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Abstract— Identifying and understanding the impact of al-
gorithmic trading on financial markets has become a critical
issue for market operators and regulators. Advanced data feed
and audit trail information from market operators now make
the full observation of market participants’ actions possible. A
key question is the extent to which it is possible to understand
and characterize the behavior of individual participants from
observations of trading actions. In this paper, we consider the
basic problems of categorizing and recognizing traders (or,
equivalently, trading algorithms) on the basis observed limit
orders. Our approach, which is based on inverse reinforcement
learning (IRL), is to model trading decisions as a Markov
decision process and then use observations of an optimal
decision policy to find the reward function. The approach
strikes a balance between two desirable features in that it
captures key empirical properties of order book dynamics and
yet remains computationally tractable. Making use of a real-
world data set from the E-Mini futures contract, we compare
two principal IRL variants, linear IRL and Gaussian process
IRL. Results suggest that IRL-based feature spaces support
accurate classification and meaningful clustering.

Index Terms— Inverse Reinforcement Learning; Gaussian
Process; High Frequency Trading; Algorithmic Trading; Be-
havioral Finance; Markov Decision Process; Support Vector
Machine

I. INTRODUCTION

F INANCIAL markets have changed dramatically over
the past 10 years or so. These changes reflect the

culmination of a decade-long trend from a market structure
with primarily manual floor trading to a market structure
dominated by automated computer trading. This rapid trans-
formation has been driven by the evolution of technologies
for generating, routing, and executing orders, which have dra-
matically improved the speed, capacity, and sophistication of
the trading functions that are available to market participants.

High-quality trading markets promote capital formation
and allocation by establishing prices for securities and by
enabling investors to enter and exit their positions in se-
curities wherever and whenever they wish to do so. The
one important feature of all types of algorithmic trading
strategies is to discover the underlying persistent tradable
phenomena and generate trading opportunities. These trad-
ing opportunities include microsecond price movements that
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allow a trader to benefit from market-making trades, several
minute-long strategies that trade on momentum forecasted by
market microstructure theories, and several hour-long market
movements that surround recurring events and deviations
from statistical relationship ([1]). Algorithmic traders then
design their trading algorithms and systems with the aim of
generating signals that result in consistent positive outcomes
under different market conditions.

In the past few years, there have been a number of
studies of HFT and algorithmic trading more generally. Their
primary objective is to understand the economic impact of
these algorithmic trading practices to the market quality
including liquidity, price discovery process, trading costs, etc.
There have been a number of studies focused on algorithmic
traders’ behaviors. These studies examine the trading activi-
ties of different types of traders and try to distinguish their
behavioral differences. Hendershott et al. ([2]) use exchange
classifications that distinguish algorithmic traders from or-
ders managed by humans. They find that algorithmic traders
concentrate in smaller trade sizes, while large block trades of
5,000 shares or more are predominantly originated by human
traders. Algorithmic traders consume liquidity when bid-ask
spreads are relatively narrow, they supply liquidity when bid-
ask spreads are relatively wide. This suggests that algorithmic
traders provide a more consistent level of liquidity through
time. Broggard ([3]) and Herdershoot et al. ([23]) work
with Nasdaq data that flag whether trades involves HFT.
Herdershott et al. ([23]) find that HFT accounts for about
42% of (double-counted) Nasdaq volume in large-cap stocks
but only about 17% of volume in small-cap stocks. They
estimate a state-space model that decomposes price changes
into permanent and temporary components, and measures
the contribution of HFT and non-HFT liquidity supply and
liquidity demand to each of these price change components.
They find that when HFTs initiate trades, they trade in the
opposite direction to the transitory component of prices.
Thus, HFTs contribute to price discovery and contribute
to efficient stock prices. Brogaard ([3]) similarly finds that
68% of trades have an HFT on at least one side of the
transaction, and he also finds that HFT participation rates
are higher for stocks with high share prices, large market
caps, narrow bid-ask spreads, or low stock-specific volatility.
He estimates a vector autoregressive permanent price impact
model and finds that HFT liquidity suppliers face less adverse
selection than non-HFT liquidity suppliers, suggesting that
they are somewhat judicious in supplying liquidity. Kirilenko
et al. ([4]) use account-level tick-by-tick data on the E-
Mini S&P 500 futures contract, and they classify traders into
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various categories, including HFTs, opportunistic traders,
fundamental traders and noise traders. Benos et al. ([5])
conduct a similar analysis using UK equity data. These
different datasets provide considerable insight into overall
HFT trading behavior.

