

Abstract—A principled approach to machine learning (ML)

problems because of its mathematical foundations in statistical

learning theory, support vector machines (SVM), a

non-parametric method, require all the data to be available

during the training phase.. However, once the model parameters

are identified, SVM relies only, for future prediction, on a

subset of these training instances, called support vectors (SV).

The SVM model is mathematically written as a weighted sum of

these SV whose number, rather than the dimensionality of the

input space, defines SVM’s complexity. Since the final number

of these SV can be up to half the size of the training dataset,

SVM becomes challenged to run on energy aware computing

platforms. We propose in this work Knee-Cut SVM (KCSVM)

and Knee-Cut Ordinal Optimization inspired SVM

(KCOOSVM) that use a soft trick of ordered kernel values and

uniform subsampling to reduce SVM’s prediction

computational complexity while maintaining an acceptable

impact on its generalization capability. When tested on several

databases from UCI, KCSVM and KCOOSVM produced

promising results, comparable to similar published algorithms.

Keywords—SVM; sparse decision rules; ordinal optimization;

real time testing; supervised and binary classification

I. INTRODUCTION

sparse kernel and maximum margin machine learning

(ML) approach, support vector machine (SVM) has

found its way into a myriad of applications [1] since

proposed by Vapnik [2]. Deeply rooted in statistical learning

theory, SVM writes the optimal separating hyper plane that is

equidistant from the classes as a weighted sum of a subset of

the training set, referred to as support vectors (SV). Found

after an optimization step involving an objective function

regularized by an error term and a constraint using the

Lagrangian relaxation, the final number of SV, which can be

up to half the size of the training dataset, is data dependent

and varies based on the data complexity, which is captured by

the data dimensionality and the class separability, making

SVM computationally too expensive real time prediction on

platforms that are power challenged.

Motivated to develop an energy aware SVM model to be

deployed on resource challenged computing terminals such as

mobile and handheld devices, we propose in this paper,

Knee-Cut SVM (KCSVM) and Knee-Cut Ordinal

Optimization inspired SVM (KCOOSVM), two novel

algorithms that attempt, using soft computing concepts and

the kernel trick, to reduce the time and resources needed by

SVM to perform online prediction while minimizing the

additional overhead needed during supervised training

Yara Rizk, Nicholas Mitri and Mariette Awad are with the Electrical

Engineering Department, American University of Beirut, Beirut, Lebanon

(e-mail: {yar01, ngm04, mariette.awad}@ aub.edu.lb).

without a significant loss in accuracy. KCSVM extracts

boundary vectors in kernel space by retaining the vectors that

have a distance less than a threshold, automatically computed

and problem specific. Unlike [3], KCSVM and KCOOSVM

use the kernel value as a distance measure between two

vectors in kernel space and compute only the distances

between vectors of different classes to minimize

computations. A uniform sampling of the ordered kernel

space allows the selection of the training set for KCOOSVM,

which proved to be comparable in accuracy to existing

methods while preserving a repeatable reduced model over a

few databases from UCI [4]. Although these algorithms can

be applied as a preprocessing block to any SVM training

algorithm, most of the experiments were performed using

libSVM’s [5] implementation which is considered by many

the most popular and widely used implementation [6-7].

The remainder of this paper is such that a literature review

of relevant published work is presented in Section 2. KCSVM

and KCOOSVM are detailed, after briefly discussing the

basic concepts of SVM in Section 3. Section 4 presents our

experimental results and Section 5 concludes the paper with a

summary of the obtained results.

II. LITERATURE REVIEW

Many researchers have investigated computational

improvements for this optimal and robust classifier to obtain a

sparser decision rule.

Burges addressed SVM’s slow online prediction by

reducing the complexity of the decision rule using a post

processing algorithm which finds an approximation to this

complex decision rule, represented by a computed reduced set

of vectors with predefined cardinality [8]. Although

promising, Burges’ algorithm is not easy to implement and

does not provide control over the resulting prediction

accuracy [9]. Instead, [9] uses SV regression machines to

approximate the hyper plane, obtained by training a standard

SVM, by a subset of these SVs.

Ref. [10] solves SVM’s optimization problem in the primal

or dual formulation using a cutting planes based algorithm

which results in efficient training and sparser decision rules.

Ref. [11] retains the linearly independent SVs, produced by

the SMO solver, using the row reduced echelon form.

