

Abstract—We propose a Virtual Generalizing Random
Access Memory (VG-RAM) Weightless Neural Network (WNN)
Computer (V’Ger Computer for short). VG-RAM WNNs are
very effective pattern recognition tools, offering fast training
(one shot training) and competitive recognition performance, if
compared with other current techniques. The V’Ger Computer
architecture was inspired on the organization of the human
neocortex and is composed of hierarchically organized and
recurrently interconnected layers of VG-RAM WNN neurons.
One layer is connected to another in a way similar to
cortico-cortical feed-forward and feedback connections between
functionally adjacent and hierarchically organized areas. We
have “programmed” the V’Ger Computer for counting from 0
to 9 three times. Our preliminary experimental results showed
that V’Ger is capable of executing this sequence of actions in
spite of strong interferences.

I. INTRODUCTION
N this paper, we propose a biologically inspired

computer based on Virtual Generalizing Random Access
Memory (VG-RAM) Weightless Neural Networks (WNN).
VG-RAM WNNs are very effective pattern recognition tools,
offering simple implementation and fast training (one shot
training) [1].

Similar to traditional computers, the VG-RAM WNN
Computer, or V’Ger Computer for short, adopts a hierarchical
programming approach with different levels of command
abstractions. However, instead of using a predefined
programming language, the V’Ger Computer employs image
patterns and a biologically inspired VG-RAM WNN
architecture, which is capable of learning functions,
commands and actions denoted by these image patterns, that
can be proposed by the programmer himself.

The V’Ger Computer architecture is composed of three
neural layers organized hierarchically and named Program
(the highest level), Function and Command (lower level)
neural layers; the number of layers can be increased without
loss of generality. The Program layer learns programs that
can be invoked by the V’Ger Input and are represented as a
sequence of functions. The Function layer learns functions,

Alberto F. De Souza, Avelino Forechi, Filipe Wall Mutz, Mariella Berger,

Thiago Oliveira-Santos, and Claudine Badue are with the Departamento de
Informática, Universidade Federal do Espírito Santo, 29075-910 – Vitoria –
ES, Brazil (phone: +55-27-4009-2138; fax: +55-27-4009-2850; e-mails:
alberto@lcad.inf.ufes.br, claudine@lcad.inf.ufes.br).

This work was supported in part by the Conselho Nacional de
Desenvolvimento Científico e Tecnológico – CNPq, Brazil (grants
552630/2011-0, 308096/2010-0, and 314485/2009-0) and Fundação de
Amparo à Pesquisa do Espírito Santo – FAPES, Brazil (grant
48511579/2009).

represented as sequences of commands. Finally, the
Command layer learns commands, represented as actions on
the V’Ger Output. The Program layer receives a program
specification via the V’Ger Input in the form of an image and
the Command layer might receive sensor data via the Sensor
Input, also in the form of images, from the environment
probed by V’Ger, which allows V’Ger to monitor the
execution of commands, thereby controlling the program as a
whole.

Each neural layer of the V’Ger Computer projects its
output in form of an image (i) to the layer immediately below
in the hierarchy, (ii) to itself, and (iii) to the layer immediately
above in the hierarchy. Thanks to its interlayer
interconnection pattern, V’Ger is a recurrent WNN. This
interlayer interconnection pattern emulates the
cortico-cortical feed-forward and feedback connections
between functionally adjacent and hierarchically organized
areas of the neocortex [2] and allows the creation of neuron
state machines that can execute elaborate programs.

For “programming” the V’Ger Computer, the programmer
trains each neural layer to output a specific image when it
observes specific input images. This programming approach
allows the programmer to establish his own “language” of
image patterns representing different levels of command
abstractions. In addition, this training can be performed in
such a way that procedures are repeated in neural layers of
lower levels of abstraction as soon as an image pattern is seen
in a neural layer of a higher level of abstraction.

We evaluated the performance of the V’Ger Computer
using a simple program for counting from 0 to 9 three times in
a hierarchical way. Our experimental results showed that
V’Ger is capable of executing the sequence of actions
required in spite of severe interferences. Currently, we are
“programming” V’Ger for executing elaborate programs for
controlling a Pioneer 3-DX robot equipped with a Bumblebee
stereo camera, a Sick Light Detection and Ranging (LIDAR),
and a laptop with a microphone and speakers.

Although there are other approaches to implement
recurrent WNNs that can be trained to execute sequences [3,
4, 5], our biologically inspired VG-RAM WNN architecture
for executing sequences of actions is unique in its hierarchical
organization and structured programming mechanism, and
the results we have obtained so far with it are promising.