Traders aim to optimize their decisions overtime and
consequently maximize their reward under different market
conditions. We can theoretically use reward functions to
represent the value system that are encapsulated in the
various different trading strategies. It is possible to derive
new policies based on the reward functions learned and apply
them in a new environment to govern a new autonomous
process. This process is defined as reward learning under
the framework of inverse reinforcement learning (IRL) ([24],
[25], [6]). For example, a simple keep-or-cancel strategy for
buying one unit, the trader has to decide when to place the
order and when to cancel the order based on the market
condition which may likely be characterized as a stochastic
process. However the value proposition for the trader is to
buy one unit of the security at the lowest price possible. This
could be realized in a number of ways. It could be described
as a reward function meaning when the system is in a par-
ticular state, the trader is always looking for a fixed reward.
This notion of value proposition drives the trader to take
corresponding actions according to the market conditions.
This ultimately constitutes trader’s policies or strategies.
Therefore a strategy under certain value proposition can be
consistently programmed in algorithms to achieve its goal
of buy-one-unit in an optimal way. Consequently, strategies
developed under certain value frameworks can be observed,
learned and even reproduced in a different environment
(such as a simulated financial market where impact of these
strategies can be readily assessed). As documented in [8],
[9], [10], manipulative or disruptive algorithmic strategies
can be studied and monitored by market operators and
regulators to prevent unfair trading practices. Furthermore,
new emerging algorithmic trading practices can be assessed
and new regulations and policies can be evaluated to maintain
the overall health of the financial markets.

In this study, we model the trading behavior of different
market participants in terms of a Markov decision process
(MDP). In this model, states are defined in terms of the
quantity of orders in each of a coarse set of bins imposed
upon the limit order book. Actions are limited to initiating
limit or market orders or canceling existing orders. IRL is
used to learn the reward function for the MDP on the basis
of observations of trader actions.

IRL was first introduced in machine learning literature by
Ng et al. ([24]) in formulating it as an optimization problem
to maximize the sum of differences between the quality of
the optimal action and the quality of the next-best action. It is
founded on the presupposition that the reward function, rather
than policy, is the most succinct, robust, and transferable
definition of the task. However, the reward function is often
difficult to know in advance for some real-world tasks, which
gives motivation to the idea of learning from observations.

Technical approaches to learning from observations generally
fall into two broad categories ([7]). The first category, called
imitation learning, attempts to use supervised learning to
predict actions directly from observations of features of the
environments, which is unstable and vulnerable to highly
uncertain environment. The second category is concerned
with how to learn the reward function that characterizes
the agent’s objectives and preferences in MDP ([24]). The
principal idea of apprenticeship learning using IRL is to
search mixed solutions in a space of learned policies with
the goal that the cumulative feature expectation is near that
of the expert ([25] and [15]).

The remainder of this paper is organized as follows:
First, we discuss the framework of which we use to model
market dynamics and the traders’ decisions. In section III,
we extend the MDP and introduce IRL formulation. We
discuss the original linear IRL formulation and provide a
Bayesian probabilistic model to infer the reward function
using Gaussian processes IRL (GPIRL). We apply the GPIRL
algorithm to the E-Mini S&P 500 Futures market as exper-
iments in section IV-B. We show that the GPIRL approach
can accurately capture algorithmic trading behavior based on
observations of the high frequency data. Finally in Section
V we provide concluding remarks about the GPIRL and its
applications.