Although acceptable for polynomial kernels and RBF with

large sigma values, the cardinality of the removed SV is

kernel dependent. Ref. [12] iteratively replaces two nearest

SV belonging to the same class by a constructed SV.

Ref. [13]’s cross-training SVM divides the training

database in equal sets, trains SVM independently, and

An ordinal kernel trick for a computationally efficient support vector

machine

Yara Rizk Nicholas Mitri Mariette Awad

A

2014 International Joint Conference on Neural Networks (IJCNN)
July 6-11, 2014, Beijing, China

978-1-4799-1484-5/14/$31.00 ©2014 IEEE 3930

retains training points whose average margin, defined as the

average sum of the SVM models’ predicted label for this

point, is between 0 and 1, to train the final SVM model.

Inspired by cross-training SVM, [14] proposed separable case

approximation (SCA) algorithm which approximates SVM’s

decision rule by running a hard margin SVM on the separable

SVs in kernel space.

Reduced SVM (RSVM) randomly selects a subset of the

training data to solve the SSVM optimization problem [15].

Averaging results over multiple runs, RSVM resulted in a

lower prediction accuracy which decreased further as the

reduction in SV set cardinality increased. Ref. [16] attempted

to improve on RSVM by training on margin vectors,

identified by computing the self and the mutual center

distances in feature space and eliminating statistically

insignificant points based on the center distance ratio of these

points.

Ref. [3] identified boundary vectors using k-nearest

neighbor (kNN); the distance between each vector to all other

vectors in input or kernel space is computed and the vectors

that have among their k nearest neighbors a vector of

opposing class are retained.

Ref. [17] clustered the trained data using k-means and

trained on the cluster heads. The reduction is controlled by the

maximum number of allowable clusters. LMSVM clusters

the training set and retains the clusters with a high

heterogeneity score [18]. Ref. [19] reduced the training set by

clustering the training set using k-means, identifying the

cluster heads and crisp clusters (clusters with points from the

same class), then modifying clusters to eliminate points that

are less likely to affect the decision plane.

III. KCSVM AND KCOOSVM

A. SVM Overview

SVM is used in classification problems to find an optimal

hyper plane separating two classes. This optimal solution is

obtained by solving the optimization problem in primal form

as shown in (1). The nomenclature, adopted in the equations

hereafter, is summarized in Table I.

 ∑

 (1)

Subject to (
 ())

 () is such that () () ().
The solution should satisfy the Karush-Kuhn-Tucker

(KKT) conditions [20-21], stated below; boldface letters

represent vectors.

1.

2.

3.

4. [(
)]

5.

6.

Since the dual formulation of this problem, shown in (2), is

more efficient to solve, it is adopted in most implementations.

 (2)

s.t

 =0

For linearly non-separable classification problems, kernels

are used to project the input data into a higher dimension

space where the database would be at least pseudo linearly

separable. The widely used Gaussian Radial Basis Function

(RBF) [22-23] uses (3) to project the input vector to the kernel

space, and results in a positive semi-definite kernel matrix.

The sigmoid kernel, another kernel that does not necessarily

produce a positive semi-definite kernel matrix, is computed

using (4) and useful for many problems. These kernel values

belong to the range [-1, 1]. Since the kernel values are used as

distance measures between two data points, negative values

are not suitable. Therefore, the absolute value of the kernel

matrix is taken to produce positive distances. Kernel

parameters such as , and are obtained by performing a

grid search and choosing the values that produce the best

classification accuracy.

 () (
| |

) (3)

 () (
) (4)

Solving the optimization task becomes more

computationally expensive as the size of the data set

increases, since the KKT conditions need to be checked for all

points in the training set. The number of SV used to describe

the separating hyper plane can also become large. Therefore,

we propose KCSVM and KCOOSVM to reduce the number

of SV by reducing the database size used to train SVM

without significant sacrifices to the classification accuracy.

Since the boundary points, the vectors closest to the

separating plane, are the ones that will mostly affect the hyper

plane parameters, all non-boundary data points could be

eliminated without significant change in the final decision

rule, as shown in Fig. 1. This fact is evident in the formulation

of the optimization problem in (1). The optimization problem

finds the hyper plane which is farthest from either class.

Therefore, if the points on the periphery of one class that are

closest to the opposite class were shifted, the hyper plane

would shift as well. On the other hand, if non-boundary points

were shifted, the hyper plane would not be greatly affected.

