
 

 

 

 

Abstract—A principled approach to machine learning (ML) 

problems because of its mathematical foundations in statistical 

learning theory, support vector machines (SVM), a 

non-parametric method, require all the data to be available 

during the training phase.. However, once the model parameters 

are identified, SVM relies only, for future prediction, on a 

subset of these training instances, called support vectors (SV). 

The SVM model is mathematically written as a weighted sum of 

these SV whose number, rather than the dimensionality of the 

input space, defines SVM’s complexity. Since the final number 

of these SV can be up to half the size of the training dataset, 

SVM becomes challenged to run on energy aware computing 

platforms. We propose in this work Knee-Cut SVM (KCSVM) 

and Knee-Cut Ordinal Optimization inspired SVM 

(KCOOSVM) that use a soft trick of ordered kernel values and 

uniform subsampling to reduce SVM’s prediction 

computational complexity while maintaining an acceptable 

impact on its generalization capability. When tested on several 

databases from UCI, KCSVM and KCOOSVM produced 

promising results, comparable to similar published algorithms.  

Keywords—SVM; sparse decision rules; ordinal optimization; 

real time testing; supervised and binary classification 

I. INTRODUCTION 

sparse kernel and maximum margin machine learning 

(ML) approach, support vector machine (SVM) has 

found its way into a myriad of applications [1] since 

proposed by Vapnik [2]. Deeply rooted in statistical learning 

theory, SVM writes the optimal separating hyper plane that is 

equidistant from the classes as a weighted sum of a subset of 

the training set, referred to as support vectors (SV). Found 

after an optimization step involving an objective function 

regularized by an error term and a constraint using the 

Lagrangian relaxation, the final number of SV, which can be 

up to half the size of the training dataset, is data dependent 

and varies based on the data complexity, which is captured by 

the data dimensionality and the class separability, making 

SVM computationally too expensive real time prediction on 

platforms that are power challenged.  

Motivated to develop an energy aware SVM model to be 

deployed on resource challenged computing terminals such as 

mobile and handheld devices, we propose in this paper, 

Knee-Cut SVM (KCSVM) and Knee-Cut Ordinal 

Optimization inspired SVM (KCOOSVM), two novel 

algorithms that attempt, using soft computing concepts and 

the kernel trick, to reduce the time and resources needed by 

SVM to perform online prediction while minimizing the 

additional overhead needed during supervised training 
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without a significant loss in accuracy. KCSVM extracts 

boundary vectors in kernel space by retaining the vectors that 

have a distance less than a threshold, automatically computed 

and problem specific. Unlike [3], KCSVM and KCOOSVM 

use the kernel value as a distance measure between two 

vectors in kernel space and compute only the distances 

between vectors of different classes to minimize 

computations. A uniform sampling of the ordered kernel 

space allows the selection of the training set for KCOOSVM, 

which proved to be comparable in accuracy to existing 

methods while preserving a repeatable reduced model over a 

few databases from UCI [4]. Although these algorithms can 

be applied as a preprocessing block to any SVM training 

algorithm, most of the experiments were performed using 

libSVM’s [5] implementation which is considered by many 

the most popular and widely used implementation [6-7].  

The remainder of this paper is such that a literature review 

of relevant published work is presented in Section 2. KCSVM 

and KCOOSVM are detailed, after briefly discussing the 

basic concepts of SVM in Section 3. Section 4 presents our 

experimental results and Section 5 concludes the paper with a 

summary of the obtained results.  

II. LITERATURE REVIEW 

Many researchers have investigated computational 

improvements for this optimal and robust classifier to obtain a 

sparser decision rule.  

Burges addressed SVM’s slow online prediction by 

reducing the complexity of the decision rule using a post 

processing algorithm which finds an approximation to this 

complex decision rule, represented by a computed reduced set 

of vectors with predefined cardinality [8]. Although 

promising, Burges’ algorithm is not easy to implement and 

does not provide control over the resulting prediction 

accuracy [9]. Instead, [9] uses SV regression machines to 

approximate the hyper plane, obtained by training a standard 

SVM, by a subset of these SVs.  