This paper is organized as follows. After this introduction,
in Section II we briefly discuss related work. In Section III,
we present the V’Ger Computer architecture. In Section IV,
we describe VG-RAM WNNs and, in Section V, we explain
how we have used them to implement the V’Ger Computer.

Programming a VG-RAM based Neural Network Computer
Alberto F. De Souza, Avelino Forechi, Filipe Wall Mutz, Mariella Berger, Thiago Oliveira-Santos

and Claudine Badue

I

2014 International Joint Conference on Neural Networks (IJCNN)
July 6-11, 2014, Beijing, China

978-1-4799-1484-5/14/$31.00 ©2014 IEEE 3871

In Section VI, we show how to program V’Ger. Our
conclusions and directions for future work follow in Section
VIII. A preliminary version of this work was presented as
poster [6].

II. RELATED WORK
The General Neural Unit (GNU [3]) is one of earliest

examples of recurrent WNN. Sales et al. [7] employed GNU
neurons to build a Neural State Machine (NSM) capable of
associating visual (images), linguistic (words represented as
images), and proprioceptive (displacements in a computer
screen also represented as images) information and act upon
these associations according to training. V’Ger resembles the
system proposed by Sales et al., but uses a different type of
neuron and has a much more general and powerful
architecture. Gorse and Taylor [4] have shown that recurrent
probabilistic RAM (pRAM) WNNs can store complex
temporal sequences and learn regular languages. More
recently, Souto et al. [5, 8] have shown that a WNN
architecture based on pRAM named General Single-layer
Sequential WNN (GSSWNN) is equivalent to a probabilistic
automaton. These WNNs are single-layer and do not offer the
abstraction of neural structured programing attainable with
V’Ger.

III. THE V’GER COMPUTER ARCHITECTURE
The V’Ger Computer has three neural layers organized

hierarchically and named Program (the highest level),
Function, and Command (lower level) neural layers, as
shown in Fig. 1. The names of the neural layers shown in
figure indicate their expected roles. The Program layer, which
occupies the highest hierarchical level, learns programs,
represented as sequences of functions. The Function layer
learns functions, represented as sequences of commands.
Finally, the Command layer learns commands, represented as
actions on the V’Ger Output. Although throughout this work
we present V’Ger with only three layers, the number of layers
can be increased without loss of generality.

Each neural layer of the V’Ger Computer projects its
output to the layer immediately below in the hierarchy, to
itself, and to the layer immediately above in the hierarchy, as
shown by the arrows in Fig. 1. So, each neural layer has 3
inputs: (i) the output of the layer immediately above in the
hierarchy, (ii) its own output, and (iii) the output of the layer
immediately below. These 3 inputs are images.

The neural layers of the V’Ger Computer are
two-dimensional arrays of VG-RAM WNN neurons. Each
neuron has a number of synapses, which are connected to the
inputs of its neural layer, to other neural layers, or to other
elements of the architecture of V’Ger, as shown in Fig. 1.
This interconnection architecture allows the creation of
complex neural state machines.

V’Ger
Output

V’Ger
Input

Program
Neural
Layer

Function
Neural
Layer

Command
Neural
Layer

Sensor
Input

Fig. 1. Hierarchical architecture of the V’Ger Computer.

By examining the interconnection architecture shown in

Fig. 1, it is possible to note that one input of the Program layer
(V’Ger Input) and one of the Command layer (Sensor Input)
are not accounted for. The input of the Program layer receives
a program specification via the V’Ger Input in the form of an
image and the Command layer might receive sensor data via
the Sensor Input, also in the form of images, obtained from,
for example, stereo cameras, laser range finders,
microphones, etc. The Sensor Input allows V’Ger to monitor
the execution of commands, thereby controlling the program
as a whole.

Structurally, the neural layers of the V’Ger Computer do
not differ – they are all capable of memorizing (learning)
relations between input images and output images. That is,
given a set of input images and one output image, a V’Ger
neural layer can be trained so that, when an input image
previously learned (or an approximate version of it) is
restated, it provides the corresponding (learned) output.
However, from a logical point of view, they differ because, as
discussed above, the leftmost neural layers occupy a higher
hierarchical level than the rightmost.