Boundary points are determined by measuring their distance

to data points of opposite class. If the points are far enough

from the points of the other class, they are removed from the

training set. After evaluating the distances of the data points

to all points in opposing classes, the reduced set is formed of

those points that are close enough to the boundary between

the two classes. A pruning procedure, discussed next, was

adopted to reduce the size of the data set.
TABLE I NOMENCLATURE

 : data set cardinality

 : class 1 set cardinality

 : class 2 set cardinality

 (): kernel value for instances and

 : hyper plane parameter vector

 : data point belonging to

 : label for data point

 slack variable associated with each data point

3931

 : box constraint

 : variance

 and : kernel parameter

 : basis function that maps input to kernel space

 and : Lagrange multiplier vector

 : point on the cumulative curve below which points are

retained,
 : distance from saturation point to cutoff point,

 ()

SP: saturation point

 : saturation point threshold, ()

 : subsampling rate,
 , : reduced data matrix and class vector

TABLE II KCSVM WORKFLOW

1. Given an input database defined by the data matrix and the

class vector

2. Sort the database based on the class vector, using counting sort

3. Compute the partial kernel matrix K, i.e. inter-class kernel

entries, using (5)

4. Reshape K from matrix to K’ a vector

5. Sort K’ in descending order to obtain the vector in (6)

6. Compute the cumulative distance values, using (7)

7. Find the cutoff point based on the slope, using (8) and (9)

8. Select the boundary points, using (10) and (11)

9. Return the reduced database

B. KCSVM for RBF Kernel

The size of the input database is reduced based on the

workflow in Table II. First, the database is sorted based on the

label of each instance to easily construct the kernel matrix.

The inter-class kernel matrix values are only computed to

identify the boundary points; the intra-class values are

discarded. The kernel values are sorted in descending order

since closer points have larger kernel values based on (3).

Then, the sorted values are accumulated, using (7), to produce

the plot in Fig. 2. At the saturation point of the curve, the

points become too far from each other and are not considered

boundary points. Therefore, retaining all the points

corresponding to the kernel values below the saturation point

is a reasonable approach to identify the boundary points. The

saturation point is detected based on the slope of the curve at

that point. When the slope at a point on the curve drops below

a predefined percentage, called saturation point threshold, of

the initial slope, that point is considered the saturation point,

as computed in (8). To control the reduction in training set

size, the pullback is defined as the distance from the

saturation point where the curve will be cut off, based on (7).

As this value decreases, the cutoff point moves away from the

saturation point and the achievable reduction increases, as

shown in Fig. 2. Therefore, all instances, corresponding to the

kernel values below the cutoff point, form the reduced

training set.

Although this method was only investigated for a Gaussian

kernel, it could be extended to other kernels with slight

modifications to some of the steps in the algorithm. For

example, when using a sigmoid kernel, small values

correspond to boundary points. Therefore, the matrix values

should be sorted in ascending order. The absolute value of the

kernel values is used because negative distances do not have

any significance. Its saturation point can be determined based

on the slope of the curve and the points below the saturation

point are retained. Similar modifications can be made for

other kernels depending on the properties of these kernels.

C. KCOOSVM: Ordinal Optimization Inspired KCSVM

Selecting the boundary points only to train the classifier

could result in over-fitting since the resulting classifier is

more susceptible to outliers. Therefore, we made use of

concepts in ordinal optimization to minimize over-fitting in

KCSVM by injecting non-boundary points into the reduced

training set. First, a brief introduction of the ordinal

optimization (OO) theory will be presented.

OO or soft optimization makes hard, large scale problems

solvable by reducing the complexity of the required

computations. OO is dependent on two basic concepts [24].

The first declares that finding the “order” of the solution is

much easier, faster and more robust to noise than finding the

“value” of the solution. The second states that finding “good

enough” solutions is less expensive than finding the “best”

solution available. Based on OO’s second concept, a

modification to the KCSVM algorithm is performed.