Ref. [10] solves SVM’s optimization problem in the primal 

or dual formulation using a cutting planes based algorithm 

which results in efficient training and sparser decision rules.  

Ref. [11] retains the linearly independent SVs, produced by 

the SMO solver, using the row reduced echelon form. 

Although acceptable for polynomial kernels and RBF with 

large sigma values, the cardinality of the removed SV is 

kernel dependent. Ref. [12] iteratively replaces two nearest 

SV belonging to the same class by a constructed SV.  

Ref. [13]’s cross-training SVM divides the training 

database in   equal sets, trains   SVM independently, and 
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retains training points whose average margin, defined as the 

average sum of the   SVM models’ predicted label for this 

point, is between 0 and 1, to train the final SVM model. 

Inspired by cross-training SVM, [14] proposed separable case 

approximation (SCA) algorithm which approximates SVM’s 

decision rule by running a hard margin SVM on the separable 

SVs in kernel space.  

Reduced SVM (RSVM) randomly selects a subset of the 

training data to solve the SSVM optimization problem [15]. 

Averaging results over multiple runs, RSVM resulted in a 

lower prediction accuracy which decreased further as the 

reduction in SV set cardinality increased. Ref. [16] attempted 

to improve on RSVM by training on margin vectors, 

identified by computing the self and the mutual center 

distances in feature space and eliminating statistically 

insignificant points based on the center distance ratio of these 

points.  

Ref. [3] identified boundary vectors using k-nearest 

neighbor (kNN); the distance between each vector to all other 

vectors in input or kernel space is computed and the vectors 

that have among their k nearest neighbors a vector of 

opposing class are retained.  

Ref. [17] clustered the trained data using k-means and 

trained on the cluster heads. The reduction is controlled by the 

maximum number of allowable clusters. LMSVM clusters 

the training set and retains the clusters with a high 

heterogeneity score [18]. Ref. [19] reduced the training set by 

clustering the training set using k-means, identifying the 

cluster heads and crisp clusters (clusters with points from the 

same class), then modifying clusters to eliminate points that 

are less likely to affect the decision plane.  

III. KCSVM AND KCOOSVM 

A. SVM Overview 

SVM is used in classification problems to find an optimal 

hyper plane separating two classes. This optimal solution is 

obtained by solving the optimization problem in primal form 

as shown in (1). The nomenclature, adopted in the equations 

hereafter, is summarized in Table I.  

       
 

 
     ∑   

 
                                 (1) 

Subject to        ( 
  (  )    )       

          
 (  ) is such that  (     )   (  )  (  ). 
The solution should satisfy the Karush-Kuhn-Tucker 

(KKT) conditions [20-21], stated below; boldface letters 

represent vectors.  

1.       
        

2.     
        

3.                     

4.   [  ( 
       )      ]              

5.                  

6.                    

Since the dual formulation of this problem, shown in (2), is 

more efficient to solve, it is adopted in most implementations. 
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For linearly non-separable classification problems, kernels 

are used to project the input data into a higher dimension 

space where the database would be at least pseudo linearly 

separable. The widely used Gaussian Radial Basis Function 

(RBF) [22-23] uses (3) to project the input vector to the kernel 

space, and results in a positive semi-definite kernel matrix. 

The sigmoid kernel, another kernel that does not necessarily 

produce a positive semi-definite kernel matrix, is computed 

using (4) and useful for many problems. These kernel values 

belong to the range [-1, 1]. Since the kernel values are used as 

distance measures between two data points, negative values 

are not suitable. Therefore, the absolute value of the kernel 

matrix is taken to produce positive distances. Kernel 

parameters such as   ,   and   are obtained by performing a 

grid search and choosing the values that produce the best 

classification accuracy.  
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Solving the optimization task becomes more 

computationally expensive as the size of the data set 

increases, since the KKT conditions need to be checked for all 

points in the training set. The number of SV used to describe 

the separating hyper plane can also become large. Therefore, 

we propose KCSVM and KCOOSVM to reduce the number 

of SV by reducing the database size used to train SVM 

without significant sacrifices to the classification accuracy. 