II. MARKOV DECISION PROCESS MODEL OF MARKET
DYNAMICS

In this section, we develop a Markov decision process
(MDP) model of trader behavior. This model will then serve
as the basis for the inverse reinforcement learning process
described in section III.

A. MDP Background and Notation
The primary aim of our trading behavior-based learning

approach is to uncover decision makers’ policies and reward
functions through the observations of an expert whose deci-
sion process is modeled as an MDP. In this paper, we restrict
our attention to a finite countable MDP for easy exposition,
but our approach can be extended to continuous problems
if desired. A discounted finite MDP is defined as a tuple
M = (S,A,P, γ, r), where
• S = {sn}Nn=1 is a set of N states. Let N =
{1, 2, · · · , N}.

• A = {am}Mm=1 is a set of M actions. Let M =
{1, 2, · · · ,M}.

• P = {Pam}
M
m=1 is a set of state transition probabilities

(here Pam is a N ×N matrix where each row, denoted
as Pam(sn, :), contains the transition probabilities upon
taking action am in state sn. The entry Pam(sn, sn′)
is the probability of moving to state sn′ , n′ ∈ N in the
next stage.).

• γ ∈ [0, 1] is a discount factor.
• r denotes the reward function, mapping from S ×A to
< with the property that

r(sn, am) ,
∑
n′∈N

Pam(sn, sn′)r(sn, am, sn′)
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where r(sn, am, sn′) denotes the function giving the reward
of moving to the next state sn′ after taking action am in
current state sn. The reward function r(sn, am) may be
further reduced to r(sn), if we neglect the influence of
the action. We use r for reward vector through out this
paper. If the reward only depends on state, we have r =
(r(s1), . . . , r(sN )). If we let r be the vector of the reward
depending on both state and action, we have

r = (r1(s1), ..., r1(sN )︸ ︷︷ ︸, . . . , rM (s1), . . . , rM (sN )︸ ︷︷ ︸)
= ( r1, · · · , rM ).

B. Optimal Markov Decision Model

In an MDP, the agent selects an action at each sequen-
tial stage, and we define a policy (behavior) as the way
that the actions are selected by a decision maker/agent.
Hence this process can be described as a mapping be-
tween state and action, i.e., a random state-action sequence(
s0, a0, s1, a1, · · · st, at, · · ·

)
, 1 where st+1 is connected to

(st, at) by Pat(s
t, st+1).

We also define rational agents as those that behave ac-
cording to the optimal decision rule where each action
selected at any stage maximizes the value function. The value
function for a policy π evaluated at any state s0 is given as
V π(s0) = E[

∑∞
t=0 γ

tr(st, at)|π]. This expectation is over
the distribution of the state sequence

{
s0, s1, ...

}
given the

policy π =
{
µ0, µ1, · · ·

}
, where at = µt(st), µt(st) ∈

U(st) and U(st) ⊂ A. The objective at state s is to choose a
policy that maximizes the value of V π(s). The optimal policy
is then V ∗(s0) = supπ E[

∑∞
t=0 γ

tr(st, at)|π]. Similarly,
there is another function called the Q-function (or Q-factor)
that judges how well an action is performed in a given state.
The notation Qπ(s, a) represents the expected return from
state s when action a is taken and thereafter policy π is
followed.

III. INVERSE REINFORCEMENT LEARNING

Given an MDP M = (S,A,P, γ, r), let us define
the inverse Markov decision process (IMDP) MI =
(S,A,P, γ,O). The process MI includes the states, actions,
and dynamics of M, but lacks a specification of the reward
function, r. By way of compensation, MI includes a set of
observations O that consists of state-action pairs generated
through the observation of a decision maker. We can define
the inverse reinforcement learning (IRL) problem associated
with MI = (S,A,P, γ,O) to be that of finding a reward
function such that the observations O could have come
from an optimal policy for M = (S,A,P, γ, r). The IRL
problem is, in general, highly under-specified, which has led
researchers to consider various models for restricting the set
of reward functions under consideration. Ng et al. ([24]),
in a seminal consideration of IMDPs and associated IRL
problems, observed that, by the optimality equations, the only

