
 
 

 

  

Abstract—Mapping and localization are fundamental 
problems in autonomous robotics. Autonomous robots need to 
know where they are in their area of operation to navigate 
through it and to perform activities of interest. In this paper, we 
propose an Image-Based Global Localization (VibGL) system 
that uses Virtual Generalizing Random Access Memory 
Weightless Neural Networks (VG-RAM WNN). For mapping, 
we employ a VG-RAM WNN that learns the world positions 
associated with the images captured along a trajectory. During 
the localization, new images from the trajectory are presented to 
the VG-RAM WNN, which outputs their positions in the world. 
We performed experiments with our VibGL system applied to 
the problem of localizing an autonomous car. Our experimental 
results show that the system is able to learn large maps (several 
kilometers in length) of real world environments and perform 
global localization with median pose precision of about 3m. 
Considering a tolerance of 10m VibGL is able to localize the car 
95% of the time. 

I. INTRODUCTION 
APPING and localization are fundamental problems in 
autonomous robotics. Autonomous robots need to 
know where they are in their area of operation to 

navigate through it and to perform activities of interest. 
Therefore, they need maps of the environment and the ability 
to localize themselves in these maps using sensor data.  

The Simultaneous Localization And Mapping (SLAM) 
problem [1] consists of organizing and/or transforming sensor 
data to create precise representations of the environment, i.e. 
maps, given a series of robot estimated positions and 
associated sensor data about the environment. A SLAM 
system addresses not only the localization, but also the 
mapping problem simultaneously. Many probabilistic 
approaches have been proposed to solve the mapping, 
localization, and SLAM problems [1]; however, some 
instances of these problems are more difficult to solve than 
others. Global localization, for example, is more challenging 
than position tracking [1], and mapping and localization are 
currently harder to perform with cameras than with Light 
Detection and Ranging (LIDAR) laser systems. Nevertheless, 
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global localization is of fundamental importance for 
autonomous robotic systems that might be turned on 
anywhere in their area of operation (e.g., autonomous cars). 
Because cameras are much cheaper than LIDAR, the 
development of efficient localization and mapping techniques 
based on cameras is relevant for more widespread use of these 
techniques. 

In this paper, we present a new Image-Based Global 
Localization approach employing Virtual Generalizing 
Random Access Memory (VG-RAM [2]) Weightless Neural 
Networks (WNN) for mapping and localization, dubbed 
VibGL (Fig. 1). VibGL efficiently solves the global 
localization problem using camera images, but it does not 
map the environment and simultaneously localizes the robot 
(it is not a SLAM system)[1]. Instead, it firstly learns a map of 
an environment using camera images and sensors’ data, and 
later, it localizes the robot in this environment using camera 
images only. Humans are capable of easily memorizing 
images of places and labels associated with them (road 
names, addresses, etc.) as well as trajectories defined by 
sequences of images and corresponding poses. In later 
moments, they are able to remember labels or poses when the 
same images are seen again. Similarly, in the mapping phase, 
VibGL firstly receives images of the environment as well as 
positions (labels) where the images were captured using other 
sensors’ data. Subsequently, it learns associations between 
images and positions that are used as a map of the 
environment. In the localization phase, VibGL receives 
images of the environment and uses previously acquired 
knowledge – "the map" – to output the positions representing 
the places the system believes these images were captured. 

We have tested VibGL with a set of mapping and 
localization experiments using real-world datasets. These 
datasets consist of data from various sensors acquired 
systematically during laps performed by an autonomous car 
in a 3.57 km long circuit. These datasets were constructed for 
this work and are made publicly available with the 
corresponding ground-truth. Our results have shown that 
VibGL achieves 95% precision in real world settings with a 
tolerance error of about 10 meters. 