Since the boundary points, the vectors closest to the 

separating plane, are the ones that will mostly affect the hyper 

plane parameters, all non-boundary data points could be 

eliminated without significant change in the final decision 

rule, as shown in Fig. 1. This fact is evident in the formulation 

of the optimization problem in (1). The optimization problem 

finds the hyper plane which is farthest from either class. 

Therefore, if the points on the periphery of one class that are 

closest to the opposite class were shifted, the hyper plane 

would shift as well. On the other hand, if non-boundary points 

were shifted, the hyper plane would not be greatly affected. 

Boundary points are determined by measuring their distance 

to data points of opposite class. If the points are far enough 

from the points of the other class, they are removed from the 

training set. After evaluating the distances of the data points 

to all points in opposing classes, the reduced set is formed of 

those points that are close enough to the boundary between 

the two classes. A pruning procedure, discussed next, was 

adopted to reduce the size of the data set. 
TABLE I NOMENCLATURE 

 : data set cardinality  

  : class 1 set cardinality 

  : class 2 set cardinality 

 (     ): kernel value for instances    and    

    : hyper plane parameter vector 

  : data point belonging to            

  : label for data point    

    slack variable associated with each data point 
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 : box constraint 

  : variance 

  and  : kernel parameter 

 : basis function that maps input to kernel space 

  and  : Lagrange multiplier vector 

      : point on the cumulative curve below which points are 

retained,                   
        : distance from saturation point to cutoff point, 

         (   ) 

SP: saturation point  

           : saturation point threshold,             (   )  

        : subsampling rate,                     
    ,     : reduced data matrix and class vector 

 

TABLE II KCSVM WORKFLOW 

1. Given an input database defined by the data matrix      and the 

class vector      

2. Sort the database based on the class vector, using counting sort 

3. Compute the partial kernel matrix K, i.e. inter-class kernel 

entries, using (5) 

4. Reshape K from       matrix to K’ a        vector 

5. Sort K’ in descending order to obtain the vector in (6) 

6. Compute the cumulative distance values, using (7) 

7. Find the cutoff point based on the slope, using (8) and (9) 

8. Select the boundary points, using (10) and (11) 

9. Return the reduced database           

B. KCSVM for RBF Kernel 

The size of the input database is reduced based on the 

workflow in Table II. First, the database is sorted based on the 

label of each instance to easily construct the kernel matrix. 

The inter-class kernel matrix values are only computed to 

identify the boundary points; the intra-class values are 

discarded. The kernel values are sorted in descending order 

since closer points have larger kernel values based on (3). 

Then, the sorted values are accumulated, using (7), to produce 

the plot in Fig. 2. At the saturation point of the curve, the 

points become too far from each other and are not considered 

boundary points. Therefore, retaining all the points 

corresponding to the kernel values below the saturation point 

is a reasonable approach to identify the boundary points. The 

saturation point is detected based on the slope of the curve at 

that point. When the slope at a point on the curve drops below 

a predefined percentage, called saturation point threshold, of 

the initial slope, that point is considered the saturation point, 

as computed in (8). To control the reduction in training set 

size, the pullback is defined as the distance from the 

saturation point where the curve will be cut off, based on (7). 

As this value decreases, the cutoff point moves away from the 

saturation point and the achievable reduction increases, as 

shown in Fig. 2. Therefore, all instances, corresponding to the 

kernel values below the cutoff point, form the reduced 

training set.  

Although this method was only investigated for a Gaussian 

kernel, it could be extended to other kernels with slight 

modifications to some of the steps in the algorithm. For 

example, when using a sigmoid kernel, small values 

correspond to boundary points. Therefore, the matrix values 

should be sorted in ascending order. The absolute value of the 

kernel values is used because negative distances do not have 

any significance. Its saturation point can be determined based 

on the slope of the curve and the points below the saturation 

point are retained. Similar modifications can be made for 

other kernels depending on the properties of these kernels. 

C. KCOOSVM: Ordinal Optimization Inspired KCSVM 

Selecting the boundary points only to train the classifier 

could result in over-fitting since the resulting classifier is 

more susceptible to outliers. Therefore, we made use of 

concepts in ordinal optimization to minimize over-fitting in 

KCSVM by injecting non-boundary points into the reduced 

training set. First, a brief introduction of the ordinal 

optimization (OO) theory will be presented. 