Fig. 1. (Left) Hyper plane after training SVM on original data (Right) Hyper

plane after training data on reduced set produced by KCSVM using RBF

kernel, after 55% reduction in training set size

Fig. 2. Illustrative cumulative distances plot for an RBF kernel

-4 -3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3

4

5

-3 -2 -1 0 1 2 3 4
-3

-2

-1

0

1

2

3

4

-1

1

Support Vectors

-4 -3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3

4

5

-3 -2 -1 0 1 2 3 4
-3

-2

-1

0

1

2

3

4

-1

1

Support Vectors

3932

 () (
| |

) (5)

 {(

) } (6)

 () ∑ ∑ ()

 (7)

 (8)

 { |

 (() ()) (() ())

 (() ()) (() ())

} (9)

 { () () } (10)

 { | () () } (11)

 { | () () {

}} (12)

 { | () () {

}} (13)

Since the distance values between the data points for

KCSVM are sorted, choosing the point at index or

should not make much of a difference; it should keep us

within the set of “good enough” solutions. Therefore, instead

of selecting all the points on the boundary, the algorithm can

select some points that are on the boundary in addition to

some points farther away from the boundary, preventing the

model from over fitting. One method to achieve this is

uniformly sampling the curve in Fig. 2. Consequently, a

smaller problem is obtained and a “good enough” solution

would be achieved with less computational effort than the

“best” solution. The resulting hyper plane, shown in Fig. 3, is

a closer approximation of the hyper plane generated when

training on the whole data set as shown in Fig. 1(Left).

As mentioned earlier, selecting boundary points only might

result in over-fitting. However, for sparsely distributed points

and/or datasets that show severe imbalance close to the hyper

plane location, uniformly subsampling might result in worse

performance because the separating hyper plane’s original

shape might be lost due to the point selection strategy.

Therefore, instead of simply adopting one algorithm

regardless of the characteristics of the database in the hyper

plane’s vicinity, making use of these characteristics in

deciding which algorithm to adopt would be advantageous.

One method to gain some insight into the density of the

points’ distribution around the boundary would be to compute

the initial slope of the cumulative distances plot, which

contains the closest points between the classes and to check

for the imbalance ratio of the database. If the curve has a large

initial slope, many points are clustered on the boundary in

kernel space and very few points are far from each other. At

the other extreme, if the slope is small, the points’ distribution

is sparse, i.e. points are far from each other. Based on this

observation, the workflow, in Table III, is proposed. After

computing and sorting the kernel matrix, and computing the

cumulative distances, the slope at 10% of the cumulative

kernel values, the original imbalance ratio of the complete

database and the imbalance ratio at 10% are used to suggest

adopting either KCSVM or KCOOSVM. If this slope is less

than a predefined threshold and the imbalance ratio is

greater than a predefined threshold , the reduced set is

selected based on KCSVM instead of KCOOSVM.

IV. EXPERIMENTAL RESULTS

We used MATLAB 2011a (64-bit) [25] on a PC equipped

with an Intel Core 2 Extreme dual processor at 2.67 GHz with

4GB of RAM to assess our proposed methods.

A. Database Description

Six databases, shown in Table IV, were chosen from the

UCI Machine Learning Repository [4] to assess the

performance of the proposed reduction algorithms and

compare them to other published methods.

B. Experimental Setup

A 5-fold cross validation was used to validate the results of

the various models. Based on Fig. 4, four sets were used in

training and the fifth in testing. The same partitioning was

used for all algorithms to make the results comparable.

The SVM’s parameter values, the box constraint, C, and

the RBF kernel parameter σ, used in our experiments and

reported in Table IV, were obtained by performing a grid

search on the full database and choosing the values that

produced the highest classification accuracy. Algorithm

specific parameters were swept to vary reduction rates, as

shown in Table V.
TABLE III KCOOSVM WORKFLOW

1. Given an input database defined by the data matrix and the

class vector

2. Sort the database based on the class vector, using counting sort

3. Compute the partial kernel matrix, i.e. inter-class kernel entries,

using (5)

4. Reshape K from matrix to K’ a vector

5. Sort K’ in descending order to obtain the vector in (6)

6. Compute the cumulative distance values, using (7)

7. Compute the slope and imbalance ratio at 10% of cumulative

distance values

8. If slope < and imbalance ratio >

a. Use KCSVM point selection method, using (10) and (11)

9. Else

a. Use KCOOSVM point selection method, using (12) and (13)

10. Return the reduced database

3933

TABLE IV DATABASE DETAILS AND SVM PARAMETERS FOR OUR RESULTS

Database
Number of

attributes

Number of

points

Points in Class 0

/ %

Points in Class 1

/ %

Published Classification

Accuracy (%)

