
Optimal Detection of New Classes of Faults by an Invasive Weed
Optimization Method

Roozbeh Razavi-Far, Vasile Palade and Enrico Zio

Abstract— Proper detection of unknown patterns plays an
important role in diagnosing new classes of faults. This can
be done by incremental learning of novel information and
updating the diagnostic system by appending newly trained
fault classifiers in an ensemble design.

We consider a new-class fault detector previously developed
by the authors and based on thresholding the normalized
weighted average of the outputs (𝑁𝑊𝐴𝑂) of the base classifiers
in a multi-classifier diagnostic system. A proper tuning of the
thresholds in the 𝑁𝑊𝐴𝑂 detector is necessary to achieve
a satisfactory performance. This is done in this paper by
specifically introducing a performance function and optimizing
it within the necessary trade-off between new class false alarm
and new class missed alarm rates, by means of an Invasive
Weed Optimization (𝐼𝑊𝑂) algorithm.

The optimal 𝑁𝑊𝐴𝑂 detector is tested with respect to a set
of simulated sensor faults in the doubly-fed induction generator
(DFIG) of a wind turbine.

I. INTRODUCTION

THE growing demand for safety, reliability and higher
efficiency in industrial systems is motivating an increas-

ing interest in data-driven diagnostic systems [1]. Most of
these data-driven systems apply computational intelligence
methods for detecting and diagnosing faults [2–4].

Most of the fault classifiers are built based on time-series
data of various feature signals in static environments, and
their performance is highly dependent on the available data
quantity and distribution [1].

Static fault classifiers are not valid for decision making in
dynamic environments, where the datasets become available
successively, over a period of time. In these circumstances,
a fault classifier should be able to incrementally update and
learn the novel information, as new data become available,
while preserving the obtained knowledge from the preceding
data [5]. One way is to use an ensemble of fault classifiers
and update the ensemble in an incremental fashion without
discarding the previously trained fault classifiers [5], which
allows to learn the new relations between the input signals
and output classes in the new operational regions.

New class faults are inevitable in most dynamic systems,
since in practice, it is not feasible to have datasets containing

Roozbeh Razavi-Far is with the Department of Energy, Politec-
nico di Milano, via Ponzio 34/3, 20133 Milan, Italy (emails:
roozbeh.razavi@gmail.com; roozbeh.razavi@mail.polimi.it).

Vasile Palade is with the Faculty of Engineering and Computing,
Coventry University, Priory Street, Coventry, United Kingdom (email:
vasile.palade@coventry.ac.uk).

Enrico Zio is with the Systems Science and the Energetic Challenge,
European Foundation for New Energy-Electricité de France, Ecole Centrale
Paris and Supelec, Paris, 92295 Chatenay-Malabry Cedex, France, Depart-
ment of Energy, Politecnico di Milano, via Ponzio 34/3, 20133 Milan, Italy
(emails: enrico.zio@polimi.it; enrico.zio@ecp.fr; enrico.zio@supelec.fr).

patterns of all the possible faulty classes. Thus, it is possible
that the subsequent datasets contain patterns of new classes
of faults that do not exist in the preceding datasets. Albeit
the ensemble of fault classifiers is more confident compared
with the single fault classifier [6] and capable of incremental
learning [5], it is doomed to misclassify patterns from classes
on which it was not trained.

The problem of diagnosing new class faults was addressed
in [7, 8] by means of a dynamic weighting ensemble, called
𝐿𝑒𝑎𝑟𝑛++.𝑁𝑒𝑤𝐶𝑙𝑎𝑠𝑠(𝑁𝐶) [9]. This algorithm learns the
new classes due to a voting mechanism, called dynamically
weighted consult and vote (𝐷𝑊 − 𝐶𝐴𝑉) [9].

The dynamic weighting ensemble (𝐷𝑊𝐸) of fault classi-
fiers was able to incrementally learn and diagnose multiple
new classes of faults in a Boiling Water Reactor (BWR)
[7, 8]. The 𝐷𝑊𝐸 classification module has also been
successfully used along with the multiple observers scheme
to diagnose multiple classes of new faults in the sensors of
the doubly-fed induction generator (DFIG) of a wind turbine
[10–12].

In [8], an unknown class detector has been devised based
on thresholding the Normalized Weighted Average of Out-
puts (𝑁𝑊𝐴𝑂) of the base classifiers of the 𝐷𝑊𝐸, which
detects the patterns of unseen classes in upcoming datasets.
The performance of the 𝐷𝑊𝐸 diagnostic system depends on
some preset parameters that need to be tuned automatically.
The key parameters are the low and high thresholds of the
𝑁𝑊𝐴𝑂 detector.

In this work, in order to tune these thresholds automat-
ically, a proper multi-objective performance function is de-
fined. Then, a bio-inspired numerical optimization algorithm,
called Invasive Weed Optimization (𝐼𝑊𝑂) [13], is used to
find the most suitable set of parameters that minimizes the
performance function.

The rest of this paper is organized as follows. Section
II presents a brief description of the diagnostic system.
To optimize the diagnostic system, a proper performance
function is proposed in Section III along with the prob-
lem formulation. The 𝐼𝑊𝑂 algorithm, its properties and
pseudocode are presented in Section IV. Section V presents
some results of the optimized diagnostic system in detecting
unknown patterns of multiple classes of faults in the wind
turbine application. Conclusions are drawn in Section VI.