1Superscripts represent time indices. For example st and at, with the
upper-index t ∈ {1, 2, · · · }, denote state and action at the t-th horizon
stage, while sn (or am) represents the n-th state (or m-th action) in S (or
A).

reward vectors consistent with an optimal policy π are those
that satisfy the set of inequalities

(Pπ −Pa)(I− γPπ)−1r ≥ 0,∀a ∈ A, (1)

where Pπ is the transition probability matrix relating to
observed policy π and Pa denotes the transition probability
matrix for other actions. Note that the trivial solution r = 0
satisfies the constraints (1), which highlights the under-
specified nature of the problem and the need for reward
selection mechanisms. In this study, we learn the reward
function with IRL and then directly use the rewards as
features for classifying and clustering traders or trading
algorithms.

A. Linear IRL

Ng et al. ([24]) advance the idea choosing the reward
function to maximize the difference between the optimal
and suboptimal policies, which can be done using a linear
programming formulation.

Most of the existing IRL algorithms make some as-
sumption about the form of the reward function. Prominent
examples include the model ([24]), which we term linear
IRL (LIRL) because of its linear nature. In LIRL, the reward
function is written linearly in terms of basis functions, and
effort is made to maximize the quantity∑

s∈S
[Qπ(s, a′)− max

a∈A\a′
Qπ(s, a)],∀a ∈ A. (2)

The optimization problem in [24] is equivalent to the follow-
ing optimization program:

maxr

∑
s∈Sβ(s) −λ

∑
s∈S |r(s)|

s.t.
(Pπ −Pa)(I− γPπ)−1r ≥ β(s), ∀a ∈ A,∀s ∈ S

β(s) ≥ 0, ∀s ∈ S,

where λ is a regularization parameter included to encourage
sparse solution vectors. Yang et al. ([8]) used this approach
to find a feature space that can be used to classify and cluster
simulated trading agents.

B. Bayesian IRL Framework

Ramachanjan et al. ([6]) originally proposed a Bayesian
Framework for IRL. The posterior over reward is written as

p(r|O) = p(O|r)p(r) ∝
∏

(s,a)∈O

p(a|s, r).

Then, the IRL problem is written as maxr log p(O|r) +
log p(r). For many problems, however, the computation
of p(r|O) may be complicated and some algorithms use
Markov chain Monte Carlo (MCMC) to sample the posterior
probability. Below we adopt a different approach that uses the
idea of selecting reward on the basis of maximum a posteriori
(MAP) estimate computed using convex optimization.
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C. Gaussian Process IRL

Given the complex state space associated with trading, one
may observe a trading strategy at length with out learning
the entirety of the policy. Trading strategies vary in the
time horizons over which they are defined. Therefore, the
observation period becomes critical to the learning process.
Furthermore, two types of errors may be introduced into our
observations: The first type of error may be introduced during
our modeling process. Resolution of these discrete models
will introduce errors into our observations. The second
potential source of error is the strategy execution process.
Execution errors will occur due to the uncertainty of market
movements and will eventually appear in our observations,
confounding our efforts to determine the true policy. Overall,
there are two types of challenges in this learning problem:
the uncertainty about reward functions given the observation
of decision behavior and the ambiguity involved in observing
multiple actions at a single state.

Qiao and Beling ([29]) argue for two different modeling
techniques in learning reward functions. To lessen the ambi-
guity of observing multiple actions at a state, they argue that
Bayesian inference should be the basis for understanding the
agent’s preferences over the action space. This argument is
reasonable because the goal of IRL is to learn the reward
subjectively perceived by the decision maker from whom
we have collected the observation data. The intuition is that
decision makers will select some actions at a given state
because they prefer these actions to others. These preferences
are among the countable actions that can be used to represent
multiple observations at one state.

In the following, we first introduce the preference theory
for the IMDP model, and then we formalize the idea of
modeling the reward function as a Gaussian process under
the Bayesian inference framework.