This paper is organized as follows. After this introduction, 
in Section II, we present an overview of the related work. In 
Section III, we present a brief introduction of the neural 
network we employ, VG-RAM WNN. In Section IV, we 
explain our method for image-based global localization using 
VG-RAM WNNs. In Section V, we describe our 
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extracts a binary input vector I from the input layer, via its set 
of synapses S (one bit per synapse). Secondly, the expected 
output label t is set in the output of the corresponding neuron 
in the neural layer. Finally, this input-output pair L = (I, t) is 
subsequently stored into the neuron’s look-up table. During 
test, an input pattern is set in the input layer and each neuron 
extracts a binary input vector I from the given input pattern 
via its set of synapses S. The neurons subsequently use I to 
search and find, in their look-up tables, the input Ij, belonging 
to the learned input-output pairs Lj = (Ij, tj) that is the closest 
to the I vector extracted from the input layer. Finally, the 
output of the neuron receives the label value tj of this Lj 
input-output pair. In case of more than one pair Lj with an 
input Ij at the same minimum distance of the extracted input I, 
the output value tj is randomly chosen among them. 

The search for the nearest input in each neuron’s memory 
is performed sequentially and the distance is measured using 
the Hamming distance. It is important to note that the 
Hamming distance between two binary patterns can be 
efficiently computed at machine code level in current 64-bit 
CPUs and GPUs of personal computers using two 
instructions: one to identify the bits that differ in 64-bit 
segments of the two binary patterns, i.e. a bit-wise 
exclusive-or instruction; and another to count these bits, i.e. a 
population count instruction.  

IV. VG-RAM IMAGE-BASED GLOBAL LOCALIZATION 
VibGL memorizes images and associated poses 

(i.e. "a map") and can later recover the poses from similar 
images of the same environment (localization in the map). 
For that, during training, VibGL learns a map of the 
environment, represented internally by the contents of the 
memories of its neurons, in a way that mimics the human 
ability of learning visual maps. 

A. Overview 
This section describes the core of the VibGL system. 

VibGL is designed to learn a sequence of images and 
associated poses that describes a trajectory according to a 
cockpit perspective. Doing so, it allows for global 
localization considering all learned locations in the 
trajectories, given a single image. Therefore, it can be used as 
a GPS replacement within the learned trajectories, but, 
instead of using satellites for localization, it uses visual cues 
from images. 

B. VibGL Architecture 
The VibGL employs a VG-RAM WNN architecture that 

captures holistic and feature-based aspects of input images by 
using two different synaptic interconnection patterns. Fig. 2 
shows an overview of the VibGL system. 

VibGL uses a single Neural Layer with u × v VG-RAM 
neurons with m-size memory (see Fig. 2). This Neural Layer 
is connected to two input layers, (i) Cropped Input and (ii) 
Gaussian-Filtered Cropped Input, according to two different 
synaptic interconnection patterns, S1 and S2, respectively. 
S1 = {s1,1, …, s1,p} and S2 = {s2,1, …, s2,q} are subsets of 

S = {s1,1, …, s1,p, s2,1, …, s2,q}, i.e., S = S1  S2, where S is 
the set of synapses of each neuron of the VibGL’s Neural 
Layer.  

 
Each neuron samples the Cropped Input and the 

Gaussian-Filtered Cropped Input in two different ways: 
holistically, with S1; and feature-based, with S2. The set of 
synapses S1 samples the Cropped Input holistically because it 
is defined according to a uniform random interconnection 
pattern that covers the whole Cropped Input; while S2 
samples the Gaussian-Filtered Cropped Input featured-based 
because it is defined according to a Normal distribution 
centered in the position of the neuron mapped to this input 
(see Fig. 2 and [16] for details about the feature-based 
synaptic interconnection pattern). 