II. THE DIAGNOSTIC SYSTEM

A fault classifier maps each pattern of the input vector (i.e.,
generated residuals by means of multiple observers) to one of
the pre-assigned available classes of faults or the fault-free

2014 International Joint Conference on Neural Networks (IJCNN)
July 6-11, 2014, Beijing, China

978-1-4799-1484-5/14/$31.00 ©2014 IEEE 91

Fig. 1. Block diagram of the Dynamic Weighting Ensemble algorithm [11].

case [10, 11]. Here, the diagnostic system is the dynamic
weighting ensemble of fault classifiers [8, 10, 11], that is
able to dynamically diagnose the new classes of faults. The
𝐷𝑊𝐸 algorithm along with the 𝐷𝑊−𝐶𝐴𝑉 subroutine and
𝑁𝑊𝐴𝑂 detector are briefly explained in this section, as they
are the prerequisites for the problem statement in this paper.
The detailed explanation and pseudocodes can be found in
[8, 11].

A. Dynamic Weighting Ensemble

Figure 1 shows the block diagram of the 𝐷𝑊𝐸 algorithm.
The 𝐷𝑊𝐸 algorithm generates and trains a new member

of the ensemble ℰ𝑘 (i.e., a preset number of MultiLayer
Perceptron 𝑀𝐿𝑃 -based classifiers 𝑇𝑘) for dataset 𝑆𝑘, 𝑘 =
1, . . . ,𝐾.

It then assigns a normalized weight 𝑤𝑘𝑡 , 𝑡 = 1, . . . , 𝑇𝑘
(see [9, 11]) to each pattern of the 𝑆𝑘, to form a weight
distribution 𝐷𝑘

𝑡 , which extracts a training subset 𝑆𝑘𝑡 from 𝑆𝑘

for the corresponding classifier 𝐶𝑘
𝑡 . The initial distribution

𝐷1
1 is uniform, providing an equal probability for all patterns

of 𝑆1 to be selected for 𝑆1
1 .

The normalized error of the trained classifier 𝛽𝑘𝑡 is com-
puted and then fed to the 𝐷𝑊 − 𝐶𝐴𝑉 subroutine, along
with the class labels 𝐶𝐿𝑘𝑡 (i.e., fault numbers) of the patterns
used to train the classifier. The 𝐷𝑊 − 𝐶𝐴𝑉 combines all
hypotheses ℎ𝑘𝑡 generated thus far, evaluates all patterns of
𝑆𝑘 and computes the normalized error of the combined
hypothesis error 𝐵𝑘

𝑡 (0 < 𝐵𝑘
𝑡 < 1) [9, 11].

The 𝐷𝑊𝐸 uses the 𝐵𝑘
𝑡 , computed by 𝐷𝑊 − 𝐶𝐴𝑉 , to

update the weight 𝑤𝑘𝑡 (𝑖), 𝑖 = 1, . . . ,𝑚𝑘 of each pattern (𝑚𝑘

is the number of patterns in 𝑆𝑘). The weights are iteratively

updated in a way that the weights of correctly classified
patterns are decreased by a multiple of 𝐵𝑘

𝑡 , increasing the
probable collection of the misclassified patterns (as well
as patterns of newly introduced classes) into the following
training subset. Thanks to this iterative update, the 𝐷𝑊𝐸
focuses progressively on the misclassified patterns of the
current dataset and, when a new dataset becomes available,
it focuses on the fraction of patterns of unseen classes [9].

B. Dynamically Weighted Consult and Vote

The 𝐷𝑊 − 𝐶𝐴𝑉 subroutine receives 𝛽𝑘𝑡 , ℎ𝑘𝑡 and 𝐶𝐿𝑘𝑡
as inputs, assigns a voting weight 𝑊 𝑘

𝑡 = 𝑙𝑜𝑔(1/𝛽𝑘𝑡) to
each classifier and, then, for each pattern, calculates the
class-specific confidence (see [9, 11]), which allows the
classifiers to consult with each other (i.e., cross-reference
their decisions with respect to the 𝐶𝐿𝑘𝑡) and dynamically
adjust their voting weight [9]. The final decision is, then,
obtained as the weighted majority voting of all classifiers.

The fault classifiers of the former ensemble member are
doomed to misclassify the patterns of the new class fault
and outvote the decisions of the newly trained classifiers,
which see the patterns of the new class fault in their training
sessions. This delays the incremental learning of the pat-
terns of new class faults until an adequate number of fault
classifiers are added into the ensemble, but thanks to the
consultation mechanism of the 𝐷𝑊 −𝐶𝐴𝑉 , the generation
of unnecessary fault classifiers can be avoided [9].

C. MLP-Based Fault Classifiers

Any supervised classifier with controllable weakness (i.e.,
to guarantee a satisfactory diversity) can be used to form the
ensemble. In this work, the widely-used MLP-based neural

92

Fig. 2. The new class fault detection and diagnostic scheme [8].

networks are used, whose weakness can be controlled by
tuning the training parameters (e.g. error goal or size of the
network) [9, 14]. Each MLP is a three layer network in which
the number of neurons in the input layer is equal to the
number of features or signals used for the diagnosis, the
number of neurons in the output layer is equal to the number
of faulty classes (i.e, this can vary for each dataset) and the
number of neurons in the hidden layer is properly chosen in
a trial-and-error procedure [11].

D. Unknown Class Detector

It is crucial for the diagnostic system to be able to detect
new classes of faults. Typically, patterns of some classes of
faults are needed to train an experimental fault classifier.
However, new classes of faults (i.e., not used in the training)
are inevitable and emerge during the system life. In these
circumstances, it is necessary for the diagnostic system to
detect the new classes of faults while keeping the ability
of correctly discriminating the previously trained classes of
faults [15, 16].