OO or soft optimization makes hard, large scale problems 

solvable by reducing the complexity of the required 

computations. OO is dependent on two basic concepts [24]. 

The first declares that finding the “order” of the solution is 

much easier, faster and more robust to noise than finding the 

“value” of the solution. The second states that finding “good 

enough” solutions is less expensive than finding the “best” 

solution available. Based on OO’s second concept, a 

modification to the KCSVM algorithm is performed. 

Fig. 1. (Left) Hyper plane after training SVM on original data (Right) Hyper 

plane after training data on reduced set produced by KCSVM using RBF 

kernel, after 55% reduction in training set size

 

Fig. 2. Illustrative cumulative distances plot for an RBF kernel 
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Since the distance values between the data points for 

KCSVM are sorted, choosing the point at index   or     

should not make much of a difference; it should keep us 

within the set of “good enough” solutions. Therefore, instead 

of selecting all the points on the boundary, the algorithm can 

select some points that are on the boundary in addition to 

some points farther away from the boundary, preventing the 

model from over fitting. One method to achieve this is 

uniformly sampling the curve in Fig. 2. Consequently, a 

smaller problem is obtained and a “good enough” solution 

would be achieved with less computational effort than the 

“best” solution.  The resulting hyper plane, shown in Fig. 3, is 

a closer approximation of the hyper plane generated when 

training on the whole data set as shown in Fig. 1(Left). 

As mentioned earlier, selecting boundary points only might 

result in over-fitting. However, for sparsely distributed points 

and/or datasets that show severe imbalance close to the hyper 

plane location, uniformly subsampling might result in worse 

performance because the separating hyper plane’s original 

shape might be lost due to the point selection strategy. 

Therefore, instead of simply adopting one algorithm 

regardless of the characteristics of the database in the hyper 

plane’s vicinity, making use of these characteristics in 

deciding which algorithm to adopt would be advantageous.  

One method to gain some insight into the density of the 

points’ distribution around the boundary would be to compute 

the initial slope of the cumulative distances plot, which 

contains the closest points between the classes and to check 

for the imbalance ratio of the database. If the curve has a large 

initial slope, many points are clustered on the boundary in 

kernel space and very few points are far from each other. At 

the other extreme, if the slope is small, the points’ distribution 

is sparse, i.e. points are far from each other. Based on this 

observation, the workflow, in Table III, is proposed. After 

computing and sorting the kernel matrix, and computing the 

cumulative distances, the slope at 10% of the cumulative 

kernel values, the original imbalance ratio of the complete 

database and the imbalance ratio at 10% are used to suggest 

adopting either KCSVM or KCOOSVM. If this slope is less 

than a predefined threshold    and the imbalance ratio is 

greater than a predefined threshold   , the reduced set is 

selected based on KCSVM instead of KCOOSVM. 

IV. EXPERIMENTAL RESULTS 

We used MATLAB 2011a (64-bit) [25] on a PC equipped 

with an Intel Core 2 Extreme dual processor at 2.67 GHz with 

4GB of RAM to assess our proposed methods. 

A. Database Description 

Six databases, shown in Table IV, were chosen from the 

UCI Machine Learning Repository [4] to assess the 

performance of the proposed reduction algorithms and 

compare them to other published methods.  

B. Experimental Setup 

A 5-fold cross validation was used to validate the results of 

the various models. Based on Fig. 4, four sets were used in 

training and the fifth in testing. The same partitioning was 

used for all algorithms to make the results comparable. 

