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Abstract—This paper investigates the application of a novel
Deep Neural Network (DNN) architecture to the problem of
matching data in different modes. Initially one DNN is pre-
trained as a feature extractor using several stacked Restricted
Boltzmann Machine (RBM) blocks on the entire training data
using unsupervised learning. This DNN is duplicated and
each net is fine-tuned by training on the data represented
in a specific mode using supervised learning. The target of
each DNN is linked to the output from the other DNN thus
ensuring matching features are learnt which are adjusted to
take differing representation into account. These features are
used with some distance metric to determine matches. The
expected benefit of this approach is utilizing the capability of
DNN to learn higher level features which can better capture
the information contained in the input data’s structure, while
ensuring the differences in data representation are accounted
for. The architecture is applied to the problem of matching
faces and sketches and the results compared to traditional
approaches employing Principal Component Analysis (PCA) or
Linear Discriminant Analysis (LDA).

I. INTRODUCTION

There has been a significant research interest in recent
years related to Deep Architectures, which refer to archi-
tectures with a larger number of hidden layers [1]. In 2006
Hinton et al. [1] introduced an unsupervised fast, greedy
learning algorithm that can find a fairly good set of parame-
ters quickly in deep networks with millions of parameters
and many hidden layers. This involved the unsupervised
pre-training of deep supervised multi-layer neural networks
using the Restricted Boltzmann Machine (RBM) generative
model for each layer [1], [2]. The pre-training serves as
an initialization of the neural network which is then fine-
tuned with respect to a supervised criteria. The unsupervised
pre-training helps with initialization of the net into a more
favorable region of the weight space [3] compared to a
random initialization. Several studies have show that this
leads to better generalization results [3], [4], [5].

The unsupervised learning in the Deep Architectures helps
also by extracting salient information about the input distri-
bution in the hidden layers, [2]. The features extracted in
the first hidden layer are seen as low-level features. These
are then fed as the input in the second layer where the new
extracted features are higher-level features [2]. This approach
leads to steadily higher-level abstractions of the training data,
and the potential to learn complex relationships with much
fewer neurons than a network with few hidden layers would
be able to [6]. Deep architectures have seen use in many
application areas, for example object recognition [7], speech
recognition [8], and musical genre categorization [9].
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This paper investigates the application of a novel Deep
Neural Network (DNN) architecture to the problem of match-
ing data in two different modes. There are a number of
situations in which we wish to identify matching objects
which have been represented in different ways. Common
examples are faces (or images in general) viewed in different
frequency bands or lighting conditions, or represented as
photos or sketches. While the representations differ, there are
similarities in the important features that may be exploited.
In this paper we will focus on matching faces represented as
photos and sketches, an important problem in the context of
forensics in particular.

The proposed method first uses a stack of unsupervised
RBM blocks to extract features using the entire training
data. The parameters found during this step are used as
initialization parameters for two initially identical DNNs
which are then fine-tuned using supervised learning. The first
DNN is trained using as input the training data of one mode,
while the second DNN is trained using matching training
data of the other mode. During training, the networks are
linked so that, at each epoch, the target of the first DNN is
updated to be the output of the second DNN and vice-versa.
The motivation for this method is that the DNN architecture
enables the extracting of relevant features from the input data,
with each net fine-tuned on one data representation to tailor
the global features to their representation in each data mode.
Subsequently the fine-tuned DNN pair can be used to map
data into a common feature space in which matching can be
performed. We call the proposed approach Dual Matching
Deep Neural Network (DMDNN).

The DMDNN approach has conceptual similarities with
the Coupled Spectral Regression (CSR) framework [10]
applied to solving the problem of matching heterogeneous
face images. The CSR initially models the properties of
data represented in different modes separately, and then
learns two associated projections to project heterogeneous
data into a discriminative common space. Classification is
then performed in the common space. The motivation for the
DMDNN is similar to the one found in [10] for the CSR
learning algorithm. Data from the same object in different
modes are at different positions in observation space. If the
same projection or feature extraction is used for the two types
of data the comparison of the obtained projections would not
be optimal. Therefore having separate projections tailored to
each representation but mapping into a common subspace is
more likely to produce better classification/matching results.
Linear and Kernel based CSR methods are introduced in [10].
Projections in CSR are found by optimizing an objective
function which includes separate terms for each type of data.
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In the DMDNN separate DNN architectures are trained for
each type of data to map matching data to the same point in
a unified/common feature space.