 

 
Fig. 2.  Illustration of the VibGL system. VibGL employs a u × v 
VG-RAM WNN Neural Layer of neurons with m-size memory. Each 
neuron is connected to two processed versions of the Input Image 
(Cropped Input and Gaussian-Filtered Cropped Input) through two sets 
of synapses, S1 and S2 (exemplified for one neuron in yellow and 
orange respectively). S1 = {s1,1, …, s1,p} and S2 = {s2,1, …, s2,q} are 
subsets of S = {s1,1, …, s1,p, s2,1, …, s2,q}, i.e., S = S1  S2, where S is the 
set of synapses of each neuron. This set of synapses samples the 
neuron’s inputs as a vector of bits I = {i1,1, …, i1,p, i2,1, …, i2,q}. The 
Neural Layer shows an example of activation pattern based on the 
binary input vectors I and labels t of the learned pairs L = (I, t). Each 
neuron responds with the label tj associated with the input Ij that is the 
closest to the binary input vector I extracted from the Cropped Input 
and the Gaussian-Filtered Cropped Input. The labels t are indexes to 
geo-tagged images. 

Synapses
S1

i1,1 i1,2 ... i1,p i2,1 i2,2 ... i2, q t

L1 1 0 ... 1 0 0 ... 1

L2 1 0 ... 0 1 0 ... 0

... ... ... ... ... ... ... ... ... ...

Lm 1 1 ... 0 1 0 ... 1

Neuron
Memory

Look-up Table

Synapses
S2

u

v

Input Image

Neural Layer

Gaussian-Filtered Cropped InputCropped Input

Neuron Outputs
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The synaptic mapping function that maps non-binary 
image pixels to binary values is a minchinton cell type-0 [17] 
that works as follows. Each pixel is treated as an integer 
y = b × 256 × 256 + g × 256 + r, where b, g, and r are the 
blue, green and red color channels. The non-binary pixel 
value y read by each synapse is subtracted from the 
non-binary pixel value y read by the subsequent synapse in 
the set of synapses of each neuron, 
S = {s1,1, …, s1,p, s2,1, …, s2,q}. The value read by the last 
synapse, s2,q, is subtracted from the value read by the first, s1,1. 
If a negative value is obtained, the bit corresponding to that 
synapse is set to one; otherwise, it is set to zero. 

The two input layers, Cropped Input and Gaussian-Filtered 
Cropped Input, are processed versions of the Input Image. 
While the Cropped Input is simply a region of interest defined 
in the input image, the Gaussian-Filtered Cropped Input is the 
result of a Gaussian filter applied to this region of interest (see 
Fig. 2 for an example). 

The region of interest was defined in order to remove 
irrelevant pixel information from the input image. In our case, 
the bottom of the image is cropped out to eliminate static part 
of the car roof visible in the field of view of a mounted-on 
camera. The Gaussian filter, in the other hand, is used as a 
low-pass image filter. Since a feature-based synaptic 
interconnection pattern is used to sample this input layer, 
high-frequency attenuation is necessary to remove spurious 
high-frequency information irrelevant for localization. 

During VibGL training, the system learns images and 
associated camera-poses. Let T = {T1, …, Tj, ..., T|T|} be a set 
of pairs Tj = (imagej, posej) presented to VibGL. The imagej 
of each pair Tj is set as the VibGL’s Input Image and the 
corresponding index j is copied to the output of each neuron 
of VibGL’s Neuron Layer. Then, all neurons are trained to 
output j when sampling from imagej via Cropped Input and 
Gaussian-Filtered Cropped Input images. After training, the 
index j learned by the neurons can be used for recovering 
posej or imagej. 

During test, given a query image, VibGL infers a pose 
based on the previously acquired knowledge. A query image 
is set as VibGL’s Input Image and all neurons compute their 
outputs, which are indexes (32-bit integers). Each neuron 
infers an index based on the input binary vectors extracted by 
their synapses. The number of votes for each index is counted 
and the network outputs the index with the largest count.  

V. EXPERIMENTAL SETUP 
This section presents the experimental setup used to 

evaluate the VibGL system. It starts describing the 
autonomous vehicle platform used to acquire the datasets, 
follows presenting the datasets themselves, and finishes 
describing the methodology used in the experiments. 

