
 
 

 

  

Abstract—We propose a Virtual Generalizing Random 
Access Memory (VG-RAM) Weightless Neural Network (WNN) 
Computer  (V’Ger Computer for short). VG-RAM WNNs are 
very effective pattern recognition tools, offering fast training 
(one shot training) and competitive recognition performance, if 
compared with other current techniques. The V’Ger Computer 
architecture was inspired on the organization of the human 
neocortex and is composed of hierarchically organized and 
recurrently interconnected layers of VG-RAM WNN neurons. 
One layer is connected to another in a way similar to 
cortico-cortical feed-forward and feedback connections between 
functionally adjacent and hierarchically organized areas. We 
have “programmed” the V’Ger Computer for counting from 0 
to 9 three times. Our preliminary experimental results showed 
that V’Ger is capable of executing this sequence of actions in 
spite of strong interferences. 

I. INTRODUCTION 
N this paper, we propose a biologically inspired 

computer based on Virtual Generalizing Random Access 
Memory (VG-RAM) Weightless Neural Networks (WNN). 
VG-RAM WNNs are very effective pattern recognition tools, 
offering simple implementation and fast training (one shot 
training) [1].  

Similar to traditional computers, the VG-RAM WNN 
Computer, or V’Ger Computer for short, adopts a hierarchical 
programming approach with different levels of command 
abstractions. However, instead of using a predefined 
programming language, the V’Ger Computer employs image 
patterns and a biologically inspired VG-RAM WNN 
architecture, which is capable of learning functions, 
commands and actions denoted by these image patterns, that 
can be proposed by the programmer himself. 

The V’Ger Computer architecture is composed of three 
neural layers organized hierarchically and named Program 
(the highest level), Function and Command (lower level) 
neural layers; the number of layers can be increased without 
loss of generality. The Program layer learns programs that 
can be invoked by the V’Ger Input and are represented as a 
sequence of functions. The Function layer learns functions, 
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represented as sequences of commands. Finally, the 
Command layer learns commands, represented as actions on 
the V’Ger Output. The Program layer receives a program 
specification via the V’Ger Input in the form of an image and 
the Command layer might receive sensor data via the Sensor 
Input, also in the form of images, from the environment 
probed by V’Ger, which allows V’Ger to monitor the 
execution of commands, thereby controlling the program as a 
whole. 

Each neural layer of the V’Ger Computer projects its 
output in form of an image (i) to the layer immediately below 
in the hierarchy, (ii) to itself, and (iii) to the layer immediately 
above in the hierarchy. Thanks to its interlayer 
interconnection pattern, V’Ger is a recurrent WNN. This 
interlayer interconnection pattern emulates the 
cortico-cortical feed-forward and feedback connections 
between functionally adjacent and hierarchically organized 
areas of the neocortex [2] and allows the creation of neuron 
state machines that can execute elaborate programs. 

For “programming” the V’Ger Computer, the programmer 
trains each neural layer to output a specific image when it 
observes specific input images. This programming approach 
allows the programmer to establish his own “language” of 
image patterns representing different levels of command 
abstractions. In addition, this training can be performed in 
such a way that procedures are repeated in neural layers of 
lower levels of abstraction as soon as an image pattern is seen 
in a neural layer of a higher level of abstraction. 

We evaluated the performance of the V’Ger Computer 
using a simple program for counting from 0 to 9 three times in 
a hierarchical way. Our experimental results showed that 
V’Ger is capable of executing the sequence of actions 
required in spite of severe interferences. Currently, we are 
“programming” V’Ger for executing elaborate programs for 
controlling a Pioneer 3-DX robot equipped with a Bumblebee 
stereo camera, a Sick Light Detection and Ranging (LIDAR), 
and a laptop with a microphone and speakers.  

Although there are other approaches to implement 
recurrent WNNs that can be trained to execute sequences [3, 
4, 5], our biologically inspired VG-RAM WNN architecture 
for executing sequences of actions is unique in its hierarchical 
organization and structured programming mechanism, and 
the results we have obtained so far with it are promising. 

This paper is organized as follows. After this introduction, 
in Section II we briefly discuss related work. In Section III, 
we present the V’Ger Computer architecture. In Section IV, 
we describe VG-RAM WNNs and, in Section V, we explain 
how we have used them to implement the V’Ger Computer. 
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In Section VI, we show how to program V’Ger. Our 
conclusions and directions for future work follow in Section 
VIII. A preliminary version of this work was presented as 
poster [6]. 