The SVM’s parameter values, the box constraint, C, and 

the RBF kernel parameter σ, used in our experiments and 

reported in Table IV, were obtained by performing a grid 

search on the full database and choosing the values that 

produced the highest classification accuracy.  Algorithm 

specific parameters were swept to vary reduction rates, as 

shown in Table V.  
TABLE III KCOOSVM WORKFLOW 

1. Given an input database defined by the data matrix      and the 

class vector      

2. Sort the database based on the class vector, using counting sort 

3. Compute the partial kernel matrix, i.e. inter-class kernel entries, 

using (5) 

4. Reshape K from       matrix to K’ a        vector 

5. Sort K’ in descending order to obtain the vector in (6) 

6. Compute the cumulative distance values, using (7) 

7. Compute the slope and imbalance ratio at 10% of cumulative 

distance values 

8. If slope <    and imbalance ratio >    

a. Use KCSVM point selection method, using (10) and (11) 

9. Else 

a. Use KCOOSVM point selection method, using (12) and (13) 

10. Return the reduced database           
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TABLE IV DATABASE DETAILS AND SVM PARAMETERS FOR OUR RESULTS  

Database 
Number of 

attributes 

Number of 

points 

Points in Class 0 

/ % 

Points in Class 1 

/ % 

Published Classification 

Accuracy (%) 
    

Spambase  57 4601 2788 / 60.6 1813 / 39.4 91-93 [26] 256 0.015625 

Musk (Version 2)  166 7074 5850 / 83 1224 /17 97 [27] 32 0.015625 

Breast Cancer Wisconsin Diagnostic 

(BCWD)  
30 569 357 / 62.7 212 / 37.3 98.98 [28] 1 0.0039 

Connectionist Bench  60 208 111 / 53.4 97 / 46.6 99.12 [29] 40 0.25 

Ionosphere  34 351 126 / 35.9 225 / 64.1 94.7 [30] 3 0.25 

SPECTF Heart  44 267 212 / 79.4 55 / 20.6 94 [31] 32 0.015625 

 

 
Fig. 3. KCOOSVM (Left) reduction = 56% (Right) reduction = 81% 

TABLE V ALGORITHM PARAMETERS 

Algorithm Parameter Range Increment 

RSVM [15] Reduction rate [0.1, 1] 0.1 

kNN SVM [3] k  [3, 11] 1 

KMSVM [17] Reduction rate [0.1, 1] 0.2 

LMSVM [18] 
Threshold {0.2,0.3,0.5,0.7,0.9,1} 

Cluster count 60 

KCSVM Pullback [0.1, 1] 0.1 

KCOOSVM Sampling step size [0.1, 1] 0.1 
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Test Original 
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Fig. 4. Cross validation technique 

C. Preprocessing and Training Time Analysis  

Table VI presents the preprocessing and training time 

required on the Musk (Version 2) at different set reduction 

values. SVM was trained on the reduced sets using libSVM 

with the pre-computed kernel option. KCSVM and 

KCOOSVM’s preprocessing time increased as the database 

size increased; it is independent of the required size reduction 

but the training time decreased as the training set size 

decreased. Similar methods published in literature, 

specifically RSVM, kNN SVM, KMSVM and LMSVM,  

 
TABLE VI TRAINING RESULTS FOR MUSK (VERSION 2) DATABASE 

 Set Reduction 

(%) 

Preprocessing time 

(seconds) 

Training time 

(seconds) 

RSVM  

0.00 0.00 3.44 

10.00 0.01 2.80 

30.00 0.01 1.67 

50.01 0.00 0.85 

70.01 0.00 0.32 

90.01 0.00 0.04 

kNN SVM  

0.00 0.00 3.44 

64.13 4.83 0.48 

72.43 4.79 0.28 

75.86 4.84 0.23 

79.50 4.86 0.17 

83.56 4.83 0.11 

87.72 4.76 0.07 

KMSVM  

0.00 0.00 3.42 

10.03 393.50 2.76 

30.03 401.68 1.62 

50.01 382.65 0.87 

70.02 290.09 0.31 

90.02 135.24 0.04 

LMSVM  

0.00 0.00 3.88 

15.05 4.77 2.90 

46.04 4.93 1.23 

65.38 5.01 0.51 

74.70 4.97 0.28 

88.30 4.88 0.07 

KCSVM 

0.00 0.00 7.00 

0.40 1.91 5.00 

0.94 2.14 5.47 

1.71 1.66 4.47 

4.06 1.95 4.98 

7.40 2.42 6.36 

10.80 2.29 5.72 

KCOOSVM 

0.00 0.00 5.29 

3.15 1.44 4.40 

7.00 1.62 4.63 

11.60 1.61 4.21 

16.12 1.13 2.88 

20.39 1.57 3.45 

24.20 1.58 3.10 

27.87 1.58 2.78 

31.32 1.19 2.83 

 

were implemented in Matlab to compare their results to those 

of the proposed algorithms. KMSVM was implemented using 

Matlab’s k-means algorithm implementation. 