The proposed method is applied to the problem of match-
ing digital face and sketch images in which faces are rep-
resented in both sketch and photo modality. This problem
has been recently investigated by a number of researchers
e.g. [11], [12], [13], [14] and it is an important real-life
law enforcement application. Sketch recognition algorithms
can be classified into generative and discriminative [12]
categories. Generative methods transform first a digital photo
into a synthesized sketch before matching with a probe sketch
[11], while discriminative methods perform feature extraction
directly on the given digital photo and sketch images [14],
[13] without generating synthesised images, and perform
matching in this feature space. The DMDNN method is a
discriminative approach, using a novel DNN architecture to
extract features in a common feature space and performing
matching using these features.

The experiments are conducted using the CUHK student
database [15]. The results are compared to traditional fea-
ture extraction approaches employing Principal Component
Analysis (PCA) and Linear Discriminant Analysis (LDA).
The initial experiments and results demonstrate the potential
of utilizing DNN architecture for matching face and sketch
images.

The main contributions of this study can be summarized
as follows:

• developing a novel method for matching data in two
different modes based on a linked Deep Neural Network
architecture;

• utilizing the Enhanced Gradient [16], a recent advance-
ments for improving the training of the RBMs, in this
novel context.

• evaluating the efficiency and effectiveness of the pro-
posed method in a real-life application for matching
digital face and sketch images;

The remainder of the paper is structured as follows. Section
II introduces the Restricted Boltzmann Machine and Deep
Networks. The proposed DMDNN approach is presented in
Section III. Section IV presents the experiments for evaluat-
ing the effectiveness of the DMDNN and the obtained results.
Finally, Section V gives our conclusions and directions of
future work.

II. THE RESTRICTED BOLTZMANN MACHINE AND DEEP
NETWORKS

A. Restricted Boltzmann Machine

A boltzmann machine is a system of random variables
v,h whose joint probability can be described by an energy
function as follows:

P (v,h) =
exp(−E(v,h))

Z
(1)

where Z is a normalisation factor

Z =
∑
h

∑
v

exp(−E(v,h))

.
The v’s represent random variables we can observe,

whereas the h’s represent hidden variables that we cannot
directly observe, only infer. The probability of a given visible
vector v can be calculated by marginalization over h:

p(v) =
1

Z

∑
h

exp(−E(v,h)) (2)

Fig. 1. A graphical illustration of the terms in the RBM energy function

Formally, the Boltzmann Machine belongs to a class of
graphical models known as Markov random fields [17].
There are many different types of Boltzmann Machine,
distinguished by the particular form of the energy function
used; here we will focus on a subclass of the Boltzmann
machine called the restricted Boltzmann machine (RBM).
This is characterized by an energy function which contains no
cross terms, i.e. no terms of the form f(vi, vj) or f(hi, hj)
for i 6= j. This can be represented graphically as in figure
1, where a connection represents a term in the energy
function involving the variables connected. With this form,
the probability distribution for each vi is independent given
h, and similarly for the hj’s given v. This simplifies training
significantly, allowing parallel sampling of nodes in one layer
given the other layer. The most commonly used form of the
energy function is:

E(v,h) = −
∑
i

vibi −
∑
j

hjcj −
∑
ij

viWijhj (3)
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where both v and h are binary random variables. The Wij

are the weights as illustrated in figure 1, and the bi’s and cj’s
are biases. The sums over i and j run over the M visible and
N hidden nodes, respectively. The activation probability of
a hidden node under this energy is:

P (hj = 1|v) =
exp(−cj−

∑
i viWij)

1+exp(−cj−
∑

i viWij)
(4)

= sigmoid (cj +
∑

i viWij) (5)

This matches the activation rule for a sigmoid neuron in
an MLP, making it suitable for layer wise pre-training of
a deep NN, as described in the next section. A number
of other energy functions have been proposed for RBMs,
to fulfil various roles. The Gaussian-Bernoulli RBM [18]
was proposed to deal more naturally with continuous v, and
convolutional RBMs [19] have been proposed for image-
related applications [20] and for use as pre-training of deep
convolutional neural networks. RBMs allowing for hidden
nodes to take continuous values were proposed in [21], and
energy functions which allow a more direct modelling of
the covariance between different visible units have been
suggested in [22].