IV. VG-RAM WNN
Virtual Generalizing Random Access Memory (VG-RAM)

Weightless Neural Networks (WNN) are RAM-based neural
networks that, in contrast to weighted neuron networks, do
not store knowledge in their synapses but in Random Access
Memories (RAM) inside the network’s neurons. During the
training phase, each neuron of these networks learns
input-output pairs, composed of input patterns and
corresponding output patterns. These pairs are stored in the
neurons’ memories. After training, given an input pattern,
each neuron searches its memory by comparing the input
presented to the network with all inputs learned. The output of
each neuron is taken from the pair whose input is nearest to
the input presented – the distance function employed is the
Hamming distance. If there is more than one pair at the same
minimum distance from the input presented, the neuron’s
output is chosen randomly among these pairs. For more
details about VG-RAM WNN, please refer to [1, 9].

VG-RAM WNN can be used for image recognition [10,
11]. In image recognition approaches based on machine
learning, given a set of pairs of input images and
corresponding output patterns previously learned by the
system, the task is to assign an output pattern to an input

3872

image previously unseen by the system. To recognize images
using VG-RAM WNN, a basic VG-RAM WNN architecture
comprised of two layers – an input layer and a neural layer –
can be used. The neurons of the neural layer are connected to
the input layer through a set of synapses.

During the training phase, an input image and its
corresponding output pattern are set in the input layer and the
output of the neural layer, respectively. Each neuron collects
a binary input vector from the input layer via its set of
synapses. In addition, the expected output of each neuron is
read from the neural layer. Finally, this input-output pair is
stored in the neuron’s memory. After training, the neural
layer operates in continuous cycles of three phases, each of
which are executed in parallel by one of its neurons: (i)
extraction of a binary input vector from the input layer via its
set of synapses; (ii) search in its memory for the binary input
vector collected from an input image during training that is
nearest to the binary input vector collected from the current
input image; and (iii) output of the pattern associated with the
learned and nearest binary input vector. Note that each neuron
acts independently, so each one outputs one element of the
output pattern according to what it has learnt. Also,
input-output patterns learned during training and stored in the
neurons’ memories can be saved in secondary memory (disk).
Therefore, every time the computer restarts, it is not
necessary to train the network again. Finally, the search for
the nearest binary input vector in each neuron’s memory is
performed sequentially and the distance is measured using the
Hamming distance. The Hamming distance between two
binary patterns can be efficiently computed at machine code
level in current 64-bit CPUs and GPUs of personal computers
using two instructions: one to identify the bits that differ in
64-bit segments of the two binary patterns, i.e. a bit-wise
exclusive-or instruction; and another to count these bits, i.e., a
population count instruction.

V. THE V’GER COMPUTER IMPLEMENTATION WITH
VG-RAM WNN

Each neural layer of the V’Ger Computer is a
two-dimensional array of nm × VG-RAM WNN neurons,
N = {n1,1, n1,2, …, nm,n}. Each neuron, ni,j, has a set of
synapses, S = {s1, s2, …, s|S|}, which are connected to 3
two-dimensional inputs of m × n elements, (i)
I1 = {i11,1, i11,2, … i1m,n}, (ii) I2 = {i21,1, i21,2, … i2m,n}, and
(iii) I3 = {i31,1, i31,2, … i3m,n}, given by the output of the layer
immediately above in the hierarchy (or from the V’Ger
Input), its own layer output and the output of the layer
immediately below (or from the Sensor Input), respectively.
Note that the layers’ inputs have the same size of the neurons
array, N.

The set of synapses, S, of each neuron is partitioned into 4
subsets of equal size: (i) S1 = {s11, s12, …, s1|S|/4}, (ii)
S2 = {s21, s22, …, s2|S|/4}, (iii) S3 = {s31, s32, …, s3|S|/4} and
(iv) S4 = {s41, s42, …, s4|S|/4}. For each neuron, ni,j, its
synapses in S1, S2 and S3 are randomly connected to I1, I2
and I3, respectively; and its synapses in S4 are connected to I2

according to a two-dimensional Gaussian distribution with
variance σ2 centered at i2i,j; i.e., the coordinates k and l of the
elements of I2 to which ni,j connects via S4 follow the
probability density functions:

2

2

2
2

)(

, 2
1)(σ

σ σω
ik

i ek
−

−

Π
= and

2

2

2
2

)(

, 2
1)(σ

σ σω
jl

j el
−−

Π
= ,

where σ is a parameter of the architecture. This Gaussian
synaptic interconnection pattern mimics that observed in
many classes of biological neurons [12] and allows the
learning and recognition of local features [10]. Both random
and Gaussian synaptic interconnection patterns of each
neuron are created when the network is built and does not
change afterwards.