The 𝐷𝑊𝐸-based diagnostic algorithm proposed in [8]
dynamically learns and diagnose the patterns of new classes
of faults. The 𝐷𝑊𝐸 algorithm acts in a supervised way and,
thus, all class labels (i.e., fault numbers) should be known
in advance.

Besides, adding a new ensemble member each time a
new dataset emerges, significantly increases the complexity
of the system and, thus, to control the proliferation of
classifiers, a new ensemble member can be added only if
the newly emerged dataset contains some patterns of new
classes. For these reasons, it is necessary that, the 𝐷𝑊𝐸-
based diagnostic system can detect the new classes of faults
in the upcoming datasets. The detected new class patterns
are discriminated from the other classes as unknown, until
a correct label is assigned to them [8]. The patterns of
new faults (i.e., unknown patterns) have been detected by

resorting to the Normalized Weighted Average of Outputs
(𝑁𝑊𝐴𝑂) of the base classifiers of the 𝐷𝑊𝐸 [8]. The
𝑁𝑊𝐴𝑂 detects the presence of the unknown patterns based
on preset thresholds.

Figure 2 shows the overall updating procedure for the new
class fault detection and diagnosis. The major steps to detect
an unknown pattern (i.e., a pattern of a new fault) are as
follows [8]:

∙ The outputs of the MLP networks. Consider that a base
classifier of the ensemble is trained on patterns of 𝜔𝑐
number of faults; then, the output of the 𝑡 − 𝑡ℎ fault
classifier 𝐶𝑡 of the ensemble is a vector of size 𝜔𝑐. Each
member of the output vector 𝑦𝑗𝑡 represents the degree of
confidence in the assignment of the test pattern to the
𝑗 − 𝑡ℎ class, 𝑗 = 1, ..., 𝜔𝑐. If none of the output values
𝑦𝑗𝑡 , 𝑗 = 1, ..., 𝜔𝑐 takes a value close to 1, the test pattern
likely belongs to a new class fault.

∙ The agreement between the fault classifiers of the en-
semble. It is expected that the 𝑇 different base classifiers
of the ensemble assign the test patterns of a new class
fault to different faulty classes.

Considering these two steps, a heuristic index has been
proposed in [8] to detect an unknown pattern (i.e., a pattern
of a new class fault). For the 𝑗 − 𝑡ℎ class, the normalized
weighted average of all the ensemble outputs 𝑁𝑊𝐴𝑂𝑗 is
defined as follows:

𝑁𝑊𝐴𝑂𝑗 =

∑𝑇
𝑡=1 𝑊𝑡𝑦

𝑗
𝑡∑𝑇

𝑡=1 𝑊𝑡

𝑗 = 1, ..., 𝜔𝑐 (1)

where 𝑦𝑗𝑡 is the 𝑗 − 𝑡ℎ output of the 𝑡 − 𝑡ℎ MLP-based
fault classifier and 𝑊𝑡 stands for the weight assigned to the
𝑡− 𝑡ℎ classifier by the 𝐷𝑊𝐸 algorithm. In [8], to detect an
unknown pattern, the 𝑁𝑊𝐴𝑂𝑗 values are compared with
two preset high 𝜎ℎ and low 𝜎𝑙 thresholds. A test pattern
is assigned to a new class fault if the maximum 𝑁𝑊𝐴𝑂𝑗

93

value is less than 𝜎ℎ and, simultaneously, there exists another
𝑁𝑊𝐴𝑂𝑗′ , 𝑗′ ∕= 𝑗 with a value larger than 𝜎𝑙.

In other words, the area between two preset thresholds is
considered to be a low confidence area and the presence of
the 𝑁𝑊𝐴𝑂 values in the low confidence area activates an
alarm indicating the detection of an unknown class.

A test pattern is sent to the current ensemble of classifiers,
𝐶𝑡, 𝑡 = 1, ..., 𝑇 , and their 𝑁𝑊𝐴𝑂𝑗 values are calculated for
all classes, 𝑗 = 1, ..., 𝜔𝑐; forming a set 𝕊 =

{
𝑁𝑊𝐴𝑂𝑗

}𝜔𝑐
𝑗=1

.
By comparing the values of 𝕊 with the thresholds 𝜎ℎ and 𝜎𝑙,
a decision can be made on whether the test pattern belongs
to one of the classes used for training or to a new fault (i.e.,
¬∃ 𝑁𝑊𝐴𝑂𝑗 ∈ 𝕊 : 𝑁𝑊𝐴𝑂𝑗 ≻ 𝜎ℎ ∧ ∃ 𝑁𝑊𝐴𝑂𝑗′, 𝑗′ ∕=𝑗 ∈
𝕊 : 𝑁𝑊𝐴𝑂𝑗′ ≻ 𝜎𝑙). In the former case, the test pattern is
classified by means of the 𝐷𝑊 −𝐶𝐴𝑉 subroutine, whereas
in the latter case an unknown class alarm is activated (see
Figure 2).

The 𝐷𝑊𝐸-based diagnostic system [8] is updated only
after a certain number of alarms (i.e., unknown patterns),
to avoid an unnecessary updating due to false alarms. The
number of ignorable alarms can be determined based on
the application and criticality of missed and false new class
alarms with respect to system safety and performance [8].
After the emergence of several unknown (i.e., new classes
of faults) patterns, one can assign a label (i.e., fault number)
to them, and update the 𝐷𝑊𝐸-based diagnostic system by
adding newly trained classifiers to the ensemble.