An RBM is typically trained by an approximation to
maximum likelihood. The gradient of the log-likelihood L
can be expressed [23] as:

∂L

∂θ
= −

〈
∂E

∂θ

〉
d

+

〈
∂E

∂θ

〉
m

Where θ represents some parameter of the energy function,
and < · >d, < · >m denote averages over the data/model
distributions respectively. While the first average is easily cal-
culated, the second in general cannot be computed efficiently.
It can be approximated via Gibbs sampling, i.e. alternating
samples of P (h|v) and P (v|h) which will converge to the
required distribution after many iterations, however this is
still very costly. In [24] it was proposed to approximate
the model distribution by running the Gibbs sampling for
only a small number n of iterations (in practice one is
often found to be enough), initialized from data samples.
This procedure is called contrastive divergence. While it was
initially proposed as an approximation to the Gibbs-sampled
likelihood gradient, it was also shown to follow more closely
the gradient of the difference of two Kullback-Leibler (KL)
divergences:

CDn = KL(p0|pinf)−KL(pn|pinf)

Where pn denotes the probability distribution of samples
after n steps of Gibbs sampling starting from the training
distribution p0. Thus pinf is the model distribution.

For the energy function given in equation 3, the CD
updates have the form:

∆Wij = λ(〈vihj〉d − 〈vihj〉m)
∆bi = λ(〈vi〉d − 〈vi〉m)
∆cj = λ(〈hj〉d − 〈hj〉m)

(6)

where λ is a learning rate.

B. The Enhanced Gradient
The CD updates in equations 6 have a number of problems,

which were identified in [16]. In this paper, an alternative
gradient was also proposed to address these problems, which
we will describe here.

There are two main problems with the update gradients 6.
The first is that as the covariance of v and h w.r.t. distribution
P is

covP (vi, hj) =< vihj >P − < vi >P< hj >P

we can write the weight update in 6 as

∇wij = covd(vi, hj)− covm(vi, hj)

+ < vi >dm ∇cj+ < hj >dm ∇bi
where < · >dm= 1

2 < · >d + 1
2 < · >m. This means the

gradient w.r.t the weights may be correlated with the gradient
w.r.t the biases, leading to a problem where many neurons
learn features similar to the bias terms.

Secondly, imagine a transformation of the data represen-
tation such that some binary units of the RBM are flipped:

v̄i = v1−fi
i (1− vi)fi

h̄j = h
1−gj
j (1− hj)gj

with corresponding transformations of the RBM param-
eters so that the resulting RBM has an equivalent energy
function. The fi’s and gj’s define the transformation, with
a 1 or 0 indicating if the corresponding vi or hj is flipped
(or not). If the model is transformed, updated according to
6, and transformed back, the resulting update depends on the
transformation, with each possible transformation yielding a
valid ML update. There is no good reason to use the original
update over any other possible update.

The idea introduced in [16] is to take a weighted sum
of these possible updates, weighting more highly the sparse
data representations for which < · >dm≈ 0. In these
representations, the problem of correlation of weight updates
with biases described above is minimized. With this choice
of weights, the summation results in the following updates:

∇ewij = covd(vi, hj)− covm(vi, hj)

∇ebi = ∇bi−
∑
j

< hj >dm (∇wij−∇bi− < vi >dm ∇cj)

∇ecj = ∇cj−
∑
i

< vi >dm (∇wij−∇cj− < hj >dm ∇bi)

.
A slightly simplified version of the above bias updates,

∇ebi =< vi >d − < vi >m −
∑
i

< hj >dm ∇ewij

∇ecj =< hj >d − < hj >m −
∑
i

< vi >dm ∇ewij

are recommended in [16] and shown experimentally to
perform well, and so are used in this paper also.
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C. Deep Neural Networks

A ’deep’ neural network gains its name simply by incor-
porating more than the 1-2 hidden layers commonly seen in
NN applications. Typical sizes for a deep neural net are 4-
5 layers, in some cases larger. Such networks are desirable
for their ability to learn steadily more complex, higher level
features, and build high-level representations of objects upon
these. However training of these networks purely using back-
propagation, or other similar gradient based methods works
poorly as the gradient becomes too diffuse when back-
propagated over multiple layers [4]. This has been addressed
by a greedy layer-wise pre-training procedure, most often
treating each layer as an RBM, though similar approaches
which treat a layer as an auto-encoder also exist [2]. In order
to use this approach a layer model must be defined whose
hidden node activation probability matches the activation of a
corresponding node in the deep neural network architecture.
In the case of MLP and convolutional NNs, an RBM or
convolutional RBM respectively satisfies this criterion, and
so can be trained to provide a layer wise initialization of a
deep NN. As an example, equation 5 matches the activation
rule of a sigmoid neuron in a standard MLP.