1) Action Preference Learning: In this section, we first
define the action preference relationship and the action
preference graph. At state sn, ∀â, ǎ ∈ A, we define the action
preference relation as:

1) Action â is weakly preferred to ǎ, denoted as â �sn ǎ,
if Q(sn, â) ≥ Q(sn, ǎ);

2) Action â is strictly preferred to ǎ, denoted as â �sn ǎ,
if Q(sn, â) > Q(sn, ǎ);

3) Action â is equivalent to ǎ, denoted as â ∼sn ǎ, if and
only if â �sn ǎ and ǎ �sn â.

An action preference graph is a simple directed graph
showing preference relations among the countable actions
at a given state. At state sn, the action preference graph
Gn = (Vn, En) comprises a set Vn of nodes together with a
set En of edges. For the nodes and edges in graph Gn, let
us define

1) Each node represents an action in A. Define a one-to-
one mapping ϕ : Vn → A.

2) Each edge indicates a preference relation.
Furthermore, we make the following assumption as a rule

to build the preference graph, and then we show how to draw
a preference graph at state sn:

(a) (b)

Fig. 1. Examples Preference Graphs: (a) An example of observing two
actions at a state. (b) An example of a unique observation at a state.

At state sn, if action â is observed, we have the following
preference relations: â �sn ǎ,∀ǎ ∈ A \ {â}.

The variable â is observed if and only if â ∈
arg maxa∈AQ(sn, a). Therefore, we have

Q(sn, â) > Q(sn, ǎ), ∀ǎ ∈ A \ {â}

According to the definition of preference relations, it follows
that if Q(sn, â) > Q(sn, ǎ), we have â �sn ǎ. Hence, we
can show that the preference relationship has the following
properties:

1) If â, ǎ ∈ A, then at state sn either â �sn ǎ or ǎ �sn â.
2) If â �sn ǎ or ǎ �sn ã, then â �sn ã.
According to Qiao and Beling ([29]), we can represent O

as shown in Figure (1). At state sn, its action preference
graph is constructed by a two-layer directed graph: a set
of nodes V+

n in the top layer and a set of nodes V−n in the
bottom layer. Under the non-deterministic policy assumption,
we adopt a reward structure depending on both state and
action.

2) Gaussian Reward Process: Recall that the reward
depends on both state and action, and consider rm, the reward
related to action am, as a Gaussian process. We denote by
km(si, sj) the function generating the value of entry (i, j)
for covariance matrix Km, which leads to rm ∼ N(0,Km).
Then the joint prior probability of the reward is a product
of multivariate Gaussian, namely p(r|S) =

∏M
m=1 p(rm|S)

and r ∼ N(0,K). Note that r is completely specified by
the positive definite covariance matrix K, which is block
diagonal in the covariance matrices {K1,K2...,KM} based
on the assumption that the reward latent processes are
uncorrelated. In practice, we use a squared exponential kernel
function, written as:

km(si, sj) = e
1
2 (si−sj)Tm(si−sj) + σ2

mδ(si, sj),

where Tm = κmI and I is an identity matrix. The function
δ(si, sj) = 1, when si = sj ; otherwise δ(si, sj) = 0.
Under this definition the covariance is almost unity between
variables whose inputs are very close in the Euclidean space,
and decreases as their distance increases.

Then, the GPIRL algorithm estimates the reward function
by iteratively conducting the following two main steps:
(a) Get estimation of rMAP by maximizing the posterior

p(r|O), which is equal to minimize − log p(O|r) −
log p(r|θθθ), where θθθ denotes the vector of hyper-
parameters including κm and σm that control the Gaus-
sian process.
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(b) Optimize the hyper-parameters by using gradient decent
method to maximize log p(O|θθθ, rMAP ), which is the
Laplace approximation of p(θθθ|O).