Compared to these algorithms, KCSVM and KCOOSVM 

needed less preprocessing time than all other methods with 

the exception of RSVM.   

D. Prediction Accuracy vs. Support Vectors Analysis 

Although the reduction in training set size decreased the SV 

set cardinality, improving online prediction computation and 

memory requirements, KCSVM experienced a reduction in 
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prediction accuracy. Fig. 5 plots the prediction accuracy as a 

function of the percentage of data points which were SV for 

multiple algorithms and databases. 

On the Breast Cancer database, prediction accuracy 

dropped from 91% to 63% for a reduction of 96% in training 

set size whereas the SV set decreased from 70 to 60% of the 

training data, as shown in Fig. 5. SPECTF Heart database did 

not experience a reduction in accuracy when the training set 

was reduced by 43%. Furthermore, a 1% increase in 

prediction accuracy was witnessed at 24% training set size 

reduction which can be attributed to eliminating noisy data 

points that might have affected the shape of the separating 

hyper plane. The number of SV went from 40% to 

approximately 27% of the data points. The reduction in SV 

was not significant, as the reduction in training points 

increased; as more non boundary points were discarded, the 

remaining points were mostly SV. This also explains the fact 

that the reduction in accuracy was negligible on this database, 

as discussed in Section 4.3. Therefore, KCSVM selected 

quality points that influenced the separating hyper plane and 

eliminated points that were irrelevant, resulting in minimal 

prediction accuracy loss for an increase in computational and 

memory savings.  

KCSVM achieved comparable results to other methods in 

literature for the Ionosphere, Musk (Version 2) and Spambase 

databases. It outperformed the other methods on SPECTF 

Heart but fell short on Breast Cancer Wisconsin Diagnostic 

and Connectionist Bench databases. In general, KCSVM was 

over-fitting the training data since almost all the retained data 

points were boundary points and some information about the 

general distribution of the data points was lost.  

KCOOSVM did not over fit the training data since it 

selected points that were on the boundary in addition to points 

that were not. In general, a reduction in training set size 

resulted in a decrease in SV set cardinality, accompanied by a 

slight dip in prediction accuracy. For example, a 77% set size 

reduction led to a 5% decrease in SV accompanied by a 3% 

loss in prediction accuracy for the Ionosphere database. 

However, KCOOSVM did not fare well on the SPECTF 

Heart database, as previously mentioned. As shown in Fig. 5, 

KCOOSVM achieved comparable reduction in SV and 

corresponding prediction accuracy to other methods in the 

literature but resulted in better prediction accuracy for the 

Breast Cancer Wisconsin Diagnostic database.  

 
Fig. 5. Prediction accuracy reduction as a function of SV set size when using an RBF kernel for each database
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E. KCSVM vs. KCOOSVM 

Fig. 6 shows the cumulative distances curves of each of the 

databases. The initial slopes, the original imbalance ratio of 

the complete databases and the imbalance ratios at several 

cutoff points are summarized in Tables VII and VIII, 

respectively. As the cumulative distances curve cutoff point 

increases, a wider buffer zone around the boundary, 

containing more points, is considered. The slope, measured 

for various buffer zone widths, decreases as more points were 

included until it reached the saturation point. Databases that 

had a sharp initial slope, such as the Breast Cancer Wisconsin 

Diagnostic and Ionosphere databases, exhibited better 

performance when KCOOSVM was used.  

Similarly, the imbalance ratio was measured at several 

cutoff points; as the cutoff point moved closer to the 

saturation point, points farther way from the separating hyper 

plane were included. The class distribution did not vary 

greatly at different cutoff points.  

