
Kernel Robust Mixed-Norm Adaptive Filtering  
Jin Liu  

School of Software Engineering 
Xi’an Jiaotong University  

Xi’an, China 
xjtuliujn@gmail.com 

Hua Qu, Badong Chen, Wentao Ma 
School of Electronic and Information Engineering 

Xi’an Jiaotong University 
Xi’an, China 

chenbd@mail.xjtu.edu.cn
 
 

Abstract—Kernel methods are powerful for developing a 
nonlinear learning algorithm in a high-dimensional linear space. 
The least mean square (LMS) and the least absolute deviation 
(LAD) are two well-known linear adaptive filtering algorithms. 
The former performs very well when the noise is Gaussian, while 
the later possesses desirable performance when the noise has a 
long-tailed distribution (e.g. alpha-stable distribution). The 
combination of the LMS and LAD yields a robust mixed-norm 
(RMN) algorithm. In this paper, we combine the popular kernel 
methods and the RMN algorithm to develop a new kernel 
adaptive filtering algorithm, namely the kernel RMN (KRMN) 
algorithm, which is a robust adaptive algorithm in reproducing 
kernel Hilbert space (RKHS).  The mean square convergence is 
analyzed, and the excellent and robust performance of the new 
algorithm is demonstrated by the simulation results of nonlinear 
time series prediction. 
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I.  INTRODUCTION 
The kernel method is a powerful nonparametric modeling 

tool. It transforms the input data into a high-dimensional 
feature space via a reproducing kernel such that the inner  
products operation in the feature space can be computed 
efficiently through the kernel evaluations (so called the “kernel 
trick”) [1]. Then, appropriate linear methods can subsequently 
be applied to the transformed data. Successful examples of 
kernel learning methods include support vector machines 
(SVM)[2, 5], kernel principal component analysis (KCPA), 
kernel least-mean-square (KLMS), etc. Efficient experiments 
of kernel methods are usually conducted in the environments 
corrupted by Gaussian noises. In practice, however, the data 
are in general non-Gaussian, and the noises with long-tailed 
distributions (e.g. alpha-stable noise) are common [3]. In the 
literature of linear adaptive filtering, the least absolute 
deviation (LAD) algorithm was proposed to deal with this 
problem. It has been shown that the LAD algorithm is much 
more robust to outliers than the conventional least mean square 
(LMS) algorithm, especially when the measurement noises 
have a long-tailed distribution. The robust mixed-norm (RMN) 
algorithm, with a cost function as a convex mixture of the 
mean-square error (MSE) and mean absolute error [4], is a 
linear combination of the LMS and LAD, which is often 
superior to either LMS or LAD [4]. The goal of this work is to 
extend the RMN algorithm to RKHS. The new algorithm is 
called the kernel robust mixed-norm (KRMN) algorithm, 
which performs well in the presence of impulse noises due to 
the robustness of the mixed-norm criterion [4,7,8]. 

The rest of the paper is organized as follows. In section II, 
the kernel method and RMN algorithm are introduced. In 
Section III, the KRMN algorithm is derived. Then, the mean 
square convergence analysis is presented in section IV, and 
simulation results are given in section V. Finally, in section VI, 
we give the conclusion. 

II. PRELIMINARY KNOWLEDGE 

A. Kernel Method 
A Mercer kernel [1,6] is a continuous, symmetric, positive 

definite function k: X X R× → , where X is the input domain, 
a compact subset of LR .By Mercer theorem, any Mercer 
kernel can be expanded as follows: 

 ( )' '
1

, ( ) ( )i i ii
k x x x xζ ϕ ϕ∞

=
=∑  (1) 

where iζ  and iϕ are, respectively, the non-negative 
eigenvalue and eigenfunction. Therefore, a nonlinear mapping 
ϕ can be constructed as: 

 : X Fϕ →   

 1 1 2 2( ) ( ), ( ),x x xϕ ζ ϕ ζ ϕ⎡ ⎤= ⎣ ⎦  (2) 

which transforms the input data into a high-dimensional feature 
space F (essentially the same as the RKHS). By the 
construction of the mapping, the following equality holds (so 
called the "kernel trick"): 

 ( ) ( ) ( ),Tx x k x xϕ ϕ ′ ′=  (3) 

B. Robust Least Mean Mixed-Norm (RMN) Algorithm 
The RMN algorithm is based on the minimization of the 

following convex combination of the error norms[4]： 

 
2( ) ( ( )) (1 ) (| ( ) |)RMNJ i E e i E e iλ λ= + −  (4) 

where λ is the mixing parameter， [ ]λ 0,1∈ , and ( )e i is the 
error between the output of the linear adaptive filter and the 
desired response ( )d i : 