II. RELATED WORK 
The General Neural Unit (GNU [3]) is one of earliest 

examples of recurrent WNN. Sales et al. [7] employed GNU 
neurons to build a Neural State Machine (NSM) capable of 
associating visual (images), linguistic (words represented as 
images), and proprioceptive (displacements in a computer 
screen also represented as images) information and act upon 
these associations according to training. V’Ger resembles the 
system proposed by Sales et al., but uses a different type of 
neuron and has a much more general and powerful 
architecture. Gorse and Taylor [4] have shown that recurrent 
probabilistic RAM (pRAM) WNNs can store complex 
temporal sequences and learn regular languages. More 
recently, Souto et al. [5, 8] have shown that a WNN 
architecture based on pRAM named General Single-layer 
Sequential WNN (GSSWNN) is equivalent to a probabilistic 
automaton. These WNNs are single-layer and do not offer the 
abstraction of neural structured programing attainable with 
V’Ger. 

III. THE V’GER COMPUTER ARCHITECTURE 
The V’Ger Computer has three neural layers organized 

hierarchically and named Program (the highest level), 
Function, and Command (lower level) neural layers, as 
shown in Fig. 1. The names of the neural layers shown in 
figure indicate their expected roles. The Program layer, which 
occupies the highest hierarchical level, learns programs, 
represented as sequences of functions. The Function layer 
learns functions, represented as sequences of commands. 
Finally, the Command layer learns commands, represented as 
actions on the V’Ger Output. Although throughout this work 
we present V’Ger with only three layers, the number of layers 
can be increased without loss of generality. 

Each neural layer of the V’Ger Computer projects its 
output to the layer immediately below in the hierarchy, to 
itself, and to the layer immediately above in the hierarchy, as 
shown by the arrows in Fig. 1. So, each neural layer has 3 
inputs: (i) the output of the layer immediately above in the 
hierarchy, (ii) its own output, and (iii) the output of the layer 
immediately below. These 3 inputs are images.  

The neural layers of the V’Ger Computer are 
two-dimensional arrays of VG-RAM WNN neurons. Each 
neuron has a number of synapses, which are connected to the 
inputs of its neural layer, to other neural layers, or to other 
elements of the architecture of V’Ger, as shown in Fig. 1. 
This interconnection architecture allows the creation of 
complex neural state machines. 
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Fig. 1. Hierarchical architecture of the V’Ger Computer. 

 
By examining the interconnection architecture shown in 

Fig. 1, it is possible to note that one input of the Program layer 
(V’Ger Input) and one of the Command layer (Sensor Input) 
are not accounted for. The input of the Program layer receives 
a program specification via the V’Ger Input in the form of an 
image and the Command layer might receive sensor data via 
the Sensor Input, also in the form of images, obtained from, 
for example, stereo cameras, laser range finders, 
microphones, etc. The Sensor Input allows V’Ger to monitor 
the execution of commands, thereby controlling the program 
as a whole.  

Structurally, the neural layers of the V’Ger Computer do 
not differ – they are all capable of memorizing (learning) 
relations between input images and output images. That is, 
given a set of input images and one output image, a V’Ger 
neural layer can be trained so that, when an input image 
previously learned (or an approximate version of it) is 
restated, it provides the corresponding (learned) output. 
However, from a logical point of view, they differ because, as 
discussed above, the leftmost neural layers occupy a higher 
hierarchical level than the rightmost. 

IV. VG-RAM WNN 
Virtual Generalizing Random Access Memory (VG-RAM) 

Weightless Neural Networks (WNN) are RAM-based neural 
networks that, in contrast to weighted neuron networks, do 
not store knowledge in their synapses but in Random Access 
Memories (RAM) inside the network’s neurons. During the 
training phase, each neuron of these networks learns 
input-output pairs, composed of input patterns and 
corresponding output patterns. These pairs are stored in the 
neurons’ memories. After training, given an input pattern, 
each neuron searches its memory by comparing the input 
presented to the network with all inputs learned. The output of 
each neuron is taken from the pair whose input is nearest to 
the input presented – the distance function employed is the 
Hamming distance. If there is more than one pair at the same 
minimum distance from the input presented, the neuron’s 
output is chosen randomly among these pairs. For more 
details about VG-RAM WNN, please refer to [1, 9]. 

