
 
 

 

  

Abstract - Signals measured by electroencephalogram (EEG) 
arrays were decomposed using Hilbert Transformations to 
produce the spatial amplitude and phase modulation (AM and 
PM) patterns. Spatial PM patterns intermittently exhibit 
synchronization-desynchronization transitions. During 
desynchronization, the spatial PM patterns intermittently 
conform to conic shapes. These phase cones mark the onset of 
emergent AM patterns, which carry cognitive content.  In this 
work, various temporal band pass filters were applied to study 
the frequency dependence of phase cones in the beta-gamma 
range (10-40 Hz). The results are interpreted in the context of 
the cognitive cycle of knowledge generation. 

I. INTRODUCTION 
dentification of spatio-temporal spontaneous and input 
induced synchronization-desynchronization events in 
cortical populations poses a difficult problem due to the 

noisy and transient character of the processes involved [1], 
[2]. We propose to use optimized band-pass filtering and 
dynamic logic-based neural networks for this identification 
task.  Dynamic Logic (DL) neural network is based on 
expectation maximization algorithm to optimally select 
model parameters [3], [4]. 
  In this paper we utilize the DL-based learning method for 
analyzing spatially distributed EEG distributions. EEG 
signals are highly nonlinear and various advanced methods 
have been developed to characterize them [5]. First, we apply 
spatio-temporal filtering to the rabbit EEG dataset [6] to 
remove any extraneous noise from the signal.  Then we utilize 
the corresponding DL equations applicable to the case of time 
varying EEG [7], [8]. We describe the algorithm to solve 
these equations and estimate the model parameters [9]. We 
analyze in detail the frequency-dependence of the phase 
cones. We interpret the obtained results in the context of the 
cognitive cycle [10], [11]. Our results indicate that phase 
cones are relevant to the synchronization-desynchronization 
transitions in EEG patterns manifesting the conversion of 
sensory information into meaningful knowledge during 
cognitive processing.  

II. METHODOLOGY 
In order to reveal successive spatial patterns within EEG 

waves, an optimal temporal band pass filter must be designed. 
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In prior studies the ultimate criterion for choosing the upper 
and lower cut-off frequencies was optimization of the 
classification of spatial patterns of amplitude modulation of 
brief epochs of gamma oscillations (AM patterns) with 
respect to conditioned stimuli [6] [12].   

Temporal band pass filtering, preceded by spatial low pass 
filtering, enabled phase cone detection. Analysis of rabbit 
EEG data with implanted arrays of 64 electrodes indicated 
that processing the EEG data in 0.2 seconds provided the 
most consistent set of phase cone display over the time series 
[6]. The distributions of phase gradients were bimodal, i.e., 
on average across all sets about half had phase lead 
(‘explosion’) and half had phase lag (‘implosion’) [13]. Pre- 
and post-stimulus time intervals showed higher than average 
probabilities of cones.   

 

A. Phase Transitions and their Relation to Phase Cones 
 
   Widespread synchrony in oscillations in background brain 
activity is seen within the beta-gamma frequency range. 
Temporally the synchrony was interrupted but then 
re-established in phase jumps.  Each jump lasted only a few 
ms and recurred at irregular intervals, yet successive jumps 
were nearly simultaneous, even over long distances.  The 
olfactory bulb and neocortical areas were found to generate 
spatial patterns of amplitude modulation (AM) during 
oscillations in the beta and gamma ranges.   Phase cones are 
manifestations of state transitions in the mesoscopic 
dynamics of sensory cortices, by which intermittent AM 
patterns are formed [13]. Each AM pattern expressed a state 
of the cortex, which formed by an abrupt change in the 
cortical dynamics known as a phase transition. Each phase 
transition had four steps. The very rapid spread of 
re-initialization of the phase of the beta-gamma activity was 
followed by re-synchronization, then by the stabilization of a 
pattern, and an increase in amplitude of the AM pattern. 
These phase-locked spatial patterns in the EEG revealed 
organizations of cortical activity that were termed “wave 
packets” [14], [15], [16]. Successive AM wave packets 
resembled frames in a cinema with successive spatial patterns 
held briefly [11]. The AM patterns observed in sensory areas 
were statistically related to conditioned stimuli, not so much 
to the features of the stimuli as to the categories of the stimuli 
that provided for the meanings of the stimuli for the animals 
[17], [18]. 
   From the standpoint of modeling, the cone is significant as a 
potential marker for the occurrence of phase transitions in 
cortical dynamics [11], [19]. In a distributed system a phase 
transition is unlikely to occur everywhere at the same instant. 
It begins at one point called a site of nucleation and spreads 
radially across the system [13], just as a snowflake or a 
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raindrop enlarges with radial symmetry. When a new cortical 
state appears that is expressed in a shared oscillatory 
waveform, the delay in onset imposes a radially symmetric 
gradient in the phase that is defined at the peak frequency of 
the dominant component. 
 