3) Likelihood Function and MAP Optimization: GPIRL
adopts the following likelihood functions to capture the strict
preference and equivalent preference respectively.

p((â �sn ǎ)k|r) = Φ(
Q(sn, â)−Q(sn, ǎ)√

2σ
) (3)

p((â ∼sn â′)l|r) ∝ e− 1
2 (Q(sn,â)−Q(sn,â

′))2 (4)

In Eq. 3, the function Φ(x) =
∫ x
−∞N(v|0, 1)dv, where

N(v|0, 1) denotes a standard Gaussian variable.
The probabilistic IRL model is controlled by the kernel

parameters κm and σm which compute the covariance matrix
of reward realizations, and by σ which tunes the noise level
in the likelihood function. We put these parameters into
the hyper-parameter vector θθθ = (κm, σm, σ). More often
than not, we do not have prior knowledge about the hyper-
parameters. And then we can apply maximum a posterior
estimate to evaluate the hyper-parameters.

We use G to denote the action preference graph. Essen-
tially, we now have a hierarchical model. At the lowest level,
we have reward function values encoded as a parameter
vector r. At the top level, we have hyper-parameters in θθθ
controlling the distribution of the parameters. Inference takes
place one level at a time. At the bottom level, the posterior
over function values is given by Bayes’ rule:

p(r|S,G, θθθ) =
p(G|S, θθθ, r)p(r|S, θθθ)

p(G|S, θθθ)
. (5)

The posterior combines the prior information with the
data, reflecting the updated belief about r after observing
the decision behavior. We can calculate the denominator in
Eq.5 by integrating p(G|S, θθθ, r) over the function space with
respect to r, which requires a high computational capacity.
Fortunately, we are able to maximize the non-normalized
posterior density of r without calculating the normalizing
denominator, as the denominator p(G|S, θθθ) is independent of
the values of r. In practice, we obtain the maximum posterior
by minimizing the negative log posterior, which is shown to
be convex in [29].

IV. E-MINI MARKET DATA DESCRIPTION

The E-Mini S&P 500 is a stock market index of fu-
tures contracts traded on the Chicago Mercantile Exchange’s
(CME) Globex electronic trading platform. The notional
value of one contract is $50 times the value of the S&P
500 stock index. The tick size for the E-Mini S&P 500 is
0.25 index points or $12.50. The CME Globex matching
algorithm for the E-Mini S&P 500 offers strict price and time
priority. Specifically, limit orders that offer more favorable
terms of trade (sell at lower prices and buy at higher prices)
are executed prior to pre-existing orders. Orders that arrived

earlier are matched against the orders from the other side
of the book before other orders at the same price. This
market operates under complete price transparency. This
straight forward matching algorithm allows us to reconstruct
the order book using audit trail messages archived by the
exchanges and allows us to replay the market dynamics at
any given moment.

In this paper, empirical work is based on a month of E-
Mini order book audit trail data. The audit trail data includes
all the order book events timestamped at a millisecond
time resolution, and contains the following data fields: date,
time (the time when the client submits the order to the
exchange), conf time (the time when the order is confirmed
by the matching engine), customer account, tag 50 (trader
identification number), buy or sell flag, price, quantity, order
ID, order type (market or limit), and func code (message
type, e.g. order, modification, cancellation, trade, etc.).

A. Constructing an MDP Model from Order Book Data

The order book audit trail data contains the entire order
history i.e. order creation, order modifications, fills, cancel-
lation, etc. To construct an MDP model of trader behavior,
we first reconstruct the limit order book using the audit
trail messages. The order book then contains bid/ask prices,
market depth, liquidity, etc. During this process on the E-
Mini data, we processed billions of messages for each trading
date, and built price queues using the price and time priority
rule.

Once we have the order book at any given event tick, we
take the market depth at five different levels as our base
variables and then discretize these variables to generate an
MDP model state space. This study extends the MDP model
documented by Yang et al. ([8]) to obtain five variables, i.e.,
order volume imbalance between the best bid and the best
ask prices, order volume imbalance between the 2nd best bid
and the 2nd best ask prices, order volume imbalance between
the 3rd best bid and the 3rd best ask prices, the order book
imbalance at the 5th best bid and the 5th ask prices, and the
inventory level/holding position (see Figure 2 (b)). Then we
discretize the values of the five variables into three levels
defined as high (above µ+ 1.96σ), neutral (µ± 1.96σ), and
low (below µ − 1.96σ). Based on our observation that the
first 3 best bid and ask prices change the most, we select the
first 3 level order book imbalance variables in modeling the
limit order book dynamics. As argued by Yang et al. ([8]),
these volume-related variables reflect the market dynamics
on which the traders/algorithms depend to place their orders
at different prices.