VG-RAM WNN can be used for image recognition [10, 
11]. In image recognition approaches based on machine 
learning, given a set of pairs of input images and 
corresponding output patterns previously learned by the 
system, the task is to assign an output pattern to an input 
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image previously unseen by the system. To recognize images 
using VG-RAM WNN, a basic VG-RAM WNN architecture 
comprised of two layers – an input layer and a neural layer – 
can be used. The neurons of the neural layer are connected to 
the input layer through a set of synapses. 

During the training phase, an input image and its 
corresponding output pattern are set in the input layer and the 
output of the neural layer, respectively. Each neuron collects 
a binary input vector from the input layer via its set of 
synapses. In addition, the expected output of each neuron is 
read from the neural layer. Finally, this input-output pair is 
stored in the neuron’s memory. After training, the neural 
layer operates in continuous cycles of three phases, each of 
which are executed in parallel by one of its neurons: (i) 
extraction of a binary input vector from the input layer via its 
set of synapses; (ii) search in its memory for the binary input 
vector collected from an input image during training that is 
nearest to the binary input vector collected from the current 
input image; and (iii) output of the pattern associated with the 
learned and nearest binary input vector. Note that each neuron 
acts independently, so each one outputs one element of the 
output pattern according to what it has learnt. Also, 
input-output patterns learned during training and stored in the 
neurons’ memories can be saved in secondary memory (disk). 
Therefore, every time the computer restarts, it is not 
necessary to train the network again. Finally, the search for 
the nearest binary input vector in each neuron’s memory is 
performed sequentially and the distance is measured using the 
Hamming distance. The Hamming distance between two 
binary patterns can be efficiently computed at machine code 
level in current 64-bit CPUs and GPUs of personal computers 
using two instructions: one to identify the bits that differ in 
64-bit segments of the two binary patterns, i.e. a bit-wise 
exclusive-or instruction; and another to count these bits, i.e., a 
population count instruction. 

V. THE V’GER COMPUTER IMPLEMENTATION WITH 
VG-RAM WNN 

Each neural layer of the V’Ger Computer is a 
two-dimensional  array of nm ×  VG-RAM WNN neurons,  
N = {n1,1, n1,2, …, nm,n}. Each neuron, ni,j, has a set of 
synapses, S = {s1, s2, …, s|S|}, which are connected to 3 
two-dimensional inputs of m × n elements, (i)  
I1 = {i11,1, i11,2, … i1m,n}, (ii) I2 = {i21,1, i21,2, … i2m,n}, and 
(iii) I3 = {i31,1, i31,2, … i3m,n}, given by the output of the layer 
immediately above in the hierarchy (or from the V’Ger 
Input), its own layer output and the output of the layer 
immediately below (or from the Sensor Input), respectively. 
Note that the layers’ inputs have the same size of the neurons 
array, N.  

The set of synapses, S, of each neuron is partitioned into 4 
subsets of equal size: (i) S1 = {s11, s12, …, s1|S|/4}, (ii)  
S2 = {s21, s22, …, s2|S|/4}, (iii) S3 = {s31, s32, …, s3|S|/4} and 
(iv) S4 = {s41, s42, …, s4|S|/4}. For each neuron, ni,j, its 
synapses in S1, S2 and S3 are randomly connected to I1, I2 
and I3, respectively; and its synapses in S4 are connected to I2 

according to a two-dimensional Gaussian distribution with 
variance σ2 centered at i2i,j; i.e., the coordinates k and l of the 
elements of I2 to which ni,j connects via S4 follow the 
probability density functions: 
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where σ is a parameter of the architecture. This Gaussian 
synaptic interconnection pattern mimics that observed in 
many classes of biological neurons [12] and allows the 
learning and recognition of local features [10]. Both random 
and Gaussian synaptic interconnection patterns of each 
neuron are created when the network is built and does not 
change afterwards. 

VG-RAM WNN synapses can only get a single bit from the 
input. Thus, in order to allow our VG-RAM WNN synapses 
to deal with images, in which a pixel may assume a range of 
different values, we use minchinton cells [13]. Each neuron’s 
synapse, st, forms a minchinton cell with the next, st+1(s|S| 
forms a minchinton cell with s1). The type of the minchinton 
cell we have used returns a one if the synapse st of the cell is 
connected to an input element whose value is larger than the 
value of the element to which the synapse st+1 is connected; 
otherwise, it returns a zero. 