A. Autonomous Vehicle Platform   
We collected the data to evaluate the performance of the 

VibGL system using the Intelligent and Autonomous Robotic 
Automobile – IARA (Fig. 3). IARA is an experimental robotic 

platform based on a Ford Escape Hybrid that is currently 
being developed at Laboratório de Computação de Alto 
Desempenho (High-Performance Computing Laboratory – 
www.lcad.inf.ufes.br) of Universidade Federal do Espírito 
Santo - UFES (Federal University of Espírito Santo – Brazil).  

 
Our robotic platform has several high-end sensors, 

including: two Point Grey Bumblebee XB3 stereo cameras 
and two Bumblebee 2 stereo cameras; one Light Detection 
and Ranging (LIDAR) Velodyne HDL 32-E; and one 
GPS-aided Attitude and Heading Reference System 
(AHRS/GPS) Xsens MTiG (see Fig. 3). To process the data 
coming from the sensors, the platform has four Dell Precision 
R5500 (2 Intel Xeon 2.13 GHZ, 12 GB  RAM, 2 SSDs of 
120GB on RAID0 and GPU cards Tesla C2050). We 
implemented many software modules for IARA that currently 
allows for its autonomous operation (such as modules for 
mapping, localization, obstacle avoidance, navigation, etc.; 
see video of IARA autonomous operation at 
http://youtu.be/4rFCjrFdR7o and videos about other IARA’s 
software modules at http://www.youtube.com/user/lcadufes).  

To build the datasets used in this work, we used IARA’s 
frontal Bumblebee XB3 left camera to capture images 
(640x480 pixels), and IARA’s fused-odometry module to 
capture associated poses (6 degrees of freedom – 6D). 
IARA’s fused-odometry module employs a Monte Carlo 
particle filter [1] to fuse sensor data coming from the 
AHRS/GPS and from the visual-odometry module. The 
visual-odometry module employs the LibViso2 library [18] to 
compute IARA’s basic odometry data (6D pose) from images 
collected from IARA’s frontal Bumblebee XB3 stereo 
camera. The poses computed by our fused-odometry module 
have precision of about 2.5m (GPS Circular Error Probability 
equals to 2.5m). 

B. Datasets 
For the experiments, we have used two laps data acquired 

in different dates. Basically, for each lap, IARA was driven 
with an average speed of 30 km/h around UFES campus. A 
full lap around the university campus has an extension of 
about 3.57 km. During the laps, image and pose data were 
synchronously acquired. 

 
Fig. 3. Intelligent and Autonomous Robotic Automobile (IARA) with 
the mounted-on Point Grey Bumblebee XB3 camera (marked in green) 
used in experiments. Learn more about IARA at www.lcad.inf.ufes.br. 
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The first lap data was recorded in October 3rd 2012 
(UFES-2012) and comprises a sequence of 15,306 
image-pose pairs, while the second lap data was recorded in 
September 16th 2013 (UFES-2013) and comprises a sequence 
of 9,017 image-pose pairs. The difference in days between the 
recording of the first and the second lap data is almost one 
year. Such time difference resulted in a challenging testing 
scenario since it captured substantial changes in the campus 
environment. Such changes includes differences in traffic 
conditions, number of pedestrians, and alternative routes 
taken due to construction work obstructions on the road. Also, 
there were substantial building infrastructure modifications 
alongside the roads in between dataset recording.  

The correspondences between the two lap data were 
established using the Euclidean distance between image-pose 
pairs to define a ground truth. In average, the distances 
between UFES-2012 and UFES-2013 corresponding 
image-pose pairs is 1.56m (σ = ±1.14). To evaluate the effect 
of learning different numbers of images (the more images 
VibGL learns, the more labels it has to differentiate) the lap 
data were sampled at four different intervals: 1m, 5m, 10m, 
and 15m. After sampling the UFES-2012, four datasets were 
created: 1-meter spacing dataset with a total of 2,485 
image-pose pairs, a 5-meter dataset with a total of 639 
image-pose pairs, a 10-meter dataset with 331 image-pose 
pairs, and a 15-meter dataset with 224 image-pose pairs. The 
same was done with the UFES-2013 resulting in four datasets 
with a total of 2,689, 670, 345 and 233 image-pose pairs. All 
datasets mentioned above are available at: 
http://www.lcad.inf.ufes.br/log. 