B.  Phase Cone Organization 
 

Phase cones are present at different frequencies.  A theory 
is provided that discusses the manner in which phase cones 
are organized throughout an EEG time series.  When viewed 
from the proper perspective, the seemingly chaotic 
environment becomes clear. The background EEG, especially 
at the scalp, reveals robust, structured dynamics which 
manifest the mechanics of self-organization that regulate the 
multiple brain systems adapting the brain and body to an 
ever-changing environment. A way to understand the phase 
patterns is to see cones as resembling avalanches. Their times 
and locations of onset are predictable not locally but only in 
the average. They overlap so that any grain of sand or neuron 
may participate in multiple cones or avalanches 
simultaneously. The sizes and durations of cones and 
avalanches give histograms that are fractal [11]. 
   In the 2-dimensional spatial domain, a radially symmetric 
circular cone is displayed with respect to the gradient of a 
plane.  Validation of choosing the cone as the spatial basis 
function comes from comparing the results of measurement 
with known anatomical, physiological and behavioral 
properties of the EEG.  Measurements of the gradient of the 
cone give estimates of the phase velocity that fall within the 
known range of conduction velocities of axons running 
parallel to the pia [12], 13]. 
   When the brain is in a relaxed state, the basal state activity 
of the mesoscopic organization of neurons is more uniform or 
“symmetric”. When sensory input is manifested in the brain, a 
phase transition is induced that breaks the symmetry [6].  The 
mechanism of destabilization is provided by the nonlinear 
gain function that governs the conversion of dendritic wave 
density to axonal pulse density at the trigger zones in 
populations of neurons [14]. The symmetry- breaking can be 
either by implosion or explosion, meaning lead or lag at the 
apex of the cone. 

III. EXPERIMENTATION 
 

Data has been obtained at rabbit chronically implanted 
with an 8x8 array of EEG sensors [6]. Preprocessing of the 
signal is conducted as follows: 
 
• Starting with the raw EEG time series (Fig. 1), spatial 

low-pass filtering (across channels) and temporal (across 
time) band pass filtering is applied. 

• Initial bandwidth activity is set between 20-80Hz. 
• Entire data set is normalized to unit standard deviation. 
• Hilbert transformation is applied to the pre-processed 

data: 
 

Xj(t)= xj(t)+xj’(t)                           (1)  
 

Here xj(t) and xj’(t) are the real and imaginary part, 
respectively, of the signal of the j-th channel, j=1,…, 64.   

 
 
Figure 1. Raw visual EEG signals for all 64 channels; note the significant 
variation in the signals following the stimulus (light flash) at 3000 ms. 
 
 

The Analytic Phase (Pj(t)) and Analytic Amplitude (Aj(t)) 
are given by the following formula: 

 
          Xj(t) =  (2)                      . (ݐ)݆݂ܲ݅݁(ݐ)jܣ  
 

The Analytic Phase (AP) is calculated for each channel. It 
is given by the arc tangent of the ratio of the imaginary and 
real part of the signal. The Analytic Amplitude (AA) is also 
calculated for each channel, and is given by the square root of 
the squares of the imaginary and real parts of the signal. 

The Hilbert Transform is calculated for each channel in the 
8x8 array. In this manner, we can find the frequency 
components of a signal buried in a noisy time domain signal 
and which part of the signal produces the strong peaks.  The 
phase angles, in radians, are computed for each element of the 
complex array.  