This layer wise pre-training proceeds as follows. The first
layer RBM is trained using the data vectors v, resulting
in parameters θ1. In a subsequent layer k, the activation
probabilities Q (calculated as in equation 5) of the hidden
units in the k − 1’th layer are calculated by propagating
the data vectors v through the layers already learnt, and are
used as the training vectors for the k’th layer resulting in
parameters θk. The learnt parameters for each layer may then
be used to initialize the deep network, which can then be
fine-tuned as a complete net using standard gradient-based
techniques.

There are a number of reasons for the effectiveness of pre-
training. Intuitively, it ensures that the structure of the input
distribution to a layer is reflected in the initial weights [5],
meaning less information should be lost in the transformation
learnt by the layer in the fine-tuning stage. There is also work
[25] that suggests the pre-training has a regularizing effect
on the network.

Deep versions of a number of different NN architectures
can be found in the literature, for example MLP [5] and
convolutional [19] architectures, and have been found to
perform exceptionally well in some applications.

III. DUAL MATCHING DEEP NEURAL NETWORK
ARCHITECTURE

In this section we will describe our proposed architecture.
Conceptually, the proposed method exploits the fact that
an image displayed in two different modalities will have
similarities in the important features that make up the image.
An RBM trained on a mixture of images from two different
modes can be expected to output features that are similar
when given matching images in two different modes as input.
We take RBMs trained in this way to initialize two (initially
identical) DNNs as described in section II-C, and fine-tune
each net on images from a single mode only. The objective

is to train this network pair to map matching images in
different modalities to the same point in a unified feature
space (and non-matching images to far-apart points in the
feature space). We expect images of a certain type to be
able to be well represented in a unified feature space if we
adjust the mappings to account for the differences in how
each feature appears in the different modes in question. We
wish ultimately to identify a unified feature space in which
we can match an image with a transformed version of itself,
by training feature extractors specific to the different modes
to give the same feature map. To do this, in each epoch we
have two stages of training. In the first stage we link the
networks by designating the output of each net to be the
target of the other, as in step 2 below. This step aims to
train the pair of networks to map matching images in the
two modes to the same point in the feature space. In the
second stage, mis-matching images are used and the target
for each net is generated by adding a small fraction of the
difference between the outputs of the two networks to their
current outputs, as in step 6 below. This step encourages the
network pair to map mis-matching images to far-apart points
in the feature space.

More formally, let Xp, Xs be the sets of images in the
two modes. Layers of RBMs are trained as in section II-C,
using X = {Xp, Xs} to train the first layer. These RBMs are
used to initialize two initially identical DNNs, Np and Ns.
Training proceeds in the following steps, for each epoch:

1) Outputs of nets calculated as Yp = Np(Xp) and Ys =
Ns(Xs)

2) Targets of each net set as Tp = Ys and Ts = Yp.
3) Calculate update for network weights according to

chosen gradient calculation
4) Randomly permute the order of examples inXs, Xp

such that images in the same position in Xp and Xs

no longer match. That is, xp,i and xs,i are images of
different entities for all i. Denote these non-matching
sets as X̄p, X̄s.

5) Output of nets calculated as Ȳp = Np(X̄p) and Ȳs =
Ns(X̄s).

6) Calculate D = Ȳs − Ȳp, and set targets

T̄p =
Ȳp −D
||D||

T̄S =
Ȳs +D

||D||
.

7) Calculate update according to chosen gradient calcula-
tion.

The process then returns to step 1 for the next epoch. The
training is illustrated graphically in figure 2. In the matching
stage, a probe sketch s is provided to network Ns to give
features ys = Ns(s), and a set of features {yp,i} = {Np(pi)}
for all i in the photo library are similarly generated. The
1st, 2nd etc best matching photo given probe sketch are
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Fig. 2. A graphical illustration of the main phase of a training step in the
proposed architecture

then determined according to minimum (euclidean) distance
between fs and the fp,i.

At this stage it is worth discussing briefly the issue of
stability. As we are modifying the target after each iteration,
we must take steps to ensure no unstable behaviour occurs.
We implemented two measures to ensure this. Firstly, the
signal used to modify the target in step 6 is normalized by
the magnitude of the difference between the outputs of the
two nets, so that this signal does not grow larger if D grows
larger, a situation which could result in instability due to
positive feedback. Secondly, we use sigmoid output nodes,
which precludes the possibility of the output of some nodes
drifting to large positive or negative values during training.

This architecture is quite general, in that the specifics of
the two networks used can be very different while still using
the same top-level methodology of training each network on
an individual mode, and updating the targets of each network
every iteration.

In the next section we will apply the proposed architecture
to a real world matching problem.