 ( ) ( ) ( 1) ( )Te i d i W i u i= − −  (5) 

where ( 1)W i − is the estimated weight vector at iteration 1i − , 
and ( )u i is the input vector. When 1λ = , (4) becomes the mean 
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square error cost for the LMS algorithm, whereas when 0λ = , 
(4) becomes the mean absolute error for the LAD algorithm. 
With an appropriate λ , the mixed-norm provides a mechanism 
to mitigate the disturbance caused by the outliers . The gradient 
of the cost function RMNJ with respect to W is: 

 ( )( ) [2 ( ) (1 ) sign ( ) ] ( )RMNJ i E e i e i u iλ λ∇ = − + −  (6) 

The RMN algorithm uses an instantaneous estimation of the 
gradient vector, which leads to the following update rule: 

 ( )
( 1) ( ) ( )

( ) [2 ( ) (1 )sign ( ) ] ( )
RMNW i W i J i

W i e i e i u i
μ

μ λ λ
+ = − ∇

= + + −
 (7) 

where  μ is the step size controlling the stability and 
convergence rate. Note that if 1λ = , the algorithm (7) reduces 
to the LMS algorithm; while if 0λ = , it becomes the LAD 
update rule. 

III. KERNEL RMN ALGORITHM  
It is assumed that the adaptive filter has a linear FIR 

structure in the RMN algorithm. Thus, poor performance can 
be expected if the underlying mapping between the desired 
output ( )d i and the input ( )u i is highly nonlinear. In order to 
overcome this limitation, the kernel robust mixed-norm 
(KRMN) adaptive filter algorithm is proposed in the following. 
This method uses the Mercer theorem to transform the 
data ( )u i  into RKHS as ( ( ))u iϕ , and ( )T iϕΩ is a much more 
powerful model than ( )TW u i  because of the difference in the 
dimensions of ( )u i  and ( ) ( ( ))i u iϕ ϕ= , where Ω  denotes the 
weight vector in RKHS. We use the RMN algorithm on the 
new example sequence ,{ ( ) ( )}i d iϕ : 

 
( )

(0) 0

( ) ( 1)

( ) ( ) ( 1) ( )
[2 ( ) (1 )sign ( ) ] ( )

T

i i

e i d i i i
e i e i i
ϕ

μ λ λ ϕ

Ω =

Ω = Ω − +

⎧
⎪ = − Ω −⎨
⎪ + −⎩

 (8) 

where ( )iΩ denotes the estimate (at iteration i ) of the weight 
vector in RKHS. 

However, the dimensionality of ( )ϕ ⋅  is high and it is only 
implicitly known, so we need an alternative way of carrying 
out the computation. The repeated application of the weight-
update equation through iterations yields:  
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Setting (0) 0Ω = , we have 

 ( )
1

( ) ( ( )2 ( ) (1- )sign ( ) ]
i

j

i e j e j jμ λ λ ϕ
=

Ω = +∑  (10) 

Thus, the output of the system to a new input ( )u i can be 
expressed in terms of inner products between transformed 
inputs: 
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According to the description above, the KRMN algorithm 
can be summarized as follows: 

Algorithm. The kernel RMN algorithm 
Initialization 
Choose step-size, kernel function κ   

{ }1 , (1)[2 (1) (1 )sign( (1))] (1)Cd d uα μ λ λ == + −  
Computation 
while ( ){ }( ),u i d i available do 

%Compute the output 

1
( ) ( ( ), ( ))

i

j
j

y i u j u iα κ
=

=∑
 

%Compute the error

 

( ) ( ) ( )e i d i y i= −  
%Compute the coefficient 

( )[2 ( ) (1 )sign ( ) ]i e i e iα μ λ λ= + −  
%Update the dictionary 

{ }( ) ( 1), ( )C i C i u i= −  
end while 

 

KRMN algorithm is simple, but we need to pay attention to 
two aspects that are still unspecified. The first one is how to 
select a proper kernel function k ; and the second one is how to 
select a good mixing parameter λ . For the first one, it is well-
known that Gaussian kernel induces a RKHS with universal 
approximating capability [1], which is usually a default choice 
in kernel adaptive filtering. The Gaussian kernel is defined by 

 
2( , ) exp(- | - | )k u v l u v=  (12) 

where 0l >  is the kernel parameter. After choosing the kernel 
function, the next thing is to select a suitable mixing parameter 
λ . This parameter can be chosen in two different ways. The 
first way is to set λ at a constant value, which is fixed during 
the learning. The second way is to update λ  with an adaptive 
method. In this work, we use a sliding window approach to get 
a threshold that determines when λ will change [9]. The 
threshold is set at the mean squared error within a window:  
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2

1
2 n

ii
e

n
τ == ∑  (13) 

where n  denotes the window length, { }ie  are the errors in this 
window. If the new error is larger than the threshold, we reduce 
the λ value such that the KLAD algorithm occupies a main 
position. The robustness of the KLAD makes the KRMN 
stable. If the new error is smaller than the threshold, we make 
the λ close to 1, and hence the KLMS [6] algorithm occupies a 
main position. 