Spambase 57 4601 2788 / 60.6 1813 / 39.4 91-93 [26] 256 0.015625

Musk (Version 2) 166 7074 5850 / 83 1224 /17 97 [27] 32 0.015625

Breast Cancer Wisconsin Diagnostic

(BCWD)
30 569 357 / 62.7 212 / 37.3 98.98 [28] 1 0.0039

Connectionist Bench 60 208 111 / 53.4 97 / 46.6 99.12 [29] 40 0.25

Ionosphere 34 351 126 / 35.9 225 / 64.1 94.7 [30] 3 0.25

SPECTF Heart 44 267 212 / 79.4 55 / 20.6 94 [31] 32 0.015625

Fig. 3. KCOOSVM (Left) reduction = 56% (Right) reduction = 81%

TABLE V ALGORITHM PARAMETERS

Algorithm Parameter Range Increment

RSVM [15] Reduction rate [0.1, 1] 0.1

kNN SVM [3] k [3, 11] 1

KMSVM [17] Reduction rate [0.1, 1] 0.2

LMSVM [18]
Threshold {0.2,0.3,0.5,0.7,0.9,1}

Cluster count 60

KCSVM Pullback [0.1, 1] 0.1

KCOOSVM Sampling step size [0.1, 1] 0.1

Input
Database

5 fold
partition

Training
set

Testing
set

4 folds 1 fold

Train SVM
Reduction
Algorithm

Reduced
set

Train SVM

Test Original
Model

Test Reduced
Model

Fig. 4. Cross validation technique

C. Preprocessing and Training Time Analysis

Table VI presents the preprocessing and training time

required on the Musk (Version 2) at different set reduction

values. SVM was trained on the reduced sets using libSVM

with the pre-computed kernel option. KCSVM and

KCOOSVM’s preprocessing time increased as the database

size increased; it is independent of the required size reduction

but the training time decreased as the training set size

decreased. Similar methods published in literature,

specifically RSVM, kNN SVM, KMSVM and LMSVM,

TABLE VI TRAINING RESULTS FOR MUSK (VERSION 2) DATABASE

 Set Reduction

(%)

Preprocessing time

(seconds)

Training time

(seconds)

RSVM

0.00 0.00 3.44

10.00 0.01 2.80

30.00 0.01 1.67

50.01 0.00 0.85

70.01 0.00 0.32

90.01 0.00 0.04

kNN SVM

0.00 0.00 3.44

64.13 4.83 0.48

72.43 4.79 0.28

75.86 4.84 0.23

79.50 4.86 0.17

83.56 4.83 0.11

87.72 4.76 0.07

KMSVM

0.00 0.00 3.42

10.03 393.50 2.76

30.03 401.68 1.62

50.01 382.65 0.87

70.02 290.09 0.31

90.02 135.24 0.04

LMSVM

0.00 0.00 3.88

15.05 4.77 2.90

46.04 4.93 1.23

65.38 5.01 0.51

74.70 4.97 0.28

88.30 4.88 0.07

KCSVM

0.00 0.00 7.00

0.40 1.91 5.00

0.94 2.14 5.47

1.71 1.66 4.47

4.06 1.95 4.98

7.40 2.42 6.36

10.80 2.29 5.72

KCOOSVM

0.00 0.00 5.29

3.15 1.44 4.40

7.00 1.62 4.63

11.60 1.61 4.21

16.12 1.13 2.88

20.39 1.57 3.45

24.20 1.58 3.10

27.87 1.58 2.78

31.32 1.19 2.83

were implemented in Matlab to compare their results to those

of the proposed algorithms. KMSVM was implemented using

Matlab’s k-means algorithm implementation.

Compared to these algorithms, KCSVM and KCOOSVM

needed less preprocessing time than all other methods with

the exception of RSVM.

D. Prediction Accuracy vs. Support Vectors Analysis

Although the reduction in training set size decreased the SV

set cardinality, improving online prediction computation and

memory requirements, KCSVM experienced a reduction in

3934

prediction accuracy. Fig. 5 plots the prediction accuracy as a

function of the percentage of data points which were SV for

multiple algorithms and databases.