VG-RAM WNN synapses can only get a single bit from the
input. Thus, in order to allow our VG-RAM WNN synapses
to deal with images, in which a pixel may assume a range of
different values, we use minchinton cells [13]. Each neuron’s
synapse, st, forms a minchinton cell with the next, st+1(s|S|
forms a minchinton cell with s1). The type of the minchinton
cell we have used returns a one if the synapse st of the cell is
connected to an input element whose value is larger than the
value of the element to which the synapse st+1 is connected;
otherwise, it returns a zero.

VI. PROGRAMMING THE V’GER COMPUTER FOR
COUNTING

A. Counting Program
We have “programmed” the V’Ger Computer for counting

from 0 to 9 three times in a hierarchical way. We called this
program “Count from 0 to 9 three times” and used a top-down
approach for writing it. It is a very simple program, but it
highlights V’Ger hierarchical organization and mechanism of
structured programming.

Fig. 2 shows the step (i) of our program. As shown in this
figure, in step (i), we specified in the V’Ger Input the name of
the program to be executed and indicated what should be the
output of the Program layer (the symbol is used for
specifying what pattern one neural layer should learn). In fact,
we specified in the V’Ger Input an image that, for
convenience, can be interpreted by humans as the message
“Count from 0 to 9 three times”; and indicated as the output of
the Program layer an image that, also for convenience, can be
read by humans as the message “Count until 10 1”.

3873

3
2
1

Sensor
Input

Count until
10 1

Count from
0 to 9

three times

Fig. 2. Step (i) of the program “Count from 0 to 9 three times”.

Once we have specified the items that compound the step

(i) of the program, we can then train the Program layer to
output the image “Count until 10 1” when it reads from its
inputs 1, 2 and 3 the images “Count from 0 to 9 three times”,
empty (all pixels equal to zero) and empty, respectively.

Fig. 3 shows the step (ii) of our program. As shown in this
figure, in step (ii), we specified again in the V’Ger Input the
name of the program and indicated what should be the output
of the Program layer. Furthermore, we specified in the
content of the Program layer the image “Count until 10 1”.

3
2
1

Sensor
Input

Count until
10 1

Count until
10 1

Count from
0 to 9

three times

Fig. 3. Step (ii) of the program “Count from 0 to 9 three times”.

Once we have specified the items that compound the step

(ii) of the program, we can then train the Program layer to
output the image “Count until 10 1” when it reads from its
inputs 1, 2 and 3 the images “Count from 0 to 9 three times”,
“Count until 10 1” and empty, respectively. That is, up to this
point of the program, the Program layer was trained to output
the image “Count until 10 1” in two circumstances: first,
when its inputs 1, 2, and 3 contain the images “Count from 0
to 9 three times”, empty and empty, respectively; and second,
when its inputs 1, 2, and 3 contain the images “Count from 0
to 9 three times”, “Count until 10 1” and empty, respectively.
So, given what we have programmed up to this point, if the
neural layers are initialized with an empty image and the
V’Ger Input with the image “Count from 0 to 9 three times”,
after the first cycle, the Program layer will contain the image
“Count until 10 1” and, in later cycles, its content will not
change (see how VG-RAM layers operates in Section IV).

Fig. 4 shows the step (iii) of our program. As shown in the
figure, in step (iii) we indicated what should be the output of
the Function layer – the image “After empty” – when it
receives in its inputs 1, 2 and 3 the images “Count until 10 1”,
empty and empty, respectively.

3
2
1

3
2
1Count from

0 to 9
three times

Count until
10 1

Sensor
Input

After
empty

Fig. 4. Step (iii) of the program “Count from 0 to 9 three times”.

Once we have specified the items that compound the step

(iii) of the program, we can then train the Function layer to
output the image “After empty” when it reads from its inputs
1, 2 and 3 the images “Count until 10 1”, empty and empty,
respectively.

In the step (iv) of our program, as shown in Fig. 5, we
trained the Function layer to output the image “After empty”
when it reads from its inputs 1, 2 and 3 the images “Count
until 10 1”, “After empty” and empty, respectively. We also
trained the Program layer again to output the image “Count
until 10 1” when it reads from its inputs 1, 2, and 3, now, the
images “Count from 0 to 9 three times”, “Count until 10 1”
and “After empty”, respectively.