VI. PROGRAMMING THE V’GER COMPUTER FOR 
COUNTING 

A. Counting Program 
We have “programmed” the V’Ger Computer for counting 

from 0 to 9 three times in a hierarchical way. We called this 
program “Count from 0 to 9 three times” and used a top-down 
approach for writing it. It is a very simple program, but it 
highlights V’Ger hierarchical organization and mechanism of 
structured programming.  

Fig. 2 shows the step (i) of our program. As shown in this 
figure, in step (i), we specified in the V’Ger Input the name of 
the program to be executed and indicated what should be the 
output of the Program layer (the symbol  is used for 
specifying what pattern one neural layer should learn). In fact, 
we specified in the V’Ger Input an image that, for 
convenience, can be interpreted by humans as the message 
“Count from 0 to 9 three times”; and indicated as the output of 
the Program layer an image that, also for convenience, can be 
read by humans as the message “Count until 10 1”. 
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Fig. 2. Step (i) of the program “Count from 0 to 9 three times”. 

 
Once we have specified the items that compound the step 

(i) of the program, we can then train the Program layer to 
output the image “Count until 10 1” when it reads from its 
inputs 1, 2 and 3 the images “Count from 0 to 9 three times”, 
empty (all pixels equal to zero) and empty, respectively.   

Fig. 3 shows the step (ii) of our program. As shown in this 
figure, in step (ii), we specified again in the V’Ger Input the 
name of the program and indicated what should be the output 
of the Program layer. Furthermore, we specified in the 
content of the Program layer the image “Count until 10 1”. 
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Fig. 3. Step (ii) of the program “Count from 0 to 9 three times”. 

 
Once we have specified the items that compound the step 

(ii) of the program, we can then train the Program layer to 
output the image “Count until 10 1” when it reads from its 
inputs 1, 2 and 3 the images “Count from 0 to 9 three times”, 
“Count until 10 1” and empty, respectively. That is, up to this 
point of the program, the Program layer was trained to output 
the image “Count until 10 1” in two circumstances: first, 
when its inputs 1, 2, and 3 contain the images “Count from 0 
to 9 three times”, empty and empty, respectively; and second, 
when its inputs 1, 2, and 3 contain the images “Count from 0 
to 9 three times”, “Count until 10 1” and empty, respectively. 
So, given what we have programmed up to this point, if the 
neural layers are initialized with an empty image and the 
V’Ger Input with the image “Count from 0 to 9 three times”, 
after the first cycle, the Program layer will contain the image 
“Count until 10 1” and, in later cycles, its content will not 
change (see how VG-RAM layers operates in Section IV). 

Fig. 4 shows the step (iii) of our program. As shown in the 
figure, in step (iii) we indicated what should be the output of 
the Function layer – the image “After empty” – when it 
receives in its inputs 1, 2 and 3 the images “Count until 10 1”, 
empty and empty, respectively. 
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Fig. 4. Step (iii) of the program “Count from 0 to 9 three times”. 

 
Once we have specified the items that compound the step 

(iii) of the program, we can then train the Function layer to 
output the image “After empty” when it reads from its inputs 
1, 2 and 3 the images “Count until 10 1”, empty and empty, 
respectively. 

In the step (iv) of our program, as shown in Fig. 5, we 
trained the Function layer to output the image “After empty” 
when it reads from its inputs 1, 2 and 3 the images “Count 
until 10 1”, “After empty” and empty, respectively. We also 
trained the Program layer again to output the image “Count 
until 10 1” when it reads from its inputs 1, 2, and 3, now, the 
images “Count from 0 to 9 three times”, “Count until 10 1” 
and “After empty”, respectively. 
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Fig. 5. Step (iv) of the program “Count from 0 to 9 three times”. 

 
In the step (v) of our program, as shown in Fig. 6, we 

trained the Command layer to output the image “0” when it 
reads from its inputs 1, 2 and 3 the images “After empty”, 
empty and empty, respectively. The Sensor Input is not used 
in this program. 
 In the step (vi) of our program, as shown in Fig. 7, we 
trained the Function layer to output “After 0” when it reads 
from its input 1, 2 and 3 the images ‘Count until 10 1”, “After 
empty” and “0”, respectively. 