IV. MEAN SQUARE CONVERGENCE ANALYSIS 
The mean square convergence behavior is another key 

aspect of the kernel adaptive filters. For classical linear 
adaptive filters, the convergence analysis has been extensively 
studied [10]. In this direction, we mention here the works by 
Al-Naffouri and Sayed [11, 13], whose approach is based on 
the fundamental energy conservation relation (ECR). Recently, 
this relation has been extended into RKHS for analyzing the 
mean-square convergence performance of the kernel adaptive 
filters [12, 14].  In this section, we study the mean-square 
convergence performance of the proposed KRMN algorithm, 
based on the ECR given in Lemma 1.  

Lemma 1 [12, 14]. Consider the nonlinear system 
identification case in which *( ) ( )id i v iϕ= Ω + , where *Ω denotes 
the unknown weight vector (in RKHS) that needs to be 
estimated, and ( )v i stands for the disturbance noise. Define the 
weight error vector *( ) ( ) ( )i i iΩ = Ω − Ω , a priori error 

( ) ( 1) ( )a
Te i i iϕ= Ω − , and a posterior error ( ) ( ) ( )p

Te i i iϕ= Ω . 
Then the following  equality holds:  

 
2 22 2( ) ( ) ( 1) ( )a pF F

i e i i e iΩ + = Ω − +  (14) 

Based on Lemma 1, we can easily derive： 

 ( ) ( ) [2 ( ) (1 )sign( ( ))] ( ( ), ( ))p ae i e i e i e i u i u iμ λ λ κ= − + −   (15) 

Substituting (15) into (14) and after some straightforward 
manipulations, we have: 
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Here, we assume that the noise ( )v i  is zero-mean, independent, 
identically distributed, and independent of the a priori 
estimation error ( )ae i . This assumption is commonly used in 
the convergence analysis of most adaptive filtering algorithms. 
Under this assumption, we can derive 
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where (1 )sign( ( )))e iβ λ= − , and 2ξ denotes the noise 
variance. From the (17), we observe that: 
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Therefore, if the step-size satisfies (18), the sequence of the 
weight error power in F will be monotonically decreased (and 
hence convergent). From (18), an upper bound for the step-size 
can be derived as follow: 
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where ,ε ψ denote, respectively, the feasible set of 2[ ]( )aE e i  and 
2[|| || ]FE Ω . 

V. SIMULATION RESULTS 
For evaluating the performance of the proposed KRMN 

algorithm, we conduct Monte Carlo simulations to demonstrate 
its performance in Mackey-Glass chaotic time series 
prediction. A segment of 1000 samples is used for training, and 
another 100 data are used for testing. The data are corrupted by 
additive noises with a distribution modeled as a mixture of the 
Gaussian (with zero mean) and a long-tailed alpha-stable 
distribution. In the simulations, we compare the performance of 
KLMS, KLAD, and KRMN algorithms. According to the 
selection methods of the mixing parameter λ , we define two 
kinds of algorithm as KRMN with fixed λ  and KRMN with 
adaptive λ .  
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We show the convergence behaviors of the algorithms. In 
the simulation, the step sizes for the KLMS, KLAD, KRMN 
with fixed λ , and KRMN with adaptive λ  are set at 0.1, 0.01, 
0.05, and 0.07, respectively. The fixed λ for KRMN is set at 
0.6, and the window length for the adaptive λ is set at 10.  The 
convergence curves for all the algorithms are shown in Fig.1. 
One can see clearly that although the steady-state testing MSEs 
of the proposed algorithms are almost the same as the KLMS, 
their convergence speeds are much faster. In addition, the 
convergence curves of the two KRMN algorithms are relatively 
smooth, while the learning curve of the KLMS has large 
fluctuation especially when the outliers happen. The KLAD 
algorithm also converges smoothly, but its convergence speed 
is very low. 

0 200 400 600 800 1000
10-3

10-2

10-1

iteration

te
st

in
g

 M
S

E

 

 

KLMS
KLAD
KRMN with fixed λ
KRMN with adaptive  λ

 

Fig.1. Convergence curves of different algorithms 

VI. CONCLUSION 
In this work, a new kernel adaptive filtering algorithm, 

namely the kernel robust mixed-norm (KRMN) algorithm, is 
developed, which is a linear combination of the KLMS and 
KLAD algorithms. The new algorithm is computationally 
simple, and robust to outliers. Simulation results show that 
the KRMN algorithm can outperform both KLMS and 
KLAD if properly choosing the mixing parameter.  
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