3
2

1

3
2
1

Count until
10 1

After
empty

Sensor
Input

After
empty

Count from
0 to 9

three times

Count until
10 1

Fig. 5. Step (iv) of the program “Count from 0 to 9 three times”.

In the step (v) of our program, as shown in Fig. 6, we

trained the Command layer to output the image “0” when it
reads from its inputs 1, 2 and 3 the images “After empty”,
empty and empty, respectively. The Sensor Input is not used
in this program.
 In the step (vi) of our program, as shown in Fig. 7, we
trained the Function layer to output “After 0” when it reads
from its input 1, 2 and 3 the images ‘Count until 10 1”, “After
empty” and “0”, respectively.

In the step (vii) of our program, as shown in Fig. 8, we
trained the Program layer again to output the image “Count
until 10 1” when it reads from its inputs 1, 2 and 3 the images
“Count from 0 to 9 three times”, “Count until 10 1” and
“After 0”, respectively.

3

2
1

3
2

1

3
2
1

Count from
0 to 9

three times

Count until
10 1

After
empty

Sensor
Input

0

Fig. 6. Step (v) of the program “Count from 0 to 9 three times”.

3874

0
3

2
1

3
2
1

3
2
1

Count from
0 to 9

three times

Count until
10 1

After
empty

Sensor
Input

After 0

Fig. 7. Step (vi) of the program “Count from 0 to 9 three times”.

0
3

2
1

3
2
1

3
2
1

Count from
0 to 9

three times

Count until
10 1 After 0

Sensor
Input

Count until
10 1

Fig. 8. Step (vii) of the program “Count from 0 to 9 three times”.

In the step (viii) of our program, as shown in Fig. 9, we

trained the Command layer to output the message “1” when it
reads from its inputs 1, 2 and 3 the images “After 0”, “0” and
empty, respectively.

3

2
1

3
2

1

3
2
1

Count from
0 to 9

three times

Count until
10 1 After 0

Sensors 1

0

Fig. 9. Step (viii) of the program “Count from 0 to 9 three times”.

In the step (ix) of our program, as shown in Fig. 10, we

trained the Function layer to output “After 1” when it reads
from its inputs 1, 2 and 3 the images “Count until 10 1”,
“After 0” and “1”, respectively.

In the step (x) of our program, as shown in Fig. 11, we
trained the Program layer again to output the image “Count
until 10 1” when it reads from its inputs 1, 2 and 3, now, the
images “Count from 0 to 9 three times”, “Count until 10 1”
and “After 1”, respectively.

3

2
1

3
2

1

3
2
1

Count until
10 1 After 0

Sensor
Input

After 1

Count from
0 to 9

three times
1

Fig. 10. Step (ix) of the program “Count from 0 to 9 three times”.

3

2
1

3
2

1

3
2
1

Count until
10 1 After 1

Sensor
Input

Count until
10 1

Count from
0 to 9

three times
1

Fig. 11. Step (x) of the program “Count from 0 to 9 three times”.

We repeated steps (viii) to (x) for the numbers 2 to 9, and,

in the situation shown in Fig. 12, we programmed the
Program layer to advance to “Count until 10 2” and the
Function and Command layers to restart a new count from 0
to 9. Training procedures equivalent to those presented earlier
can be used to advance to “Count until 10 3”.

9
3
2
1

Count from
0 to 9

three times

Count until
10 1 After 9

Sensors 0After 0Count until
10 2

Fig. 12. Step (xi) of the program “Count from 0 to 9 three times”.

To finalize the program, we put the images “Program end”,

empty and empty in the content of the Program, Function and
Command layers, respectively, and, to restart the program
execution, we put the image “Count from 0 to 9 three times”
in the V’Ger Input and the empty image in the content of the
three neural layers.

The programming procedure described is somewhat
tedious and too much detailed. However, programming is this
way in most languages. We believe V’Ger programming can
be ameliorate through the use of proper tools similar to the
compilers used for standard computers (the program
described is in the “assembly language” of V’Ger).

B. Mechanism of Selective Attention
Depending on the generalization capacity of the VG-RAM

WNN architecture employed in the implementation of the
Program layer, when its content advance from “Count until
10 1” to “Count until 10 2”, it might be necessary to retrain
the Function layer to correctly generate each of the images
(“After 0”, “After 1”, …, “After 9”) required for each
possible situation of the Command layer (“0”, “1”, …, “9”).
One way to avoid the need for this retraining is to employ in
the V’Ger Computer architecture a mechanism equivalent to
selective attention [14]. Through selective attention, humans
can maintain the behavioral or cognitive processing of
interest in the face of distracting or competing stimuli.
Through its selective attention mechanism, V’Ger can select
what to attend to in an output.