IV. FACE/SKETCH MATCHING

In this section, we apply the architecture introduced in
the previous section to the problem of facial photo/sketch
matching. This problem is predominant in the context of
forensics, when a forensic sketch of a suspect must be
matched to a library of photos of previously known criminals,
for example.

We use the CUHK face-sketch database [15], in which we
have 188 photo/sketch pairs from 188 individuals both male
and female. Faces are originally of 250x200 pixel size, but
are cropped in an oval based on eye co-ordinated for use in
our method. The resulting images consist of 14019 pixels.
An example cut-out photo/sketch pair is shown in Table I.
We use 100 individuals for training, split 80/20 into training

and validation sets. The remaining 88 are used as the testing
set.

TABLE I
ILLUSTRATION OF CROPPING PROCESS

Original Cropped

In addition to results for single runs of the DMDNN,
we also test the performance of an ensemble of these nets.
In order to create the diversity between individuals that
an ensemble approach requires, in addition to the natural
diversity arising from the random aspects of the deep net
training/pre-training, we train each member of the ensemble
on a different, randomly generated training/validation split.

Individuals provide an output in the form of a ranking
for all the library photos in response to a probe sketch,
according to how well each matches the probe sketch. The
individual rank outputs are combined in the following way.
The ranks for all individuals for library photo i are summed
si =

∑
k r

(k)
i to give a score si. The library matches are then

ranked according to minimum score. As an example, a library
photo ranked 5,2,1,4,4 (summed score 16) by 5 individuals in
response to a probe sketch would be ranked above a library
photo ranked 3,4,2,3,5 (summed score 17) when determining
the ensemble rankings.

We will compare results from individual and ensemble
pair nets with those of standard methods to be found in the
literature, namely PCA and LDA.

For each experiment, 10 repetitions are run in which the
188 faces are randomly split into a 100 face training set
and an 88 face testing set. We used deep networks with two
hidden layers with 600 neurons each, and an output layer of
600 neurons. Networks were trained for 1000 epochs with
early stopping if no improvement is made on the validation
set within a 250 epoch interval. Learning rate used was 0.04.
The ensemble size, where relevant, was 10. The results are
shown in table II. Recognition rates are shown for best 1,3,
and 5 matches, where recognition is deemed successful if the
correct match to the probe image appears in the top 1,3 or 5
of the returned matches, respectively.

As can be seen, while the DMDNN method performed
worse than the LDA method, it performed significantly better
than the PCA method. This is promising, as in the work
presented here we use a fairly simple Deep net as the basis
network for our top level architecture, with which we may
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Method 1 Best 3 Best 5 Best
DMDNN 57.5 79.7 87.3
DMDNN Ens 64.1 85.6 91.0
PCA 37.5 56.8 64.8
LDA 93.2 97.7 97.7

TABLE II
RECOGNITION RATES (%) IN TOP 1,3 AND 5 MATCHES ON FACE/SKETCH

MATCHING TASK

also use more sophisticated architectures such as convo-
lutional nets, which are more suited to image recognition
problems, to achieve better performance. Other methods in
the literature have been applied to this dataset, though a direct
comparison is difficult as some have combined the dataset
we used with one or more other datasets which were not
available to us. In [11], sketches are synthesised patch wise
for matching with a probe sketch, with Markov random fields
used to maximise the probability that adjacent patches match,
reporting an accuracy of 96% on a dataset that includes
roughly 600 examples. In [13], genetic algorithms are used
to optimize a matching procedure on features extracted at
multiple resolutions, reporting an accuracy of 94% on a
dataset of roughly 300 examples. With a more sophisticated
base neural network, and a potentially extended dataset, we
hope to be able to match or improve on these results.

The ensemble of DMDNNs, as expected, performed much
more consistently than an individual net. The performance
gap between a DMDNN ensemble and LDA closes signifi-
cantly when the top few results are considered, which is very
often the case in practical use where a shortlist of matches
would be delivered for human inspection to determine if the
match exists.

V. CONCLUSION

We have introduced a novel method in which neural
network feature maps are fine-tuned on images in different
modes to map these representations into a common feature
space for matching, and illustrated its use in a face/sketch
matching context.

The method is a promising approach that can be used as
a general top level architecture incorporating many different
neural network types as base components. Our implementa-
tion produced good results using a simple Deep feed-forward
network as the base component, and although some other
standard methods can achieve better performance, we expect
that the use of more advanced component architectures which
are better suited to image recognition, for example a deep
convolutional network, will significantly improve recognition
rate. This will be the focus of future work.
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