C. Experimental Methodology 
In order to validate our system, we have run a set of 

localization experiments. The two lap data (UFES-2012 and 
UFES-2013) were divided into training and test datasets. In 
all experiments, the training and test datasets were from 
different dates. One of them was used to teach the system 
about the trajectory (training the system), and the other was 
used to test the accuracy of the system by estimating poses 
along the learned trajectory. We measured the Euclidean 
distance from the estimated pose to the associated ground 
truth pose in the testing set.  

To increase the testing scenario, we have crossed the two 
lap data by running four tests with the 1-meter, 5-meter, 
10-meter, and 15-meter spacing datasets sampled from 
UFES-2012 as training and the 1-meter spacing dataset 
sampled from UFES-2013 as testing, and four tests with the 
1-meter, 5-meter, 10-meter, and 15-meter spacing datasets 
sampled from UFES-2013 as training and the 1-meter spacing 
dataset sampled from UFES-2012 as testing.  

VI. RESULTS AND DISCUSSIONS 
In this section, we show and discuss the outcomes of our 

experiments. The results are presented in four parts: 
classification accuracy; positioning error; true and false 
positives; and finally, qualitative results. 

A. Classification Accuracy 
This subsection shows the relationship between the amount 

of frames learned by the VibGL system and its classification 
accuracy. We measured the system classification accuracy in 
terms of how close the VibGL’s estimated image-pose pair, 
Te, is to the correct image-pose pair, Tc, for a given query 
image, Tq. The image-pose pairs Te and Tc belong to the 
training dataset, while the image Tq belongs to the test dataset. 
The correct pair, Tc, was defined through the established 
ground truth correspondence with Tq. Ideally, Te is equal to Tc 
if VibGL is correct in its estimate, since both image-pose 
pairs Tc and Te belongs to the training dataset. 

Fig. 4 shows the classification accuracy results obtained 
using UFES-2012 dataset for training and UFES-2013 dataset 
for testing. The vertical axis represents the percentage of 
image-pose pairs Te that were within an established maximum 
number-of-frames distance from the image-pose pair Tc. The 
number-of-frames distance is equal to the amount of 
image-pose pairs that one has to go forward or backwards in 
the training dataset to find Tc from the corresponding Te. The 
horizontal axis represents the number-of-frames distance. 
Finally, the curves of the graph of Fig. 4 show how the 
accuracy increases with the allowed maximum 
number-of-frames distance for the different training datasets. 

  
As the graph of Fig. 4 shows, VibGL’s classification 

accuracy increases with the maximum allowed 
number-of-frames and reaches a plateau at about 5 frames for 
all training datasets. However, for the UFES-2012 1-meter 
spacing training dataset, the VibGL classification uncertainty 
is large in the beginning of the curve due to the similarity 
between images in the near-by image-pose pairs. If one does 
not accept any system error (number-of-frames allowed equal 
zero), the accuracy is only about 18% when the system is 
trained with the 1-meter spacing dataset. But, if one accepts 
as correct an image-pose pair up to 5 frames ahead or behind 
the correct image-pose pair, Tc, the accuracy increases to 
about 92%. On the other hand, when using a dataset with a 
larger spacing between image-pose pairs for training, the 
system accuracy increases more sharply. For example, when 
the system is trained with the 5-meter spacing dataset, with an 

Fig. 4. Classification accuracy for different maximum 
number-of-frames allowed using UFES-2012 dataset for training and 
UFES-2013 dataset for test. 
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allowed number-of-frames equal to 1, the classification rate is 
about 90%.  