On the Breast Cancer database, prediction accuracy

dropped from 91% to 63% for a reduction of 96% in training

set size whereas the SV set decreased from 70 to 60% of the

training data, as shown in Fig. 5. SPECTF Heart database did

not experience a reduction in accuracy when the training set

was reduced by 43%. Furthermore, a 1% increase in

prediction accuracy was witnessed at 24% training set size

reduction which can be attributed to eliminating noisy data

points that might have affected the shape of the separating

hyper plane. The number of SV went from 40% to

approximately 27% of the data points. The reduction in SV

was not significant, as the reduction in training points

increased; as more non boundary points were discarded, the

remaining points were mostly SV. This also explains the fact

that the reduction in accuracy was negligible on this database,

as discussed in Section 4.3. Therefore, KCSVM selected

quality points that influenced the separating hyper plane and

eliminated points that were irrelevant, resulting in minimal

prediction accuracy loss for an increase in computational and

memory savings.

KCSVM achieved comparable results to other methods in

literature for the Ionosphere, Musk (Version 2) and Spambase

databases. It outperformed the other methods on SPECTF

Heart but fell short on Breast Cancer Wisconsin Diagnostic

and Connectionist Bench databases. In general, KCSVM was

over-fitting the training data since almost all the retained data

points were boundary points and some information about the

general distribution of the data points was lost.

KCOOSVM did not over fit the training data since it

selected points that were on the boundary in addition to points

that were not. In general, a reduction in training set size

resulted in a decrease in SV set cardinality, accompanied by a

slight dip in prediction accuracy. For example, a 77% set size

reduction led to a 5% decrease in SV accompanied by a 3%

loss in prediction accuracy for the Ionosphere database.

However, KCOOSVM did not fare well on the SPECTF

Heart database, as previously mentioned. As shown in Fig. 5,

KCOOSVM achieved comparable reduction in SV and

corresponding prediction accuracy to other methods in the

literature but resulted in better prediction accuracy for the

Breast Cancer Wisconsin Diagnostic database.

Fig. 5. Prediction accuracy reduction as a function of SV set size when using an RBF kernel for each database

3935

E. KCSVM vs. KCOOSVM

Fig. 6 shows the cumulative distances curves of each of the

databases. The initial slopes, the original imbalance ratio of

the complete databases and the imbalance ratios at several

cutoff points are summarized in Tables VII and VIII,

respectively. As the cumulative distances curve cutoff point

increases, a wider buffer zone around the boundary,

containing more points, is considered. The slope, measured

for various buffer zone widths, decreases as more points were

included until it reached the saturation point. Databases that

had a sharp initial slope, such as the Breast Cancer Wisconsin

Diagnostic and Ionosphere databases, exhibited better

performance when KCOOSVM was used.

Similarly, the imbalance ratio was measured at several

cutoff points; as the cutoff point moved closer to the

saturation point, points farther way from the separating hyper

plane were included. The class distribution did not vary

greatly at different cutoff points.

Combining the class distribution with the initial slope,

databases that did better when KCSVM was used had a small

slope and an unbalanced distribution as suggested by our

proposed workflow. To get a better idea of the behavior of the

database at the boundary, a narrower buffer zone, at 10%,

should be considered.

To numerically distinguish between slow vs. sharp rising

slopes and balanced vs. unbalanced datasets, empirical values

for the thresholds defined in Section 2.3 were set to:

and with the initial slope and imbalance ratio both

computed at 10%.

F. Repeatability Analysis

At first glance, RSVM is an attractive method to select a

reduced set because it takes a few tens of microseconds of

preprocessing when other methods, including our

KCOOSVM, take in the order of a few hundreds of

milliseconds, 1000 times slower than RSVM. However, the

model generated by RSVM should be averaged over multiple

runs to obtain a representative subset of the database and

hence good online performance. As the training set size

reduction increases, RSVM’s performance worsens. On the

other hand, our method is more systematic since it does not

include any randomness and needs to be run only once to get a

good approximation of the original separating hyper plane.

Fig. 7 displays the testing accuracy of the individual runs of

RSVM, the average accuracy of RSVM after 100 runs, the

average accuracy of RSVM up to the given run and the

accuracy of KCOOSVM for a training set size reduction of

80% on the Connectionist Bench database. Clearly, RSVM is

very jumpy, with a maximum prediction accuracy differential

of 17%. Although RSVM had higher accuracies than

KCOOSVM in some runs, the average accuracy after 100

runs is less than KCOOSVM’s accuracy. Computing the

average of RSVM up to a specific run shows that RSVM is

also affected by how many times training is performed.