IV. DETECTION METHODOLOGY  
 

Numerous observations of the ECoG phase patterns lead to 
the hypothesis that the phase gradient starts at a single point, 
called apex [6], [19]. Following its initiation, the phase 
gradient propagates with constant lateral velocity through the 
cortex, resulting in a cone shaped pattern of phase 
differences. We assume that the height of the cone at the apex 
changes linearly with time. The parts of the cortex not 
affected by the propagating phase gradient of the cone 
maintain an unchanged phase. Our cone detection method is 
based on finding the best fit between the data and the mixture 
of one or several propagating cones. Let ߦ and ߟ denote the 
position on the cortical surface in Cartesian coordinates. 
According to the cone hypothesis, phase propagation ݔො(ߟ,ߦ,t) 
in space and time is described as follows: 

 (3)                      , (vR/ (ߟ,ߦ)ߩ − t) vA = (ݐ,ߟ,ߦ)ොݔ  
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where vA is the rate of phase change at the apex (deg/s), vR is 
the lateral velocity of phase front in the cortex (m/s), (ߟ,ߦ)ߩ is 
the distance from apex (ߦA,ߟA), i.e., (ߟ,ߦ)ߩ = 
sqrt((ߦ-ߦA)2+(ߟ-ߟA)2). 

Following [9], a mixture model was designed to process a 
series of 8 by 8 frames and detect the occurrence of the cones 
over time. Given a set of H models that depend on a set of 
parameters S={Sh,h=1..H} and a set of data inputs X 
={xn,n=1..N}, the maximum likelihood estimate of the 
parameters is obtained by maximizing the following objective 
function: 
 

LL(ࡿ|ࢄ)=∑ ே௡ୀଵ݃݋݈ ∑ ௛ு௛ୀଵݎ ௡ݔ) |ℎ),             (4)  
 
with ݎℎ denoting model mixture proportions, and each model 
expressed as a probability density function:  
 

p(ݔ௡ |ℎ)=pdf(ݔ௡ |ܵ௛)                                       (5) 
 
We will write G(x | m, C) to denote a Gaussian density with 
mean m and variance C. We use the notation x(ߦ,η) for the 
value of the data at the electrode (ߦ,η). The cone model is then 
given as [15]: 
  

p((ߟ,ߦ)ݔ |ℎ)=G(ܥ ,(ߟ,ߦ)ߩܽ−ܾ| (ߟ,ߦ)ݔ௛)       (6)  
 
The unknown parameters of the cone model are the position 
of the apex, i.e., slope (a), height (b), and variance (C).  
 
     Sh={ܥ,ܽ,ܾ,ܣߟ,ܣߦℎ}, ℎ=1..(7)                   ܪ  
 
Here H is the maximum number of cones in the data. The 
constant phase model has index H+1, and it is given as:  
   (8)         (݊ܥ,݉|(ߟ,ߦ)ݔ)ܩ=(1+ܪ|(ߟ,ߦ)ݔ)݌     
 
The unknown parameters are: ܵ{݊ܥ,݉}=1+ܪ.                                                                              
 
Both models assume that the errors between the model and 
the data follow Gaussian distribution. The objective function 
takes the following form:  
 
LL(ࡿ|ࢄ)=∑  క଼ୀଵ ∑ ሾ௡଼ୀଵ ݃݋݈ ∑ ,ߦ)ݔ)݌ ℎ|(ߟ + ,ߦ)ݔ)݌  (ܪ|(ߟ +  1)ሿு௛ୀଵ     (9)  
 
The objective function is minimized in terms of error, using 
the following iterative procedure: 
  Association                 

f୦୬ =  r୦p(x୬|h)∑ r୦మp(x୬|h)H୦మୀଵ   Estimation    S୦Iାଵ = S୦Iାଵ +  α ∑ f୦୬N୬ୀଵ ப୪୭୥୮(୶౤|୦)பS౞             (11) 
  

Here the notation was changed to xn to show space, i.e., xn 
is equivalent to x(ξ,η) for some ξ and η. Procedure (11) is an 
iterative optimization algorithm that can be derived from the 
Expectation Maximization principle [4]. It is guaranteed to 
converge to a (possibly local) maximum of the objective 
function.  

The algorithm is generic and can work with any number of 
cones (H). Here, the number H=4 was selected because the 
current data does not contain more cones. H can be put to be a 
larger number when the algorithm is applied to a larger array 
or to human EEG. The local maximum avoidance is 
accomplished by forcing the algorithm to follow the 
vague-to-crisp path of convergence as proposed in [2]. This 
approach has a long history of successful applications in the 
area of target detection and tracking [3].  Results of single 
frame processing are chained together by considering pairs of 
frames and by identifying cones with closely located apices. 