In the step (vii) of our program, as shown in Fig. 8, we 
trained the Program layer again to output the image “Count 
until 10 1” when it reads from its inputs 1, 2 and 3 the images 
“Count from 0 to 9 three times”, “Count until 10 1” and 
“After 0”, respectively.  

3

2
1

3
2

1

3
2
1

Count from 
0 to 9 

three times

Count until
10 1

After 
empty

Sensor
Input

0

 
Fig. 6. Step (v) of the program “Count from 0 to 9 three times”. 
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Fig. 7. Step (vi) of the program “Count from 0 to 9 three times”. 
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Fig. 8. Step (vii) of the program “Count from 0 to 9 three times”. 

 
In the step (viii) of our program, as shown in Fig. 9, we 

trained the Command layer to output the message “1” when it 
reads from its inputs 1, 2 and 3 the images “After 0”, “0” and 
empty, respectively. 
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Fig. 9. Step (viii) of the program “Count from 0 to 9 three times”. 

 
In the step (ix) of our program, as shown in Fig. 10, we 

trained the Function layer to output “After 1” when it reads 
from its inputs 1, 2 and 3 the images “Count until 10 1”, 
“After 0” and “1”, respectively. 

In the step (x) of our program, as shown in Fig. 11, we 
trained the Program layer again to output the image “Count 
until 10 1” when it reads from its inputs 1, 2 and 3, now, the 
images “Count from 0 to 9 three times”, “Count until 10 1” 
and “After 1”, respectively. 

3

2
1

3
2

1

3
2
1

Count until
10 1 After 0

Sensor
Input

After 1

Count from 
0 to 9 

three times
1

 
Fig. 10. Step (ix) of the program “Count from 0 to 9 three times”. 
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Fig. 11. Step (x) of the program “Count from 0 to 9 three times”. 

 
We repeated steps (viii) to (x) for the numbers 2 to 9, and, 

in the situation shown in Fig. 12, we programmed the 
Program layer to advance to “Count until 10 2” and the 
Function and Command layers to restart a new count from 0 
to 9. Training procedures equivalent to those presented earlier 
can be used to advance to “Count until 10 3”.  
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Fig. 12. Step (xi) of the program “Count from 0 to 9 three times”. 

 
To finalize the program, we put the images “Program end”, 

empty and empty in the content of the Program, Function and 
Command layers, respectively, and, to restart the program 
execution, we put the image “Count from 0 to 9 three times” 
in the V’Ger Input and the empty image in the content of the 
three neural layers. 

The programming procedure described is somewhat 
tedious and too much detailed. However, programming is this 
way in most languages. We believe V’Ger programming can 
be ameliorate through the use of proper tools similar to the 
compilers used for standard computers (the program 
described is in the “assembly language” of V’Ger). 

B. Mechanism of Selective Attention 
Depending on the generalization capacity of the VG-RAM 

WNN architecture employed in the implementation of the 
Program layer, when its content advance from “Count until 
10 1” to “Count until 10 2”, it might be necessary to retrain 
the Function layer to correctly generate each of the images 
(“After 0”, “After 1”, …, “After 9”) required for each 
possible situation of the Command layer (“0”, “1”, …, “9”). 
One way to avoid the need for this retraining is to employ in 
the V’Ger Computer architecture a mechanism equivalent to 
selective attention [14]. Through selective attention, humans 
can maintain the behavioral or cognitive processing of 
interest in the face of distracting or competing stimuli. 
Through its selective attention mechanism, V’Ger can select 
what to attend to in an output. 

We implemented the mechanism of selective attention 
using two-mode outputs (a two-color combination, in our 
case): in one mode, the output image is used as usual input 
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information to other neural layers of V’Ger; in the other, the 
output image is used as a mask, which can act as a filter for 
the input of the neural layers of V’Ger. The second mode of 
output of a neural layer is learned together with the first (we 
use two different color channels during training). 

Fig. 13 shows the use of the mask mentioned above. In Fig. 
13, the mask learned together with each output pattern 
learned by the Function layer controls a filter that allows the 
Function layer neurons to see only the part “Count until 10” 
of the image “Count to 10 1”. 
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Fig. 13. Mask for the mechanism of selective attention. 
 