III. PROBLEM FORMULATION

A proper tuning of the 𝑁𝑊𝐴𝑂 detector (i.e., the high 𝜎ℎ
and the low 𝜎𝑙 thresholds) is of paramount importance to
detecting the new classes of faults, control the incremental
learning of the 𝐷𝑊𝐸 and avoid proliferation of unnecessary
updates.

This can be done by defining a proper objective function
and, then, finding a proper method to tune the thresholds.

The objective function contains several performance in-
dices, e.g., the trade-off between the new class false alarm
and new class missed alarm rates. Tuning the thresholds is
the task of finding optimal values of thresholds that optimize
the objective function.

Figure 3 shows the 𝑁𝑊𝐴𝑂 profile that helps to define the
necessary performance indices. Considering a dataset of 𝑚
patterns of 𝜔𝑐 classes, each 𝑁𝑊𝐴𝑂𝑗 is an 𝑚-dimensional
vector, starting from 𝑁𝑊𝐴𝑂𝑗

1 to 𝑁𝑊𝐴𝑂𝑗
𝑚. Suppose that

𝑁𝑊𝐴𝑂𝑗
𝑖 corresponds to the pattern at which the new class

of fault occurs. The indices that form the objective function
are:

1) The New Class False Alarm Rate: 𝐹𝑓 is defined as
follows:

𝐹𝑓 =
𝑁{1−𝑖}
𝑖− 1

(2)

where the numerator 𝑁{1−𝑖} stands for the number of
alarms activated in the interval between the 1−𝑠𝑡 pattern and
the 𝑖 − 𝑡ℎ pattern, and the denominator is the total number
of patterns between the 1− 𝑠𝑡 pattern and the 𝑖− 𝑡ℎ pattern.

0 5 10 15 20

0.0

0.2

0.4

0.6

0.8

1.0

N
ew

 C
la

ss
 D

et
ec

ti
on

 R
an

ge

new class introduced

delay

missed alarms

false alarms

mi1

N
W

A
O

Index

 Class 1
 Class 2
 Class 3

Fig. 3. Solid squares, circles, and triangles represent the 𝑁𝑊𝐴𝑂 values
for each class (i.e., the system is trained with three classes). The red lines
stand for the high 𝜎ℎ and the low 𝜎𝑙 thresholds. The range between the
two thresholds is the low confidence area. The presence of the 𝑁𝑊𝐴𝑂𝑗

values in the low confidence area activates the new class alarm.

2) The New Class Missed Alarm Rate: 𝐹𝑚 is calculated
as:

𝐹𝑚 = 1− 𝑁{𝑖−𝑚}
𝑚− 𝑖

(3)

where the numerator 𝑁{𝑖−𝑚} stands for the number of
alarms activated in the interval between the 𝑖−𝑡ℎ pattern and
the 𝑚− 𝑡ℎ pattern, and the denominator is the total number
of patterns between the 𝑖−𝑡ℎ pattern and the 𝑚−𝑡ℎ pattern.

3) The New Class Detection Delay: 𝐹𝑑 is the number of
patterns in the interval from the 𝑖− 𝑡ℎ pattern (i.e., a pattern
corresponding to a new class fault) to the first next pattern
detected as unknown.

The multi-objective function for the optimal tuning of the
thresholds can be defined as a weighted sum of the above
defined indices, as follows:

𝐹 = 𝜉𝑓𝐹𝑓 + 𝜉𝑚𝐹𝑚 + 𝜉𝑑𝐹𝑑 (4)

where the 𝜉(.)s are positive weights and can be selected by
the user. In this work, the weights 𝜉𝑓 and 𝜉𝑚 are equal to 1,
since their corresponding indices 𝐹𝑓 and 𝐹𝑚 take value in the
[0, 1] interval. To be able to consider 𝐹𝑑 in the performance
function, the weight of 𝜉𝑑 should be normalized.

Here, two different multi-objective functions are defined:

𝐹𝛼 = 𝐹𝑓 + 𝐹𝑚 (5)

𝐹𝛽 = 𝐹𝑓 + 𝐹𝑚 +
1

𝑚− 𝑖
𝐹𝑑 (6)

The first multi-objective function 𝐹𝛼 is only based on the
trade-off between the new class false alarm and the new

94

INPUTS:
𝑃0 ← 2; is a limited number of initial seeds
𝒮𝑚𝑖𝑛 ← 0 and 𝒮𝑚𝑎𝑥 ← 5; are the minimum and maximum possible seeds production
𝑖𝑡𝑒𝑟𝑚𝑎𝑥 ← 200; indicates the maximum allowed number of iteration cycles
𝜎𝑖𝑛𝑖𝑡𝑖𝑎𝑙 ← 1 and 𝜎𝑓𝑖𝑛𝑎𝑙 ← 0.05; denote the pre-defined initial and final standard deviations
𝑛← 3; is the nonlinear modulation index
𝑃𝑚𝑎𝑥 ← 30; is the maximum population size

DEFINITIONS:
ℱ𝑖 is the fitness of the 𝑖− 𝑡ℎ plant
ℱ𝑚𝑖𝑛 and ℱ𝑚𝑎𝑥 stand for the lowest and highest fitness values in the weed population

GENERATE a random population of 𝑃0 individuals from a set of feasible solutions Γ = {𝛾1, 𝛾2, . . . , 𝛾𝑃0
}𝑇

for 𝑖𝑡𝑒𝑟 = 1 to 𝑖𝑡𝑒𝑟𝑚𝑎𝑥 do
EVALUATE the fitness function for each individual in Γ

COMPUTE the maximum and minimum fitness in the colony ℱ𝑚𝑎𝑥 and ℱ𝑚𝑖𝑛
for each individual 𝛾𝑖 do