We implemented the mechanism of selective attention
using two-mode outputs (a two-color combination, in our
case): in one mode, the output image is used as usual input

3875

information to other neural layers of V’Ger; in the other, the
output image is used as a mask, which can act as a filter for
the input of the neural layers of V’Ger. The second mode of
output of a neural layer is learned together with the first (we
use two different color channels during training).

Fig. 13 shows the use of the mask mentioned above. In Fig.
13, the mask learned together with each output pattern
learned by the Function layer controls a filter that allows the
Function layer neurons to see only the part “Count until 10”
of the image “Count to 10 1”.

3
2
1

3
2
1

3
2
1

Count from
0 to 9 three

times

Count until
10
1

After 7 7

Sensor
Input

Fig. 13. Mask for the mechanism of selective attention.

Fig. 14 shows a selective attention filter employed in the
Command layer input that can also simplify the training of
this neural layer. In fact, there are numerous ways of
employing the mechanism of selective attention to simplify
the V’Ger’s programming.

After

7 3
2
1

3
2
1

3
2
1

Count from
0 to 9 three

times
Count until

10 1 7

Sensor
Input

Fig. 14. Other example of the use of the mechanism of selective attention

C. Demonstration of the Counting Program Execution
Fig. 15 and Fig. 16 show the training and testing phases of

the step (x) of the program “Count from 0 to 9 three times”
(Section VI.A) for the number 7, for example. As shown in
Fig. 15 and Fig. 16, the output images learned during the
training phase are identical to the images outputted during the
testing phase, except for some slight noise. A Video that
demonstrates the complete execution of the training and
testing phases of the counting program can be examined in
http://www.inf.ufes.br/~alberto/v-ger.html. The video also
shows how V’Ger behaves when submitted to strong
interferences during program execution – V’Ger is capable of
recover proper program execution even when one of its
layers is turned empty or is randomized.

Fig. 15. Training phase of the step (x) of the program “Count from 0 to 9

three times” for the number 7.

Fig. 16. Testing phase of the step (x) of the program “Count from 0 to 9 three

times” for the number 7.

VII. APPLICATION OF THE V’GER COMPUTER ON
AUTONOMOUS ROBOTICS

Currently, we are “programming” the V’Ger Computer for
controlling an autonomous robot, as shown in Fig. 17. To
communicate with the robot, V’Ger uses 6 memories: 3 input
memories and 3 output memories. The 3 input memories are:
(i) Auditory Memory: memory of sounds picked up by a
microphone, pre-processed by algorithms of interest; (ii)
Visual Memory: memory of stereo images captured by a
stereo camera, pre-processed by algorithms of interest; and
(iii) Map Memory: memory of maps produced by a
Simultaneous Localization and Mapping (SLAM) algorithm
[15]. The 3 output memories are: (iv) Image Memory:
memory of images that V’Ger would like to find in the visual
field of the camera of the robot; (v) Motor Memory: memory
of navigation commands that can be sent from V’Ger to the
navigation system of the robot; and (vi) Voice Memory:
memory of words that V’Ger can speak.

3876

Commands

FFT

Sensors

SLAM Map Navigation

3
2
1

3
2
1

3
2
1

Input Program Function Command

Maps
Memory

Auditory
Memory

Visual
Memory

Integrate
Sensors

Text

Text

Text

3
2
1

Output

Voice
Memory

Motor
Memory

Image
Memory

Labels

Fig. 17. V’Ger architecture for autonomous robot control.

The 6 memories mentioned above are implemented with

layers of VG-RAM WNN neurons as those employed in the
implementation of V’Ger (Section V). The inputs of the
neural layers that implement the input memories are images
representing: (i) the sound (typically spectrograms of words)
captured by a microphone; (ii) objects imaged by the stereo
camera; and (iii) the map of a specific place. The outputs
learned by these neural layers are images with texts
describing: (i) words or other sounds captured by the
microphone; (ii) objects imaged by the stereo camera; and
(iii) positions in the map. These outputs are clustered in a
single image by the Integrate Sensors module.