Although the VibGL might show better accuracy when 
trained with large-spaced datasets, the positioning error of the 
system increases. This happens because one frame of error for 
the 1-meter training dataset represents a much smaller error in 
meters than one frame of error with large-spaced training 
dataset (e.g., 10m).  

Fig. 5 shows the classification accuracy results obtained 
using UFES-2013 dataset for training and UFES-2012 dataset 
for testing. As the graph of Fig. 5 shows, swapping training 
and test datasets does not change the VibGL performance 
behavior. 

 
B. Positioning Error  
We performed experiments to evaluate the relationship 

between the spacing between image-pose pairs learned by 
VibGL and the positioning error of its estimated poses.  

The results of these experiments are shown as box-plots 
having median, inter-quartile range and whiskers of the error 
distribution for the 1-meter, 5-meter, 10-meter and 15-meter 
training datasets. Box-plots are shown only for the setup 
UFES-2012 as training and UFES-2013 as test because the 
experiments present the same behavior in both directions. 

The horizontal axis of Fig. 6 shows training datasets 
spacing intervals, while the vertical axis shows the distance of 
the estimated image-pose pair Te to the given image-pose pair 
Tq. As the graph of Fig. 6 shows, the positioning error 
increases as the spacing between training image-pose pairs 
increases, but not linearly. The median error is larger than 1m 
for the 1-meter spacing training dataset, but smaller than the 
spacing of the other datasets. The performance of VibGL with 
the 1-meter dataset can be explained by the fact that the 
datasets themselves are imprecise due to the poor accuracy of 
our data collection framework. As mentioned before, the 
distances between UFES-2012 and UFES-2013 
corresponding image-pose pairs is 1.56m (σ = ±1.14).  

The horizontal axis of Fig. 7 shows training datasets 
spacing intervals, while the vertical axis shows the distance of 
the estimated image-pose pair Te to the correct image-pose 

pair Tc. 

 
As the graph of Fig. 7 shows, the larger the spacing in 

between the training frames, the smaller the positioning error 
is. This can be seen by analyzing the distribution of error for 
the 5, 10 and 15-meters plots, where the median error is 
around 0 and the majority of errors are within the spacing 
used for training (i.e., within one frame).  

 
While Fig. 6 shows a continuous error value between the 

estimated pose at Te and the given pose Tq, Fig. 7 shows a 
discretized error value between the estimated pose at Te and 
the correct image-pose Tc. 

C. True and False Positives 
After analyzing classification accuracy and positioning 

error, in this section, we examine the true and false positives 
of VibGL for the 1-meter training dataset and 1-meter test 
dataset, with a 10m error tolerance. This allows us to identify 
patterns of positioning errors in the datasets.  

Fig. 8 shows the results for the experiments with the 
UFES-2012 dataset used for training and the UFES-2013 
dataset for test. In this figure, blue dots represent estimated 
positions that were inside the tolerance of 10m from the 
correct image-pose pair, i.e., true positives. Red circles 
represent the estimated image-pose pairs that were outside the 
tolerance of 10m, i.e., false positives. Red circles are 

 
Fig. 7. Positioning Error Distribution between Te and Tc using the 
UFES-2012 dataset for training and the UFES-2013 dataset for testing.  
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Fig. 6. Positioning Error Distribution between Te and Tq using the 
UFES-2012 dataset for training and the UFES-2013 dataset for testing. 
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Fig. 5. Classification accuracy for different maximum 
number-of-frames allowed using UFES-2013 dataset for training and 
UFES-2012 dataset for test.   
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connected to their corresponding correct 
(green crosses) through a line. 

Fig. 9 shows the results for the exper
UFES-2013 dataset used for training and
dataset for test. 

From the plots in Fig. 8 and Fig. 9, it is po
regions where most errors occurred in a se
big green zones on the right side of the Fi
Further analysis of these regions showed th
three points where the car went off-rout
datasets. Since there were obstructions on
period, the car was forced to leave the 
therefore, generated shifted images (see 
differences in the training and test images l
system to misclassifications and, conseque
localizing IARA correctly on those regions.