KCOOSVM results in better accuracy than RSVM for

slightly more preprocessing cost.

TABLE VII INITIAL SLOPE OF CUMULATIVE DISTANCES CURVE

Database At 10% At 15% At 20%

Spambase 2.25 2.20 2.14

Musk (Version 2) 11.00 9.95 8.90

BCWD 689.00 689.00 689.00

Connectionist Bench 1.80 1.71 1.65

Ionosphere 14.00 12.91 11.82

SPECTF Heart 1.70 1.66 1.62

TABLE VIII IMBALANCE RATIO OF EACH DATABASE

Database
Original

(%)

At 10%

(%)

At 15%

(%)

At 20%

(%)

Spambase 60.6 62.69 62.23 60.94

Musk (Version 2) 83.0 82.27 82.27 81.59

BCWD 62.7 66.67 60.00 55.56

Connectionist Bench 53.4 52.14 50.74 50.34

Ionosphere 64.1 80.82 79.00 79.67

SPECTF Heart 79.4 63.21 64.52 67.88

Fig. 6. Cumulative distance plot for each database

Fig. 7. Repeatability analysis of RSVM for training set size reduction of 80%

on Connectionist Bench

V. CONCLUSION

In this paper, two algorithms, KCSVM and KCOOSVM

applicable to RBF kernel, were presented that attempt to

reduce online computation and memory requirements by

reducing the training set size, which results in less SV.

KCSVM extracts boundary points by viewing kernel values

between data points of unequal classes as distance measures

between these points. Points from different classes with small

distance values are more likely on the boundary and will most

likely be SV. Since selecting the boundary points only

resulted in over-fitting, KCOOSVM was introduced, inspired

3936

by concepts in ordinal optimization, which uniformly

subsampled the cumulative distance curve.

Experimental results on six databases from the UCI

repository showed promising results for both methods. Both

resulted in SV count reduction with minimal impact on the

prediction accuracy based on the associated training set

reduction. Compared to several algorithms in the literature,

KCSVM and KCOOSVM outperformed some of these

algorithms on some databases, but produced comparable

results on other databases. Furthermore, although RSVM

required the least preprocessing overhead, it has to be

repeated multiple times to ensure a proper representation of

the database which renders its preprocessing just as costly as

KCOSVM, with lower average prediction accuracy.

ACKNOWLEDGMENT

This work was partially funded by the University Research

Board at the American University of Beirut and partially by

MER, a partnership between Intel Corporation and King

Abdul-Aziz City for Science and Technology (KACST) to

conduct and promote research in the Middle East.

REFERENCES

[1] M. Awad and Y. Motai. “Dynamic classification for video stream using

support vector machine.” Journal of Applied Soft Computing, vol. 8 (4),

pp. 1314-1325, 2008.

[2] V. Vapnik, The Nature of Statistical Learning Theory. Springer, 1999.

[3] L. Zhang, N. Ye, W. Zhou and L. Jiao. "Support vectors pre-extracting

for support vector machine based on K nearest neighbour method,"

in Int. Conf. on Information and Automation,, 2008, pp. 1353-1358.

[4] K. Bache and M. Lichman (2013). UCI Machine Learning Repository.

Irvine, CA: University of California, School of Information and

Computer Science [Online]. Available: http://archive.ics.uci.edu/ml

[5] C. C. Chang and C. J. Lin. “LIBSVM: a library for support vector

machines.” ACM Transactions on Intelligent Systems and Technology,

vol. 2, pp. 27, 2011.

[6] T. Cheng, Y. Wang, and S. H. Bryant. “FSelector: a Ruby gem for

feature selection.” Bioinformatics, vol. 28(21), pp. 2851-2852, 2012.

[7] D. Wang, T. Li, J. Sun, D. Li, W. Xiong, W. Wang, and S. Tang.

“Shape string: a new feature for prediction of DNA-binding residues.”

Biochimie, 2012.

[8] C. J. Burges. “Simplified support vector decision rules,” in

International Conference on Machine Learning, 1996, pp. 71-77.

[9] E. Osuna and F. Girosi. “Reducing the run-time complexity of support

vector machines,” in Proc. of the Int. Conf. on Pattern Recognition,

1998.

[10] T. Joachims and C. N. J. Yu. “Sparse kernel SVMs via cutting-plane

training.” Machine Learning, vol. 76 (2-3), pp. 179-193, 2009.