COMPUTE the number of seeds for 𝛾𝑖, 𝒮𝑖 = ⌊(ℱ𝑖 −ℱ𝑚𝑖𝑛) (𝒮𝑚𝑎𝑥 − 𝒮𝑚𝑖𝑛) / (ℱ𝑚𝑎𝑥 −ℱ𝑚𝑖𝑛) + 𝒮𝑚𝑖𝑛⌋
RANDOMLY distribute seeds over the search space with normal distribution 𝒩 (0, 𝜎2

𝑖𝑡𝑒𝑟

)
around the parent

plant 𝛾, with zero mean and an adaptive standard deviation:

𝜎𝑖𝑡𝑒𝑟 = 𝜎𝑓𝑖𝑛𝑎𝑙 + (𝜎𝑖𝑛𝑖𝑡𝑖𝑎𝑙 − 𝜎𝑓𝑖𝑛𝑎𝑙) (𝑖𝑡𝑒𝑟𝑚𝑎𝑥 − 𝑖𝑡𝑒𝑟)
𝑛

/(𝑖𝑡𝑒𝑟𝑚𝑎𝑥)
𝑛

ADD the generated seeds to the solution set, Γ
end
if (∣Γ∣ = 𝑃) > 𝑃𝑚𝑎𝑥 then

SORT the population Γ in descending order of their fitness
TRUNCATE population of weeds with smaller fitness, so-called competitive exclusion, until 𝑃 = 𝑃𝑚𝑎𝑥

end
end
BEST solution is the plant 𝛾𝑏𝑒𝑠𝑡 with minimum fitness in the last population

Fig. 4. The pseudo-code for the IWO algorithm [17].

class missed alarm rates. On the contrary, the second multi-
objective function 𝐹𝛽 will also considers reducing the new
class detection delay by appending the 𝐹𝑑.

As a result of the choice of these two different multi-
objective functions 𝐹𝛼 and 𝐹𝛽 , two different invasive weed
optimization tasks have been performed: in the former, the
focus is to optimize the position of the thresholds in the
𝒟-dimensional feature space; in the latter, a mechanism has
been also devised to reduce the new class detection delay.

IV. INVASIVE WEED OPTIMIZATION (IWO)

The IWO algorithm is a bio-inspired numerical optimiza-
tion algorithm that simulates the behavior of weeds in nature
when colonizing and finding a suitable place for growth and
reproduction [13].

Since its primitive development for the optimization and
tuning of a robust controller, the IWO algorithm has been
extensively used in a variety of practical applications [17–
21].

In this work, the invasive weed optimization algorithm is
used to find the optimal values of the thresholds to detect
and isolate the new classes of faults. For the optimal design,
a proper multi-objective function is defined.

A. The Invasive Weed Optimization Algorithm

The key terms of the IWO algorithm are firstly defined
[13, 22].

Seed: each individual in the colony, that includes a value
for each variable in the optimization problem prior to fitness
evaluation.

Fitness: a value which represents the merit of the solution
for each seed.

Weed/Plant: each evaluated seed grows to a flowering
plant or weed in the colony. Therefore, growing a seed to
a plant corresponds to evaluating an individual’s fitness.

Colony: the set of all agents or seeds.
Population size: the number of plants in the colony.
Maximum weed population: a predefined parameter that

represents the maximum allowed number of weeds in the
colony posterior to fitness evaluation.

A pseudocode of the IWO algorithm is given in Figure 4
[17]. Further details about the main steps of the IWO
algorithm can be found in [13, 22].

To perform the IWO algorithm, initially, the number of
parameters that need to be optimized has to be defined,
(hereafter denoted by 𝒟), consequently, for each parameter in
the 𝒟-dimensional search space, a minimum and maximum

95

values are assigned. Here, the number of parameters 𝒟
is equal to 2, i.e., the high 𝜎ℎ and the low 𝜎𝑙 detection
thresholds. Then, a limited number 𝑃0 of initial seeds,
Γ = {𝛾1, 𝛾2, . . . , 𝛾𝑃0

}𝑇 are being randomly spread through
the defined search space; subsequently, each seed catches a
random position in the 2-dimensional space.

Next, the flowering plants are ranked based on their fitness
values relative to others and, subsequently, a number of new
seeds are produced, depending on the ranking: i.e., the plants
with higher fitness value, which are more adapted to the envi-
ronment, can produce more seeds that can solve the problem
better [22]. The generated seeds are being randomly spread
in the 2-dimensional space by using normally distributed
numbers with zero mean and adaptive standard deviation,
𝜎𝑖𝑡𝑒𝑟, which is computed adaptively in each iteration as
follows:

𝜎𝑖𝑡𝑒𝑟 = 𝜎𝑓𝑖𝑛𝑎𝑙 + (𝜎𝑖𝑛𝑖𝑡𝑖𝑎𝑙 − 𝜎𝑓𝑖𝑛𝑎𝑙)
(𝑖𝑡𝑒𝑟𝑚𝑎𝑥 − 𝑖𝑡𝑒𝑟)

𝑛

(𝑖𝑡𝑒𝑟𝑚𝑎𝑥)
𝑛 (7)

where 𝜎𝑖𝑛𝑖𝑡𝑖𝑎𝑙 and 𝜎𝑓𝑖𝑛𝑎𝑙 stand for the user-defined initial
and final standard deviations, correspondingly. 𝑛 indicates
the nonlinear modulation index and 𝑖𝑡𝑒𝑟𝑚𝑎𝑥 denotes the pre-
defined maximum allowed number of iterations [13].

