the SpiNNaker package closest-pair/all-to-all STDP rule. Solid lines
represent the number of presynaptic events per second and dashed lines
the number of postsynaptic events per second.

firing rate of ~ 250 Hz. The number of presynaptic events is
depicted by solid lines and the number of postsynaptic events
by dashed lines. Colors indicate the applied STDP algorithm:
blue for the SpiNNaker package all-to-all rule, red for the
SpiNNaker package closest-pair rule, green for the presented
trace rule and black for simulations without applying any
STDP rule. Measurements without applying STDP serve as
baseline measurement to know the upper limit if the cost of
the STDP algorithm would be zero. The closest-pair STDP
rule shows a significant decrease of postsynaptic events for
more than 75 input neurons compared to the baseline. If the
all-to-all rule is used, the number of events decreases for
more than 20 input neurons. For the trace rule this decrease
occurs if more than 150 input neurons are used. Similar
differences in performance are also observed for different
firing rates (data not shown). The reason for this drop is that
the processing power limit of the core is reached and that we
would need to distribute the simulation on more cores. Note
that even without using STDP, many postsynaptic events are
lost for more than 300 input neurons (this follows from the
fact that the number of postsynaptic events should increase
monotonically given the monotonically increasing input).

The limit to processing in the SpiNNaker system is typ-
ically not the number of neurons or even the number of
synapses but rather the number of incoming spikes that a
core must process within the one-millisecond window. With
our method of STDP processing for trace-based rules, it
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Fig. 5. Relation between the application of the STDP rule using BRIAN
simulator and the implementation on SpiNNaker. Each black dot shows one
weight pair. The blue line shows the identity, which represents the ideal
result.

is possible to process around 500,000 incoming spikes per
second per core (S/sc). For comparison, the nearest-pair rule
provided with the SpiNNaker package can process around
200,0008/sc, the all-to-all rule can process around 50,000 5/sc,
and a plain leaky-integrate-and-fire simulation without STDP
can process around 1,500,000s/c. If a simulation exceeds
these bounds (for example by placing too many neurons
on each core), then the simulation won’t remain real-time,
rendering the results meaningless, since in the SpiNNaker
system the simulated timepoint of a spike is represented
implicitly by the actual time it is produced rather than by
an explicit timestamp.

B. Accuracy

There are a number of reasons why the simulations on
SpiNNaker can differ from conventional simulations on usual
computers. First of all, it is not guaranteed that a transmitted
spike will be delivered, consequently no weight update will
happen due to this spike. Furthermore other updates which
would depend on the arrival of the spike are changed. A
second reason is the asynchronous nature of SpiNNaker.
The asynchronous update of the neurons can lead to a
situation where a neuron receives a spike but has not yet
stored the postsynaptic spike time. Therefore the postsynaptic
trace would not be updated correctly and a wrong weight
update would be performed. Additionally, it can happen
that the implementation details (like fixed-point numbers)
lead to differences. For example, typically it is necessary to
compute an exponential function to update the synaptic state.
To minimize computation, we precomputed an exponential
function and stored it in the local memory. Since for the
examples here this function is stored with little resolution (8
bit), there will be difference to traditional simulations with
32 or 64 bit precision. Another issue is if the firing rate
of the pre-/postsynaptic neuron times the pre-/postsynaptic
spike time buffer size is higher than the firing rate of the post-
/presynaptic neuron. In this case the pre-/postsynaptic spike
buffer will be full and pre-/postsynaptic spike times which

have not been processed yet, will be forgotten. However,
in the simulation presented in this section we did not use
firing rates which would lead to such a forgetting of spikes.
If the processor load is very high (see figure 4 for high
number of input neurons and the explanation in section
3), the time to process incoming spikes can exceed 1 ms
and thereby drastically change the results of the simulation,
since the delay between the desired update time and the
actual update increases as the simulation progresses. Such
a high processor load should generally be avoided (also for
simulations without STDP) by distributing the simulation
across more cores.

For those reasons we compare the STDP trace rule imple-
mentation on SpiNNaker to a conventional neural network
simulation in this section. In order to achieve this, we first
simulate a neural network on SpiNNaker and afterwards
simulate the same spiking pattern using the BRIAN simu-
lator [13] with the same STDP trace rule. Figure 5 shows
the final weights of the BRIAN simulation on the x-axis and
the weights of the SpiNNaker simulation on the y-axis. The
blue line depicts the ideal result, i.e. that the weights of both
simulations are exactly the same. The mean error is ~ 0.0013
with a mean weight of ~ 0.057, which gives a mean error
of a2 2.23% of the weight. Over the whole range of weights,
there is a good match of BRIAN and SpiNNaker simulation
results, especially considering the asynchronous nature of
SpiNNaker. The asynchronous update of the neurons will
lead to a situation where a neuron receives a spike but has
not yet updated the postsynaptic trace. Therefore a wrong
weight update will be performed. In most cases this will
just be the slight difference of the decay which results in a
slight increase of the weight change, since for the update the
function F,.. = n(y; — o) was chosen (F. is explained
in more detail in the application section). However it can
also happen that a postsynaptic spike is not yet included
in the trace, which will lead to a much bigger error, i.e. a
decreased weight change for the chosen Fj,,... Another reason
for differences in the BRIAN and the SpiNNaker weights is
the deferred-event like processing of the postsynaptic spikes
on SpiNNaker. The presented STDP mechanism performs
weight updates due to postsynaptic spikes at the moment the
next presynaptic spike arrives at the corresponding synapse.
This means that if no presynptic spike arrives before the
end of the simulation, the postsynaptic spikes since the
last presynaptic spike will not be processed. However, this
unreliability of the timing is also apparent in biological
systems and the possible neglect of the last postsynaptic
spikes should not be important for a small learning speed
n. A range of additional comparisons (data not shown)
indicates that most of the differences arise from the fact
that the exponential function is precomputed and stored on
the SpiNNaker board with 8 bit precision. The comparison
shown in figure 5 uses the usual clock-driven update of
BRIAN to update the synaptic state with 64 bit precision.
Even changing the precision of the BRIAN updates to 8 bit
too does not give the same synaptic state updates since the
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SpiNNaker STDP implementation updates in a event-driven
manner and is therefore more precise (even though it uses
8 bit precision, too). In case it is necessary to have a better
precision of the updates, it would be possible to store a more
precise precomputed function.