Fig. 14 shows a selective attention filter employed in the 
Command layer input that can also simplify the training of 
this neural layer. In fact, there are numerous ways of 
employing the mechanism of selective attention to simplify 
the V’Ger’s programming. 

After 
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Fig. 14. Other example of the use of the mechanism of selective attention 

C. Demonstration of the Counting Program Execution 
Fig. 15 and Fig. 16 show the training and testing phases of 

the step (x) of the program “Count from 0 to 9 three times” 
(Section VI.A) for the number 7, for example. As shown in 
Fig. 15 and Fig. 16, the output images learned during the 
training phase are identical to the images outputted during the 
testing phase, except for some slight noise. A Video that 
demonstrates the complete execution of the training and 
testing phases of the counting program can be examined in 
http://www.inf.ufes.br/~alberto/v-ger.html. The video also 
shows how V’Ger behaves when submitted to strong 
interferences during program execution – V’Ger is capable of 
recover proper  program execution even when one of its 
layers is turned empty or is randomized. 

 

 
Fig. 15. Training phase of the step (x) of the program “Count from 0 to 9 

three times” for the number 7. 
 

 
Fig. 16. Testing phase of the step (x) of the program “Count from 0 to 9 three 

times” for the number 7. 

VII. APPLICATION OF THE V’GER COMPUTER ON 
AUTONOMOUS ROBOTICS 

Currently, we are “programming” the V’Ger Computer for 
controlling an autonomous robot, as shown in Fig. 17. To 
communicate with the robot, V’Ger uses 6 memories: 3 input 
memories and 3 output memories. The 3 input memories are: 
(i) Auditory Memory: memory of sounds picked up by a 
microphone, pre-processed by algorithms of interest; (ii) 
Visual Memory: memory of stereo images captured by a 
stereo camera, pre-processed by algorithms of interest; and 
(iii) Map Memory: memory of maps produced by a 
Simultaneous Localization and Mapping (SLAM) algorithm 
[15]. The 3 output memories are: (iv) Image Memory: 
memory of images that V’Ger would like to find in the visual 
field of the camera of the robot; (v) Motor Memory: memory 
of navigation commands that can be sent from V’Ger to the 
navigation system of the robot; and (vi) Voice Memory: 
memory of words that V’Ger can speak. 

 

3876



 
 

 

Commands

FFT

Sensors

SLAM Map Navigation

3
2
1

3
2
1

3
2
1

Input Program Function Command

Maps 
Memory

Auditory 
Memory

Visual 
Memory

Integrate
Sensors

Text

Text

Text

3
2
1

Output

Voice 
Memory

Motor 
Memory

Image 
Memory

Labels

 
Fig. 17. V’Ger architecture for autonomous robot control. 

 
The 6 memories mentioned above are implemented with 

layers of VG-RAM WNN neurons as those employed in the 
implementation of V’Ger (Section V). The inputs of the 
neural layers that implement the input memories are images 
representing: (i) the sound (typically spectrograms of words) 
captured by a microphone; (ii) objects imaged by the stereo 
camera; and (iii) the map of a specific place. The outputs 
learned by these neural layers are images with texts 
describing: (i) words or other sounds captured by the 
microphone; (ii) objects imaged by the stereo camera; and 
(iii) positions in the map.   These outputs are clustered in a 
single image by the Integrate Sensors module. 

The inputs of the neural layers that implement the output 
memories are also images with texts generated by the 
Command layer of V’Ger. These images, generated by the 
Command Layer, are colored and each output memory is 
sensible to only one color. In this way, the Command layer 
can send commands to more than one output memory at the 
same time. The outputs learned by these neural layers are 
images with patterns that define: (iv) a specific object of 
interest imaged by the stereo camera; (v) navigation 
commands, such as “rotate 10 degrees”, “walk forward 30 
cm” or “navigate to the position (12, 15)”; and (iv) words to 
be communicated by V’Ger to humans. 

A. Phonological Loop 
The sound captured by the microphone is filtered (symbol 
) via fast Fourier Transform (FFT). FFTs of voice signals 

made at intervals of about 25ms (usually with overlap of 

about 15ms), or spectrograms, may be grouped over time of a 
few seconds into two-dimensional images. These images 
form the input of the Auditory Memory, which represents the 
Wernicke area – one of the two parts of the cerebral cortex 
involved in the understanding of written and spoken language 
[16, 17]. The spectrogram/image (with text describing words) 
pairs are used to train the Auditory Memory, which 
constitutes a voice recognition system. 