The inputs of the neural layers that implement the output
memories are also images with texts generated by the
Command layer of V’Ger. These images, generated by the
Command Layer, are colored and each output memory is
sensible to only one color. In this way, the Command layer
can send commands to more than one output memory at the
same time. The outputs learned by these neural layers are
images with patterns that define: (iv) a specific object of
interest imaged by the stereo camera; (v) navigation
commands, such as “rotate 10 degrees”, “walk forward 30
cm” or “navigate to the position (12, 15)”; and (iv) words to
be communicated by V’Ger to humans.

A. Phonological Loop
The sound captured by the microphone is filtered (symbol
) via fast Fourier Transform (FFT). FFTs of voice signals

made at intervals of about 25ms (usually with overlap of

about 15ms), or spectrograms, may be grouped over time of a
few seconds into two-dimensional images. These images
form the input of the Auditory Memory, which represents the
Wernicke area – one of the two parts of the cerebral cortex
involved in the understanding of written and spoken language
[16, 17]. The spectrogram/image (with text describing words)
pairs are used to train the Auditory Memory, which
constitutes a voice recognition system.

The Auditory Memory is the only one connected to the
V’Ger Input and the V’Ger Input is also a neural layer, which
has the same interconnection architecture of the other
hierarchical levels of V’Ger. The interconnection architecture
of the V’Ger Input allows it to maintain a memory of the
verbal program requested via microphone and emulates the
human phonological loop [14].

It is important to note that the Auditory Memory is also
connected to the Sensor Input. This connection is important
because it allows the influence of voice commands during
program executions.

B. “What” Stream
The Visual Memory tries to emulate the “what” stream –

one of the two main pathways of the visual information that
travels from the occipital lobe to the temporal lobes and is
involved with object identification and recognition [18]. It is
also a pattern recognition system, which outputs a pattern
(label) previously learned for each stereo image of interest
presented in its entry, i.e., the Visual Memory allows to label
objects in the visual field of the robot. It also allows to
identify how far away these objects are and in what extent the
objects are at the left or at the right side of the robot.

To identify how far away an object of interest is and to
what extent this object is at the right or at the left side of the
robot, a SURF transform [19] is applied to the stereo image.
The most prominent SURF features of the object of interest
are used to guide a filter (symbol) that takes to the input
of the Visual Memory only the frame associated with these
features of the object of interest. The angle and the distance of
the image region with the SURF features of the object of
interest are coded as bars in the output image of the Visual
Memory, which allows the V’Ger Computer to estimate the
position of the object recognized in its visual field.

C. Choice of Objects of Interest
V’Ger chooses an object of interest using images outputted

by the Command layer with text describing the object of
interest, which are recognized by the Image Memory. The
Image Memory is trained with image (with text describing
objects of interest)/code (of the object of interest) pairs. All
neurons of the Image Memory learn the same code for a given
text describing an object of interest; this code is used as an
index to a list of objects of interest that is known by the filter
of the Visual Memory (symbol).

D. “Where” Stream
The map used as input to the Map Memory is a

two-dimensional grid map centered in the robot. This map

3877

represents the “where” stream – the second of the two main
pathways of the visual information that travels from the
occipital lobe to the parietal lobe and is involved with
processing the object’s spatial location relevant to the viewer
[18]. The Map Memory is a pattern recognition system that
outputs a pattern (label) learned previously for each image of
interest presented in its input, i.e., the Map Memory allows to
label map positions.

E. Control of the Robot Navigation System
The Motor Memory is trained with image (with text

describing motor commands)/code (of the motor commands)
pairs. All neurons of the Motor Memory learn the same code
for a given text describing a command; this code is used as an
index for a list of commands of interest (symbol).

F. Generation of Voice Messages
The Voice Memory is trained with image (with text

describing words to be pronounced by V’Ger)/spectrogram
pairs and represents the Broca’s area – a region in the frontal
lobe of the human brain with functions linked to speech
production [20]. The spectrograms learned by the Voice
Memory are transformed into sound by a filter that
implements the inverse FFT (symbol).

VIII. CONCLUSIONS AND FUTURE WORK
We presented a biologically inspired computer based on

Virtual Generalizing Random Access Memory (VG-RAM)
Weightless Neural Networks (WNN). Different from
traditional computers, which use a predefined programming
language to create a program, the V’Ger Computer employs a
biologically inspired VG-RAM WNN architecture, which is
capable of learning functions, commands and actions denoted
by image patterns proposed by the programmer himself.

To evaluate the performance of the V’Ger Computer, we
“programmed” it for counting from 0 to 9 three times in a
hierarchical way. Our experimental results showed that
V’Ger is capable of executing this sequence of actions even
under severe interferences.