D. Qualitative Results 
To visualize the qualitative results for V

positions, we extracted two samples of matc
the UFES campus: the first one having f
samples (Fig. 11), and the second one ha
positive samples (Fig. 12).  

Fig. 11 shows examples of true positive 
UFES-2013 dataset as training dataset. As i
frames were matched despite changes in s
shadows, road infrastructure (first, second a
car movements (third row) and loss of lea
(fourth row). 

Fig. 9. Ground truth plot using UFES-2013 datas
procedure. Blue dots represent true positives (TP); l
positives (FP) represented by red circles and 
ground-truth correspondences represented by green c

Fig. 8. Ground truth plot using UFES-2012 datas
procedure. Blue dots represent true positives (TP); l
positives (FP) represented by red circles and 
ground-truth correspondences represented by green c

image-pose pairs 

 
riments with the 

d the UFES-2012 

 
ossible to see three 
quence (the three 
ig. 8 and Fig. 9). 
hey correspond to 
te in one of the 
n the road at the 
main street and, 
Fig. 10). Such 

leaded the VibGL 
ntly, to failure in 
 

VibGL's estimated 
ched frames along 
five true positive 
aving three false 

frames using the 
it can be seen, the 
sunlight position, 
and fourth rows), 
aves on the trees 

Fig. 12 shows examples of false p
UFES-2013 as training dataset. Th
with certain similarity, e.g., the sky-s
rows looks the same. Moreover, in
frames were captured on a curve with
In the second row, we can see the ab
problem, when the car needs to get o

An online demo video shows the 
a complete lap around the universi
http://youtu.be/czxSMb0irw4). In th
meter-spacing UFES-2013 dataset 
meter-spacing UFES-2012 dataset fo

VII. CONCLUSION AND F
In this work, we present a ne

Localization approach based on V
VibGL. VibGL is designed for mapp
efficiently solves the global locali
that, it first learns a map of an 
localizes the robot in the same en
images only. In the mapping phase
images of the environment as well a
the camera that captured the images
neural associations between ima
describe the environment as a map. 
VibGL receives images of the 
previously acquired knowledge, th
positions where the system belie
captured.  

We have tested VibGL with 
localization experiments using re
results have shown that VibGL is c
maps (several kilometers in length
robot in these maps with median pos
Considering a tolerance of 10m, 
correctly localize the robot 95% of t

As future work, we plan to comp
other image retrieval methods. In 
extend VibGL to a full neural SLAM
 

 
Fig. 10. IARA's original trajectory (left im
Shifted image generated when the car w
UFES-2013 dataset).

 
set in the training 
lines connect false 

their respective 
crosses (CORR). 

 
set in the training 
lines connect false 

their respective 
crosses (CORR). 

 

 
positive frames using the 
he system fails at places 
shape in the first and fifth 
n the first row, the two 
hin the same road paving. 
bove-mentioned off-route 
out of the route. 
VibGL's performance on 

ity campus (see video at 
he video, we used the 1 

for training and the 5 
or testing. 

FUTURE WORK 
ew Image-Based Global 
VG-RAM WNN, named 
ping and localization, and 
ization problem [1]. For 
environment and, later, 

nvironment using camera 
e, VibGL firstly receives 
as the associated poses of 
s. Subsequently, it learns 

ages and poses, which 
In the localization phase, 
environment and uses 

he “map”, to output the 
eves these images were 

a set of mapping and 
eal-world datasets. Our 
capable of learning large 
) and, later, localizing a 
se precision of about 3m. 

the system is able to 
the time (test cases). 
pare VibGL with existing 

addition, we intend to 
M system. 
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Fig. 12. False positive qualitative results using the UFES-2013 dataset 
as training dataset. The left column represents the trained frames and 
right column the VibGL’s output frames. 

 
Fig. 11. True positive qualitative results using the UFES-2013 dataset 
as training dataset. The left column represents the trained frames and 
right column the VibGL’s output frames. 
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