As the volume imbalance at the best bid/ask prices is the
most sensitive indicator of the trading behavior of HFTs,
Intermediaries and some of the Opportunistic traders, we
also hypothesize that the volume imbalance at other prices
close to the book prices will be useful in inferring trader
behavior. As demonstrated in previous work ([8]), the private
variable of a trader’s inventory level provides critical infor-
mation about trader’s behavior. Traders in high frequency
environments strive to control their inventory levels as a
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critical measure of controlling the risk of their position ([4]
and [22]). HFTs and Market Makers tend to turn over their
inventory level five or more times a day and to hold very
small or even zero inventory positions at the end of the
trading session. These observations provide strong support
for the introduction of a position variable to characterize
trader behavior in our model. Therefore, together with the
volume imbalance variables, we propose a computational
model with 35 = 243 states.

Next, we need to define the action space. In general, there
are three types of actions: placing a new order, canceling an
existing order, or placing a market order. We divide the limit
order book into 10 buckets at any given point of time by the
following price markers: the best bid price, the 2nd best bid
price, the 3rd best bid price, between the 4th and 5th bid
prices, below the 5th best bid price, the best ask price, the
2nd best ask price, the 3rd best ask price, between the 4th
and 5th ask prices, and above the 5th best ask price. Then,
at any given point of time, a trader can take 22 actions. The
price markers used to define the price ranges are illustrated
in Figure (2).

B. Experiment with the E-Mini S&P 500 Futures Market

In this section, we conduct an experiment using the MDP
model defined earlier to identify algorithmic trading strate-
gies. We consider the six trader classes defined by Kirilenko
et al. ([4]), namely High Frequency Traders, Market Makers,
Opportunistic Traders, Fundamental Buyers, Fundamental

Fig. 2. Order Book MDP Model: This graph shows the state variables
used in the MDP model.

Sellers and Small Traders. As we argue earlier, the focus
of our study will be more on HFTs and Market Makers
due to the large daily volume and their potential impact to
the financial markets. In Kirilenko et al. ([4])’s paper, there
are only about from 16 to 20 HFTs on the S&P500 Emini
market. Although this is a small population, their impact to
the market has drawn increased attention from policy makers,
regulators and academia. That is why we focus our attention
on this small population. Among the roughly 10,000 trading
accounts for the S&P500 Emini market, we narrow down to
about 120 accounts based their high daily trading volume. In
the experiment, we select the top 10 trading accounts by their
volume and end-of-the-day positions, which guarantees our
subjects are HTFs, the high impact population of algorithmic
trading strategies.

C. Trader Behavior Identification

Yang et al. ([8]) examine different trading behaviors using
a linear IRL (LNIRL) algorithm with the simulated E-Mini
S&P 500 market data. That MDP model contains three
variables: the volume imbalance at the bid/ask prices, the
volume imbalance at the 3rd best bid/ask prices, and the
position level. Although this MDP model is relatively simple,
it is evident from the experimental results that the IRL reward
space is effective in identifying trading strategies with a
relatively high accuracy rate.

D. Multi-class SVM Trader Classifier using GPIRL vs.
LNIRL

In this section, we use support vector machine (SVM)
classification method to identify traders based on reward
functions that we recover from the observations of the
trader’s behaviors. We select a group of traders whose
behaviors are consistently observed during the period we
study. The primary reason for choosing SVM classification
method is its flexibility that we can explore feature separation
in different high dimensional spaces using kernel functions.