Combining the class distribution with the initial slope, 

databases that did better when KCSVM was used had a small 

slope and an unbalanced distribution as suggested by our 

proposed workflow. To get a better idea of the behavior of the 

database at the boundary, a narrower buffer zone, at 10%, 

should be considered. 

To numerically distinguish between slow vs. sharp rising 

slopes and balanced vs. unbalanced datasets, empirical values 

for the thresholds defined in Section 2.3 were set to:      

and       with the initial slope and imbalance ratio both 

computed at 10%. 

F. Repeatability Analysis 

At first glance, RSVM is an attractive method to select a 

reduced set because it takes a few tens of microseconds of 

preprocessing when other methods, including our 

KCOOSVM, take in the order of a few hundreds of 

milliseconds, 1000 times slower than RSVM. However, the 

model generated by RSVM should be averaged over multiple 

runs to obtain a representative subset of the database and 

hence good online performance. As the training set size 

reduction increases, RSVM’s performance worsens.  On the 

other hand, our method is more systematic since it does not 

include any randomness and needs to be run only once to get a 

good approximation of the original separating hyper plane.  

Fig. 7 displays the testing accuracy of the individual runs of 

RSVM, the average accuracy of RSVM after 100 runs, the 

average accuracy of RSVM up to the given run and the 

accuracy of KCOOSVM for a training set size reduction of 

80% on the Connectionist Bench database. Clearly, RSVM is 

very jumpy, with a maximum prediction accuracy differential 

of 17%. Although RSVM had higher accuracies than 

KCOOSVM in some runs, the average accuracy after 100 

runs is less than KCOOSVM’s accuracy. Computing the 

average of RSVM up to a specific run shows that RSVM is 

also affected by how many times training is performed. 

KCOOSVM results in better accuracy than RSVM for 

slightly more preprocessing cost. 

 

TABLE VII INITIAL SLOPE OF CUMULATIVE DISTANCES CURVE 

Database At 10% At 15% At 20% 

Spambase  2.25 2.20 2.14 

Musk (Version 2)  11.00 9.95 8.90 

BCWD  689.00 689.00 689.00 

Connectionist Bench  1.80 1.71 1.65 

Ionosphere  14.00 12.91 11.82 

SPECTF Heart  1.70 1.66 1.62 

 
TABLE VIII IMBALANCE RATIO OF EACH DATABASE 

Database 
Original 

(%) 

At 10% 

(%) 

At 15% 

(%) 

At 20% 

(%) 

Spambase  60.6 62.69 62.23 60.94 

Musk (Version 2)  83.0 82.27 82.27 81.59 

BCWD  62.7 66.67 60.00 55.56 

Connectionist Bench  53.4 52.14 50.74 50.34 

Ionosphere  64.1 80.82 79.00 79.67 

SPECTF Heart  79.4 63.21 64.52 67.88 

 

 
Fig. 6. Cumulative distance plot for each database 

Fig. 7. Repeatability analysis of RSVM for training set size reduction of 80% 

on Connectionist Bench  

V. CONCLUSION 

In this paper, two algorithms, KCSVM and KCOOSVM 

applicable to RBF kernel, were presented that attempt to 

reduce online computation and memory requirements by 

reducing the training set size, which results in less SV. 

KCSVM extracts boundary points by viewing kernel values 

between data points of unequal classes as distance measures 

between these points. Points from different classes with small 

distance values are more likely on the boundary and will most 

likely be SV. Since selecting the boundary points only 

resulted in over-fitting, KCOOSVM was introduced, inspired 
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by concepts in ordinal optimization, which uniformly 

subsampled the cumulative distance curve.  

Experimental results on six databases from the UCI 

repository showed promising results for both methods. Both 

resulted in SV count reduction with minimal impact on the 

prediction accuracy based on the associated training set 

reduction. Compared to several algorithms in the literature, 

KCSVM and KCOOSVM outperformed some of these 

algorithms on some databases, but produced comparable 

results on other databases. Furthermore, although RSVM 

required the least preprocessing overhead, it has to be 

repeated multiple times to ensure a proper representation of 

the database which renders its preprocessing just as costly as 

KCOSVM, with lower average prediction accuracy.  
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