VI. APPLICATIONS

To show some examples, we demonstrate that the pre-
sented approach can be used to learn timing patterns. For
this example we use one presynaptic trace, one postsynaptic
trace and the synaptic weight to represent the state of a
synapse. The traces are exponentially decaying over time and
are increased by a constant if a spike occurs (see section 2).
This models an all-to-all spike timing dependence within the
timing window of the STDP rule. For a weight update due
to a presynaptic spike we used the function

Fpre(yivwij) = —1"Yi

where y; is the trace of the postsynaptic neuron 7. For a
weight update due to a postsynaptic spike we used

Fpost($j7wij) =1n-Zj,

where z; is the trace of the presynaptic neuron j. This
models a typical timing dependency as presented in [2]. The
firing pattern is the following: neuron (n + 1) modulo 50
(the total number of neurons) receives excitatory input 5
ms after neuron n, see upper plot in figure 6. Additionally
each neurons receives some noise in form of Poisson spiking
neurons with a firing rate of 15 Hz. Using those functions

for the STDP trace rule, the network learns that if n’th
neuron fires the next neuron n 4+ 1 mod 50 is likely to fire
soon. This can be seen in the recurrent excitatory weights of
the network, shown in figure 6, i.e. all neurons have strong
excitatory connections to their “successors”. Note that the
connections between neurons which are not firing closely in
time are weakened, i.e. they are close to zero although all
synapses were initialized with a weight of 0.005.

As a second example we show the automatic balancing
of excitation and inhibition. The network we use consists
of 50 excitatory and 50 inhibitory neurons, which receive
a constant current as excitatory input. Instead of learning
recurrent excitatory weights, the weights from inhibitory to
excitatory neurons are learned. For this we use the STDP
rule presented in [30]

Fpre(yi7 wij) = 77(% - a)’

where « is a parameter which controls the firing rate of the
postsynaptic neuron and

Fpost(j,wij) =n - z;j.

The state of the synapse is again represented by the pre- and
postsynaptic trace and the weight, using the same update
rule as before. The initial firing pattern is shown in figure 7
(a), it is highly regular and synchronous. After 10 seconds of
training the pattern changes drastically, see figure 7 (b). Note
that the time scale in (a) and (b) is changed to improve the
visibility of the pattern. The firing pattern after learning the
inhibitory to excitatory weights is irregular and asynchronous
due to the detailed balance of the inhibition [30].

VII. DISCUSSION

We have presented an approach for implementing STDP
rules on SpiNNaker in a more general and more efficient
way than previous methods. Like the STDP rules which have
been implemented previously in SpiNNaker, we shifted the
processing of the pre and postsynaptic spikes to the moment
of the arrival of the next presynaptic spike. Therefore the new
state of the synapse is computed at each presynaptic spike
which arrives at the synapse. Using the presented approach,
any pair-based STDP rule can be modeled. To do this, it
is only necessary to store one presynaptic trace and one
postsynaptic trace per synapse and the recent spikes of each
neuron. Also only a small constant time is needed to process
each synaptic event. This way of implementing pair-based
STDP rules leads to learning rules which are much more
efficient than the all-to-all and the closest-pair STDP rule of
the SpiNNaker package.

Unlike conventional BRIAN simulations, which are slower
for larger networks, SpiNNaker simulates networks in real
time, independent of the network size. This gives SpiNNaker
a speed advantage for large networks (the total activity
rate is the limiting factor, given by figure 4 multiplied by
the number of cores: 768 times the number of SpiNNaker
boards). However, due to the inherently non-deterministic,
asynchronous nature of the system and the limited preci-
sion, SpiNNaker simulation results can differ slightly from
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BRIAN results, and can even differ minorly from run to run.
Nonetheless, it is reassuring that the final trained weights are
still within 3% of those trained in a BRIAN simulation.
One of the main advantages of the approach presented
here is its versatility. To implement a new STDP rule, the
user only needs to define new synaptic state update rules
and add the synaptic state data structure. For example, to
implement a triplet rule [21], the only thing which would
need to be changed compared to the basic trace rule is to
keep track of a second postsynaptic trace (with a different
time constant) and change F),.s; to be dependent on the
second postsynaptic trace. It is also easy to introduce voltage
dependence by making F},.. or F,,s be a function of the
postsynaptic membrane voltage. Generally it is possible to
use the presented framework for all STDP rules which are
mathematically tractable. The necessity for expressing the
rule in a closed form is due to the calculation of the change
between the last and the current spike. However, even if
there is no closed form, then instead of “jumping” from
spike to spike, it is still possible (at the cost of decreased
performance) to just simulate every single time step.
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