Currently, we are “programming” the V’Ger Computer for
controlling an autonomous robot and our preliminary results
(not shown here) are promising – most of the modules of Fig.
17 are already implemented. As future work, we plan to finish
all modules and start experimenting with the proposed
architecture for autonomous robot control.

REFERENCES
[1] I. Aleksander, “From WISARD to MAGNUS: A family of weightless

virtual neural machines”, in RAM-Based Neural Networks, J. Austin,
Ed., World Scientific, pp. 18-30, 1998.

[2] G. M. Shepherd, The Synaptic Organization of the Brain, Fourth
Edition, Oxford University Press, 2004.

[3] I. Aleksander, “Neural systems engineering: towards a unified design
discipline?”, Computing & Control Engineering Journal, vol. 1, no. 6,
pp. 259-265, 1990.

[4] D. Gorse, J. G. Taylor, “Enconding temporal structure in probabilistic
RAM networks”, Proc. of IEE International Conference on Neural
Networks, pp. 369-372, 1991.

[5] M. C. P. de Souto, T. B. Ludermir, W. R. de Oliveira, “Equivalence
Between RAM-based Neural Networks and Probabilistic Automata”,
IEEE Transactions on Neural Networks, vol. 16, no. 4, pp. 996-999,
2005.

[6] A. F. De Souza, “V Ger: Virtual generalizing random access memory
weightless neural network computer”, poster presented at the
International Joint Conference on Neural Networks, IJCNN’2013.

[7] N. J. Sales, R. G. Evans, I. Aleksander, “Successful Naïve
Representation Grounding”, Artificial Intelligence Review, vol. 10, no.
1-2, pp. 83-102, 1996.

[8] M. C. P. de Souto, J. C. M. Oliveira, T. B. Ludermir, “A tool to
implement probabilistic automata in RAM-based neural networks”,
Proc. of The International Joint Conference on Neural Networks, pp.
1054-1060, 2011.

[9] T. B. Ludermir, A. C. P. L. F. Carvalho, A. P. Braga, M. D. Souto,
“Weightless neural models: a review of current and past works”, Neural
Computing Surveys, vol. 2, pp. 41-61, 1999.

[10] A. F. De Souza, C. Badue, F. T. Pedroni, E. Oliveira, S. S. Dias, H.
Oliveira, S. F. Souza, “Face recognition with VG-RAM weightless
neural networks”, Proc. of the International Conference on Artificial
Neural Networks (ICANN’2008), pp. 951–960, 2008.

[11] M. Berger, A. Forechi, A. F. De Souza, J. Oliveira Neto, L. P. Veronese,
V. N. Neves, C. Badue, “Traffic sign recognition with VG-RAM
weightless neural networks”, Proc. of the IEEE International
Conference on Intelligent Systems Design and Applications
(ISDA’2012), pp. 315-319, 2012.

[12] E. R. Kandel, J. H. Schwartz, T. M. Jessell, Principles of Neural
Science, Prentice-Hall International Inc, 2000.

[13] R. J. Mitchell, J. M. Bishop, S. K. Box, J. F. Hawker, “Comparison of
some methods for processing grey level data in weightless networks”, in
RAM-based Neural Networks, J. Austin, Ed., World Scientific, pp.
61-70, 1998.

[14] R. J. Sternberg, Cognitive Psychology, 5th Edition, Cengage Learning,
2008.

[15] S. Thrun, W. Burgard, D. Fox, Probabilistic Robotics, The MIT Press,
2005.

[16] I. DeWitt, J. P. Rauschecker, "Phoneme and word recognition in the
auditory ventral stream", Proc. of the National Academy of Sciences,
vol. 109, no. 8, pp. E505-E514, 2012.

[17] I. DeWitt, J. P. Rauschecker, “Wernicke’s area revisited: Parallel
streams and word processing”, Brain and Language, vol. 127, no. 2, pp.
181-191, 2013.

[18] M. A. Goodale, A. D. Milner, “Separate visual pathways for perception
and action”, Trends in Neuroscience, vol. 15, no. 1, pp. 20–25, 1992.

[19] H. Bay, A. Ess, T. Tuytelaars, L. V. Gool, “Speeded-up robust features
(SURF)”, Computer Vision and Image Understanding, vol. 110, no. 3,
pp. 346-359, 2008.

[20] C. Cantalupo, W. D. Hopkins, “Asymmetric broca’s area in great apes”,
Nature, vol. 414, pp. 505-505, 2001.

3878