We select 10 trading accounts with the highest average
daily trading volume over a period of 4 weeks (20 days)
in our experiment. We define an observation instance as a
continuous period covering two hours where we take all
the activities from a particular trader including placing new
orders, modifying and canceling existing orders, and placing
market orders. For each trader, we take four observation
instances on each trading day: two observation instances
in the morning trading and two observation instances in
the afternoon trading. The two observation periods in the
morning and in the afternoon have one hour overlapping
time, but the observations in the morning and the afternoon
do not overlap. We do so based on the general theory of
intraday U-shaped patterns in volume - namely, the heavy
trading in the beginning and the end of the trading day and
the relatively light trading in the middle of of the day. This
has been documented in a number of studies ([16], [17], [18],
and [19]).

We assume stationary policies for the MDP decision pro-
cess. We perform an empirical test to verify this assumption.
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In this test, we take all the top 10 trading accounts and
increase our observation window from 5 minutes to 5 hours.
We observe from Figure (3) a) that at roughly 2 hour mark,
which is our 12th sample, almost all the trading reward
functions start to flatten out. It is therefore safe for us
to assume our two-hour observation window will capture
reward variation, and that the two-hour observation window
is a good cut-off. With overlapping instances both in the
morning and the afternoon we expect to capture U-shaped
pattern for the market.

In general, the support vector machine classifier can handle
both separable and non-separable cases. Furthermore through
choosing a proper kernel function, the original feature space
can be coerced into a transformed feature space to handle
nonlinear boundary problems. Here we build an optimal
SVM model for classification using a training dataset. In
this tuning process the 10-fold cross-validation method will
be used to pick the best penalty parameter gamma and cost
parameter. We tried cost values in the ranges of [0.25-0.5],
[0.5-1], [1-2], and [2-4] and gamma in the range of [0.0001,
0.001], [0.001, 0.01], [0.01, 0.1] and [0.1, 1]. We found that
when gamma = 0.001 and cost=0.06, we have the lowest
error rate of 10% for the training dataset. The total number
support vectors used is 132.

We constructed 80 sample trajectories for each of the
top 10 trading accounts. While there are 120 trading ac-
counts consistently traded over the 4-week period, this study
focuses on the top 10 trading accounts. We apply both
the LNIRL ([24] and [8]), and GPIRL ([29]) to these 800
samples. And then we apply the SVM algorithm to the
10 traders using pair-wise classification. For each pair, we
first train a SVM classifier (with Gaussian kernel) with 60
randomly selected samples, and test the classification on the
remaining 20 samples. We repeat the sampling 100 times
and then take the average classification accuracy. We list
both LNIRL classification results in Table I, and GPIRL
results in Table II. In these two tables, rows and columns
represent anonymous trader IDs. On average, LNIRL gives
a classification accuracy of 0.6039, while GPIRL achieves
a classification accuracy of 0.9650. This result confirms our
earlier assumption that GPIRL performs better when we have
incomplete observations, and incorporate non-deterministic
policies through Gaussian preference learning.

V. CONCLUSIONS

The primary focus of this paper is to use Inverse Re-
inforcement Learning to capture the key characteristics of
the HFT strategies. From the results using both linear pro-
gramming and Gaussian process methods for solving an IRL
problem with a E-Mini S&P 500 futures market dataset,
we attain a high identification accuracy ranging between
95% and 99% for the targeted trading strategy class using
GPIRL. From our experiments on real market data, we find
we can identify individual trading strategies with certain
accuracy. It means that certain trading strategies that have
unique characteristics can be identified with a satisfactory

(a)

(b)

Fig. 3. Reward Trajectory Convergence: (a). LIRL (b). GPIRL

accuracy. We also argue that reward space is better suited
for identification of trading strategies than policy space.

We investigate and address the issues of modeling algorith-
mic trading strategies using IRL models such as, addressing
non-deterministic nature of the observed policies in learning,
constructing efficient MDP models to capture order book
dynamics, achieving better identification accuracy in reward
space, etc. The practical implication of this research is that
we demonstrate that the market operators and regulators
can use this behavior based learning approach to perform
trader behavior based profiling, and consequently monitor
the emergence of new HFTs and study their impact to the
market.
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