The adaptive standard deviation equation shows that the
𝜎𝑖𝑡𝑒𝑟 can be reduced from the 𝜎𝑖𝑛𝑖𝑡𝑖𝑎𝑙 to the 𝜎𝑓𝑖𝑛𝑎𝑙 val-
ues with different velocities in accordance with the chosen
nonlinear modulation index, 𝑛. Thanks to the high value of
initial standard deviation 𝜎𝑖𝑛𝑖𝑡𝑖𝑎𝑙, the algorithm can explore
the whole search space. Then, the standard deviation 𝜎𝑖𝑡𝑒𝑟 is
gradually reduced with increasing the number of iterations.
This gradual reduction guarantees to preserve only fitter
plants and to discard plants with lower fitness, and forces the
algorithm to focus around the local minima to find the global
optimum. The generated seeds, along with their parents, are
taken into account as the potential solutions for the following
population.

This fast reproduction mechanism increases the population
size to its pre-defined maximum value 𝑃𝑚𝑎𝑥 and, after a
few iterations, activates a competitive exclusion mechanism
to eliminate the plant with poor fitness. The best survived
plants generate new seeds based on their fitness rank in the
colony and, consequently, the algorithm is repeated until the
termination criterion has been reached.

V. EXPERIMENTAL RESULTS

Here, the 𝐼𝑊𝑂 algorithm is used to tune the thresholds
of the 𝑁𝑊𝐴𝑂 detector, minimizing the multi-objective
functions 𝐹𝛼 and 𝐹𝛽 with respect to the simulated sensor
faults of a DFIG-based wind turbine [10, 11]. The DFIG
dynamics and notations are not described here for the sake
of conciseness (the reader can refer to [11] for the detailed
presentation). The simulations are performed around the
nominal operating condition following the same reference
values, and the operating conditions in [10, 11].

A. Design of the diagnostic system

Fault diagnosis is performed in two major steps: the resid-
ual generation and the fault classification. Firstly, residual
signals reflecting faults in the DFIG system are generated
from sampled sensor measurements and command inputs.
The generated residuals have zero mean in the fault-free case,
and some of them are subject to a change in the mean upon
occurrence of a sensor fault. The generated residuals are then
evaluated by the 𝐷𝑊𝐸 algorithm, in order to classify the
faults.

The residual generator (completely described in [11]) con-
tains multiple observers and complementary filters in three
integrated sub-modules to detect all possible classes of faults
in the rotor and the stator sensors. These multiple observers
create a set of residuals (𝑟1, . . . , 𝑟9) that are robust against
modeling uncertainties and change in the operating points,
but sensitive to a subset of faults [10, 11]. The generated
residuals are then resampled (down-sampled) and fed to the
𝐷𝑊𝐸 algorithm. Each residual is a two-dimensional vector
which yields a feature space of 18 input signals for the
𝐷𝑊𝐸-based fault classifier.

The whole simulation contains 10 different classes of
faults: 𝑓𝑓 stands for the fault-free case, 𝑓1 to 𝑓3 stand for
faults in the stator voltage sensors for phases 𝑎, 𝑏 and 𝑐,
respectively, 𝑓4 to 𝑓6 indicate faults in the stator current
sensors for phases 𝑎, 𝑏 and 𝑐, respectively, and 𝑓7 to 𝑓9
are faults in the rotor current sensors for phases 𝑎, 𝑏 and 𝑐,
respectively.

Here, three steps of simulations, including a different
subset of faults at each step, have been considered to form the
datasets for incremental learning. By performing each step of
the simulation, a set of residual data is generated. This forms
three residual datasets 𝑆1, 𝑆2 and 𝑆3. More specifically, each
dataset is formed with the residual data patterns of the fault-
free case 𝑓𝑓 and a subset of faults.

The first step of the simulation forms the first residual
dataset 𝑆1, including patterns of the fault-free case 𝑓𝑓 and
three faults (classes 𝑓𝑓 , 𝑓1-𝑓3). Upon emergence of 𝑆1, the
𝐷𝑊𝐸 algorithm creates an ensemble of ten classifiers ℰ1,
each one trained on a different subset of the available dataset
𝑆1, which is drawn according to an iteratively updated
distribution.

The second step of the simulation generates 𝑆2, which
is made of different residual patterns of the 𝑓𝑓 case and
six classes of faults (classes 𝑓1 − 𝑓6). The emergence of
the 𝑆2 introduces three new classes of faults to the 𝐷𝑊𝐸
algorithm. Then, 𝑆2 is tested with the base classifiers of
the current ensemble ℰ1. The detection of unknown patterns
(i.e., patterns of new classes of faults) in the 𝑆2, by means of
the 𝑁𝑊𝐴𝑂 detector, leads to the incremental update of the
diagnostic system to ℰ2, i.e., the 𝐷𝑊𝐸 algorithm appends
ten newly trained classifiers to the ensemble, each one trained
on a different subset of the current dataset 𝑆2.

Finally, the third step of simulation generates 𝑆3 including
residual patterns of the 𝑓𝑓 case and nine faults (classes
𝑓1 − 𝑓9), thus introducing three additional classes of faults.

96

TABLE I

NUMBER OF RESIDUAL PATTERNS IN EACH DATASET, FOR EACH CLASS.