V. RESULTS 
Frequency band pass ranges change the occurrence of 

phase cones at a given instance, such as after stimulation has 
been applied after 3 seconds.  Frequency band pass ranges 
provide different demarcations of phase jumps and the drop in 
analytic amplitude occurrences over time, seen in Figure 2.  
Figure 3 shows the formation of phase cones at the same 
instance per frequency band pass range. Since the phase of the 
signal is used to calculate phase cones, phase cone 
occurrences will be affected by band pass range selection.   

The calculation of the likelihood of phase cones is 
discussed previously, but an additional evaluation must take 
place to determine whether the cones detected fit into the 
criteria of ‘good’ cones, i.e., cones generated via event related 
potentials of brain activity vs. background random noise.   
The following criterion is applied to separate signals in the 
presence of strong noise: 
 

• Loglikelihood ratio to noise is less than threshold; 
• Length of the cone is greater than threshold (6 ms); 
• The apex or height of the cone is greater than a fixed 

threshold. 
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Figure 2.  The instantaneous frequency (top displays) and the log amplitude (bottom displays) change per frequency band pass range (a) 10-15 Hz, (b) 15-20 Hz, (c) 
20-25 Hz, (d) 25-30 Hz, (e) 30-35 Hz, and (f) 35-40 Hz. 
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Figure 3.  Illustration of phase cone formation; phase cones undergo significant changes as frequency band pass ranges change. 

 
Phase cone detection using the above criteria will provide 

the likelihood of a cone as 1, otherwise, 0.  Recordings of 
rabbit ECoG were calculated for the likelihood of phase cones 
per frequency band across the time series, after visual 
stimulation at time instant 3000 ms. The algorithm was 
applied to 8 data files recorded over the rabbit’s visual cortex. 
The detections of cones are shown in Fig. 4, which displays 
the overall duration of all cones detected in that frequency 
band. The phase cones are cumulatively calculated over 500 
ms time windows in Fig. 5. Phase cone cumulative duration 
varies widely in time and across frequencies without clear 
evolution pattern. 

 

 
It is known that phase cone activity occurs even during the 

resting period, i.e. before a stimulus is applied. A decrease in 
cone activity has been observed at time around 500 ms after 
stimulation [9]. This effect has been described in large 
chaotic systems that reflect a build-up, preceding the 
‘avalanche-effect’. The neocortex is unique among cortices in 
maintaining a state at the edge of criticality, in which the 
critical order parameter is the global level of neural synaptic 
interaction that everywhere locally regulated by homeostasis 
[13]. In the next section we discuss on the relation between 
the cone activity and the frequencies from alpha trough 
gamma bands. 
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Fig. 4. Cumulative duration of all cones following visual stimulation (>3000 ms).  Cone formations that last for more than 6 ms are depicted in each file 
instance, F152X122-F152X129. Durations are based on Log Likelihood calculations which provide the number of cone instances per frequency band pass 
range (a) 10-15 Hz-dark blue, (b) 15-20 Hz-magenta, (c) 20-25 Hz-green, (d) 25-30 Hz-purple, (e) 30-35 Hz-light blue, and (f) 35-40Hz -orange.   
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Fig. 5.  Average cumulative cone du

 

VI. DISCUSSION 
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clear distinction is seen between IV and V. For theta-alpha 
band in Fig. 6b, the stages are less clear. There seems a more 
protracted drop until ~3.5s, and an extended increase well 
beyond 4s. Clearly, detailed additional studies are needed to 
confirm and quantitatively characterize any possible effect of 
cognitive relevance. 

VII. CONCLUSIONS 
In this work, phase cones are identification to characterize 

changes in EEG signals with potential cognitive relevance. 
For ideal phase cone detection algorithm, band pass ranges 
must be automatically optimized. Here, we use band-pass 
filters with variable upper and lower limits as parameters of 
the identification process. Parameterization is vital to 
improve the signal to noise ratio for the detection of phase 
cones linked to cognitive events.  

We have shown that different frequency bands produce 
different frequency and different duration of the cones 
depending on the cognitive process in the poststimulus 
period. As various frequency bands have different cognitive 
functions, thus it is expected that different frequencies play 
different roles in cones formation as the cognitive cycle 
evolves. 

Detailed evaluation revealed phase cone patterns 
consistent with the anticipated cognitive cycle in response to 
sensory stimuli, in particular in the gamma band. Further 
studies will be conducted with increased temporal resolution 
over all frequencies. Eventually, ideal band-pass ranges will 
need to correspond to neural activity frequency related to 
cognitive processing.   
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