The Auditory Memory is the only one connected to the 
V’Ger Input and the V’Ger Input is also a neural layer, which 
has the same interconnection architecture of the other 
hierarchical levels of V’Ger. The interconnection architecture 
of the V’Ger Input allows it to maintain a memory of the 
verbal program requested via microphone and emulates the 
human phonological loop [14]. 

It is important to note that the Auditory Memory is also 
connected to the Sensor Input. This connection is important 
because it allows the influence of voice commands during 
program executions. 

B.  “What” Stream 
The Visual Memory tries to emulate the “what” stream – 

one of the two main pathways of the visual information that 
travels from the occipital lobe to the temporal lobes and is 
involved with object identification and recognition [18]. It is 
also a pattern recognition system, which outputs a pattern 
(label) previously learned for each stereo image of interest 
presented in its entry, i.e., the Visual Memory allows to label 
objects in the visual field of the robot. It also allows to 
identify how far away these objects are and in what extent the 
objects are at the left or at the right side of the robot. 

To identify how far away an object of interest is and to 
what extent this object is at the right or at the left side of the 
robot, a SURF transform [19] is applied to the stereo image.  
The most prominent SURF features of the object of interest 
are used to guide a filter (symbol   ) that takes to the input 
of the Visual Memory only the frame associated with these 
features of the object of interest. The angle and the distance of 
the image region with the SURF features of the object of 
interest are coded as bars in the output image of the Visual 
Memory, which allows the V’Ger Computer to estimate the 
position of the object recognized in its visual field. 

C. Choice of Objects of Interest 
V’Ger chooses an object of interest using images outputted 

by the Command layer with text describing the object of 
interest, which are recognized by the Image Memory. The 
Image Memory is trained with image (with text describing 
objects of interest)/code (of the object of interest) pairs. All 
neurons of the Image Memory learn the same code for a given 
text describing an object of interest; this code is used as an 
index to a list of objects of interest that is known by the filter 
of the Visual Memory (symbol  ). 

D. “Where” Stream 
The map used as input to the Map Memory is a 

two-dimensional grid map centered in the robot. This map 
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represents the “where” stream – the second of the two main 
pathways of the visual information that travels from the 
occipital lobe to the parietal lobe and is involved with 
processing the object’s spatial location relevant to the viewer 
[18]. The Map Memory is a pattern recognition system that 
outputs a pattern (label) learned previously for each image of 
interest presented in its input, i.e., the Map Memory allows to 
label map positions. 

E. Control of the Robot Navigation System 
The Motor Memory is trained with image (with text 

describing motor commands)/code (of the motor commands) 
pairs. All neurons of the Motor Memory learn the same code 
for a given text describing a command; this code is used as an 
index for a list of commands of interest (symbol ). 

F. Generation of Voice Messages 
The Voice Memory is trained with image (with text 

describing words to be pronounced by V’Ger)/spectrogram 
pairs and represents the Broca’s area – a region in the frontal 
lobe of the human brain with functions linked to speech 
production [20]. The spectrograms learned by the Voice 
Memory are transformed into sound by a filter that 
implements the inverse FFT (symbol ). 

VIII. CONCLUSIONS AND FUTURE WORK 
We presented a biologically inspired computer based on 

Virtual Generalizing Random Access Memory (VG-RAM) 
Weightless Neural Networks (WNN). Different from 
traditional computers, which use a predefined programming 
language to create a program, the V’Ger Computer employs a 
biologically inspired VG-RAM WNN architecture, which is 
capable of learning functions, commands and actions denoted 
by image patterns proposed by the programmer himself. 

To evaluate the performance of the V’Ger Computer, we 
“programmed” it for counting from 0 to 9 three times in a 
hierarchical way. Our experimental results showed that 
V’Ger is capable of executing this sequence of actions even 
under severe interferences. 

Currently, we are “programming” the V’Ger Computer for 
controlling an autonomous robot and our preliminary results 
(not shown here) are promising – most of the modules of Fig. 
17 are already implemented. As future work, we plan to finish 
all modules and start experimenting with the proposed 
architecture for autonomous robot control. 
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