Dataset Number of Patterns
Total 𝑓𝑓 𝑓1 𝑓2 𝑓3 𝑓4 𝑓5 𝑓6 𝑓7 𝑓8 𝑓9

𝑆1 280 70 70 70 70 - - - - - -
𝑆2 609 72 72 72 72 107 107 107 - - -
𝑆3 1251 72 72 72 72 107 107 107 214 214 214

Similarly, the newly introduced dataset 𝑆3 is tested with the
base classifiers of the current ensemble ℰ2. The detection
of unknown patterns in the 𝑆3 by means of the 𝑁𝑊𝐴𝑂
detector leads to the incremental update of the diagnostic
system to ℰ3. The 𝐷𝑊𝐸 algorithm appends another ten new
classifiers to the ensemble, each one trained on a different
subset of the current dataset 𝑆3.

A summary of the datasets characteristics is reported in
Table 1. The dynamic weighting ensemble algorithm success-
fully classifies the multiple classes of faults, including new
classes. The detailed explanation of the fault classification
results is not reported here for the sake of conciseness. The
fault classification performances are reported in [11].

B. Tuning the thresholds

Figure 5 presents the block diagram of the optimal tuning
of the thresholds 𝜎ℎ and 𝜎𝑙, by means of the 𝐼𝑊𝑂 algorithm.

����

��������	
��

��������	

TC

1C

����

���������

)(tf

91 ,, rr K

1
Ty

c
Tyω

k
tCL { }βα FF ∨

{ }lh σσ ∧

jNWAO
����������

�	������

N
����������������

�� �	
����	����

 �����

!�"��#

$��

Fig. 5. Block diagram of the optimal tuning of the 𝑁𝑊𝐴𝑂 thresholds
for new class fault detection.

Here, two incremental updates occur corresponding to the
test of ℰ1 (ℰ2) with respect to the patterns of 𝑆2 (𝑆3). It is
important to tune the thresholds, once the patterns of new
classes of faults become available.

In the first tuning procedure, the 𝐼𝑊𝑂 algorithm finds
the optimal values of the thresholds 𝜎ℎ and 𝜎𝑙, on the
normalized weighted average of the output values of ℰ1 with
respect to the patterns of 𝑆2, while minimizing the multi-
objective function 𝐹𝛼 (i.e., minimizing the number of new
class false and missed alarms). This procedure is repeated
for the multi-objective function 𝐹𝛽 (i.e., also reducing the
new class detection delay).

In the second tuning procedure, the 𝐼𝑊𝑂 algorithm finds
the optimal values of the thresholds on the normalized

weighted average of the output values of ℰ2 with respect
to the patterns of 𝑆3, while minimizing the multi-objective
function 𝐹𝛼 (i.e., minimizing the number of new class false
and missed alarms). This procedure is also repeated for the
function 𝐹𝛽 .

The 𝐼𝑊𝑂 parameters are set as shown in Figure 4. It is
necessary to bound the thresholds within the interval [0, 1],
following the same range of the 𝑁𝑊𝐴𝑂 values. Thus, the
search space of the 𝐼𝑊𝑂 algorithm is limited in a way that
the seed with a value larger (smaller) than one (zero) are
clamped to one (zero). The tuning results obtained with each
function in each step are presented in the following Tables.

TABLE II

THE PERFORMANCE INDICES OF 𝐹𝛼 AND OPTIMAL THRESHOLDS.

𝐹𝑓 𝐹𝑚 𝐹𝑑 𝐹𝛼 𝜎ℎ 𝜎𝑙

ℰ1 tested on 𝑆2 0.021 0 - 0.021 0.815 0.183
ℰ2 tested on 𝑆3 0.016 0.06 - 0.076 0.803 0.191

TABLE III

THE PERFORMANCE INDICES OF 𝐹𝛽 AND OPTIMAL THRESHOLDS.

𝐹𝑓 𝐹𝑚 𝐹𝑑 𝐹𝛽 𝜎ℎ 𝜎𝑙

ℰ1 tested on 𝑆2 0.021 0 0 0.021 0.815 0.183
ℰ2 tested on 𝑆3 0.016 0.057 0.001 0.074 0.807 0.190

Tables 3 and 4 report the optimal set of threshold values
for each test, which minimizes the number of new class false
and missed alarms. The minimum performances along with
the values taken by each of the performance indices are also
reported. In order to reduce the risk of new class false and
missed alarms, the thresholds should be fixed according to
their optimal values to guarantee a satisfactory low number
of new class false and missed alarms.

Tables 3 and 4 show that the optimal thresholds with
respect to the two multi-objective performance functions (i.e.,
𝐹𝛼 and 𝐹𝛽), take similar values. This is due to the type
of simulated faults considered, which are additive step-like
faults. The impact of the 𝐹𝑑 performance index is expected to
be more significant in the presence of drift-like faults, which
will be investigated in future research.

VI. CONCLUSION

In this work, an invasive weed optimization algorithm has
been used to identify an optimal set of threshold values for

97

new class fault detection. The detection of the new classes
of faults was based on thresholding the normalized weighted
average of the outputs of the base classifiers in the diagnostic
ensemble system.

A proper multi-objective performance function was de-
fined as a trade-off between the new class false alarm and
new class missed alarm rates, and the new class detection
delay has also been taken into account as a complementary
performance index. The IWO algorithm tunes the thresholds
in a way that minimizes the multi-objective performance
function. The method has been applied for the diagnosis of
sensor faults in a DFIG-based wind turbine. The simulation
results showed a proper tuning of the thresholds, as proven
by the achieved performance.

REFERENCES

[1] P. Baraldi, R. Razavi-Far, and E. Zio, “Bagged ensem-
ble of FCM classifier for nuclear transient identifica-
tion,” Ann. Nucl. Energy, vol. 38, pp. 1161–1171, 2011.