[11] T. Downs, K. E. Gates and A. Masters. "Exact simplification of support

vector solutions." The Journal of Machine Learning Research, vol. 2,

pp. 293-297, 2002.

[12] D. D. Nguyen and T. B. Ho. "A bottom-up method for simplifying

support vector solutions." IEEE Transactions on Neural Networks, vol.

17, pp. 792-796, 2006.

[13] G. Bakır, L. Bottou and J. Weston. “Breaking SVM complexity with

cross training.” Advances in neural information processing systems,

vol. 17, pp. 81-88, 2005.

[14] D. Geebelen, J. A. Suykens, and J. Vandewalle. “Reducing the number

of support vectors of SVM classifiers using the smoothed separable

case approximation.” IEEE Transactions on Neural Networks and

Learning Systems, vol. 23 (4), pp. 682-688, 2012.

[15] Y. J. Lee and O. L. Mangasarian. "RSVM: Reduced support vector

machines," in Proc. of the First SIAM Int. Conf. on Data Mining, 2001,

pp. 5-7.

[16] B. Kong and H. Wang. "Reduced support vector machine based on

margin vectors," in 2010 Int. Conf. on Computational Intelligence and

Software Engineering (CiSE), 2010, pp. 1-4.

[17] J. Wang, X. Wu and C. Zhang. "Support vector machines based on

K-means clustering for real-time business intelligence systems." Int.

Journal of Business Intelligence and Data Mining, vol. 1, pp. 54-64,

2005.

[18] Y. Rizk, N. Mitri, and M. Awad. “A Local Mixture Based SVM for an

Efficient Supervised Binary Classification,” in Int. Joint Conf. on

Neural Networks, Dallas, TX, 2013.

[19] R. Koggalage and S. Halgamuge. “Reducing the number of training

samples for fast support vector machine classification.” Neural

Information Processing-Letters and Reviews, vol. 2(3), pp. 57-65,

2004.

[20] H. W. Kuhn and A. W. Tucker. “Nonlinear programming,” in Proc. of

the 2nd Berkeley Symposium on Mathematical Statistics and

Probability, 1951, pp. 481–492.

[21] H. W. Kuhn. “Nonlinear programming: A historical view,” In

Nonlinear Programming, R. W. Cottle and C. E. Lemke, Ed.

SIAM-AMS Proceedings, 1976, pp. 1–26.

[22] S. Theodoridis and K. Koutroumbas. (1999). Pattern recognition.

[23] M. Fauvel, J. Chanussot, and J. A. Benediktsson. “Evaluation of

kernels for multiclass classification of hyperspectral remote sensing

data,” in Proc. of IEEE International Conference on Acoustics, Speech

and Signal Processing, 2006, pp. II-II.

[24] Y. Ho, Q. Zhao, and J. Q. Shan. Ordinal Optimization: Soft Computing

for Hard Problems. Springer, 2007.

[25] Mathworks (2013). Matlab [Online]. Available: www.mathworks.com

[26] C. Dimitrakakis and S. Bengio. “Online adaptive policies for ensemble

classifiers.” Neurocomputing, vol. 64, pp. 211-221, 2005.

[27] Z. H. Zhou, "Multi-instance learning: A survey," AI Lab, Department

of Computer Science and Technology, Nanjing University, Tech.

Rep, 2004.

[28] C. A. Pena-Reyes and M. Sipper. “Fuzzy CoCo: A cooperative

coevolutionary approach to fuzzy modeling.” IEEE Transactions on

Fuzzy Systems, vol. 9 (5), pp. 727-73, 2001.

[29] Z. Chelly, A. Smiti, and Z. Elouedi. “COID-FDCM: the fuzzy

maintained dendritic cell classification method.” Artificial Intelligence

and Soft Computing, pp. 233-241, 2012.

[30] G. Fung, M. Dundar, J. Bi, and B. Rao. “A fast iterative algorithm for

fisher discriminant using heterogeneous kernels,” in Proc. of the 21st

Int. Conf. on Machine Learning, 2004, pp. 40.

[31] R. Asadi, N. Mustapha, N. Sulaiman, and N. Shiri. “New supervised

multi-layer feed forward neural network model to accelerate

classification with high accuracy.” European Journal of Scientific

Research, vol. 33, pp. 163-178, 2009.

3937

http://archive.ics.uci.edu/ml
http://www.mathworks.com/