[2] M. Embrechts and S. Benedek, “Hybrid identification
of nuclear power plant transients with artificial neural
networks,” IEEE Trans. on Ind. Elec., vol. 51, pp. 686–
693, 2004.

[3] R. Razavi-Far, H. Davilu, V. Palade, and C. Lucas,
“Neuro-fuzzy based fault diagnosis of a steam genera-
tor,” in 7th IFAC Conf. on Fault Detection, Supervision
and Safety of Technical Processes, Barcelona, Spain,
2009, pp. 1180–1185.

[4] R. Razavi-Far, H. Davilu, V. Palade, and C. Lucas,
“Model-based fault detection and isolation of a steam
generator using neuro-fuzzy networks,” Neurocomput-
ing Journal, vol. 72(13-15), pp. 2939–2951, 2009.

[5] P. Baraldi, R. Razavi-Far, and E. Zio, “Classifier-
ensemble incremental-learning procedure for nuclear
transient identification at different operational condi-
tions,” Reliab. Eng. Syst. Safety, vol. 96, pp. 480–488,
2011.

[6] P. Baraldi, R. Razavi-Far, and E. Zio, “A method for
estimating the confidence in the identification of nuclear
transients by a bagged ensemble of FCM classifiers,” in
Proc. NPIC&HMIT, Las Vegas, NV, Nov. 7-11 2010,
pp. 283–293.

[7] R. Razavi-Far, P. Baraldi, and E. Zio, “Ensemble of
neural networks for detection and classification of faults
in nuclear power systems,” in Proc. 10th International
FLINS Conf. on Uncertainty Modeling in Knowledge
Engineering and Decision Making, World Scientific
Proc. Ser. on Computer Engineering and Information
Science, vol. 7, Istanbul, Turkey, 2012, pp. 1202–1207.

[8] R. Razavi-Far, P. Baraldi, and E. Zio, “Dynamic weight-
ing ensembles for incremental learning and diagnosing
new concept class faults in nuclear power systems,”
IEEE Trans. Nucl. Sci., vol. 59, pp. 2520–2530, 2012.

[9] M. Muhlbaier, A. Topalis, and R. Polikar, “Learn++NC:
combining ensemble of classifiers with dynamically
weighted consult-and-vote for efficient incremental

learning of new classes,” IEEE Trans. Neur. Net.,
vol. 20, pp. 152–168, 2009.

[10] R. Razavi-Far and M. Kinnaert, “Incremental design
of a decision system for residual evaluation: A wind
turbine application,” in 8th IFAC Conf. Fault Detection,
Supervision and Safety of Technical Processes, vol.
8(1), 2012, pp. 343–348.

[11] R. Razavi-Far and M. Kinnaert, “A multiple observers
and dynamic weighting ensembles scheme for diag-
nosing new class faults in wind turbines,” Control
Engineering Practice, vol. 21(9), pp. 1165–1177, 2013.

[12] R. Razavi-Far, E. Zio, and V. Palade, “Efficient resid-
uals pre-processing for diagnosing multi-class faults in
a doubly fed induction generator, under missing data
scenarios,” Expert Systems with Applications, in press,
2014.

[13] A. R. Mehrabian and C. Lucas, “A novel numerical op-
timization algorithm inspired from weed colonization,”
Ecological Informatics, vol. 1, pp. 355–366, 2006.

[14] D. A. G. Vieira, R. H. C. Takahashi, V. Palade, J. Vas-
concelos, and W. Caminhas, “The Q-norm complexity
measure and the minimum gradient method: A novel
approach to the machine learning structural risk mini-
mization problem,” IEEE Trans. Neur. Net., vol. 19, pp.
1415–1430, 2008.

[15] M. Markou and S. Singh, “Novelty detection: A review-
part 1: Statistical approaches,” Signal Processing, vol.
83(12), pp. 2481–2497, 2003.

[16] M. Markou and S. Singh, “Novelty detection: A review-
part 2: Neural network based approaches,” Signal Pro-
cessing, vol. 83(12), pp. 2499–2521, 2003.

[17] A. R. Mehrabian and A. Yousefi-Koma, “Optimal po-
sitioning of piezoelectric actuators on a smart fin using
bio-inspired algorithms,” Aerospace Science and Tech-
nology, vol. 11, pp. 174–182, 2007.

[18] T. Green, R. Razavi-Far, R. Izadi-Zamanazabdi, and
H. Niemann, “Plant-wide performance optimization,
the refrigeration system case,” in IEEE Multi-Conf. on
Systems and Control (MSC), Dubrovnik, Croatia, 2012,
pp. 208–213.

[19] R. Razavi-Far, V. Palade, and J. Sun, “Optimizing the
performance of a refrigeration system using an inva-
sive weed optimization algorithm,” in Combinations
of Intelligent Methods and Applications, ser. Smart
Innovation, Systems and Technologies. Springer Berlin
Heidelberg, 2013, vol. 23, pp. 79–93.

[20] T. Green, R. Izadi-Zamanabadi, R. Razavi-Far, and
H. Niemann, “Plant-wide dynamic and static optimi-
sation of supermarket refrigeration systems,” Int. J. of
Refrigeration, vol. 38, pp. 106–117, 2014.

[21] R. Razavi-Far, V. Palade, and E. Zio, “Invasive weed
classification,” Neural Computing and Applications, in
press, 2014.

[22] S. Karimkashi and A. A. Kishk, “Invasive weed op-
timization and its features in electromagnetics,” IEEE
Trans. Ante. Pro., vol. 58, no. 4, pp. 1269–1278, 2010.

98

