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Abstract—Distance metric is the basis of many learning algo-
rithms and its effectiveness usually has significant influence on
the learning results. Generally, measuring distance for numerical
data is a tractable task, but for categorical data sets, it could
be a nontrivial problem. This paper therefore presents a new
distance metric for categorical data based on the characteristics
of categorical values. Specifically, the distance between two values
from one attribute measured by this metric is determined by
both of the frequency probabilities of these two values and the
values of other attributes which have high interdependency with
the calculated one. Promising experimental results on different
real data sets have shown the effectiveness of proposed distance
metric.

I. INTRODUCTION

Measuring the distance between two data objects plays
an important role in many data mining and machine learning
tasks, such as clustering, classification, feature selection, outli-
er detection, and so on. Generally, distance computation is an
embedded step for these learning algorithms and different met-
rics can be conveniently utilized. However, the effectiveness of
adopted distance metric usually has significant influence on the
performance of the whole learning method [4], [5]. Therefore,
it becomes a key research issue to present more appropriate
distance metrics for the various learning tasks.

For purely numerical data sets, the distance computation is
a tractable problem as any numerical operation can be directly
applied. In the literature, a number of distance metrics and
metric learning methods have been proposed for numerical
data. The most widely used metrics in practice should be
the Manhattan distance, Euclidean distance, and Mahalanobis
distance [1]. By contrast, measuring distance for categorical
data is a more challenging problem as there is no explicit or-
dering information in categorical values and the only numerical
operation that can be straightforwardly applied is the identical
comparison operation [2]. Under the circumstances, a simplest
way to overcome this problem is to transform the categorical
values into numerical ones, e.g. the binary strings [3], [6], [7],
and then the existing numerical-value based distance metrics
can be utilized. Nevertheless, such a kind of method has
ignored the information embedded in the categorical values and
cannot faithfully reveal the relationship structure of the data
sets [8], [9]. Therefore, it is desirable to solve this problem by
proposing new distance metric for categorical data based on
the characteristics of categorical values.

Among the existing work, the most straightforward and
widely used distance metric for categorical data is the Ham-
ming distance [1], in which the distance between different

categorical values is set at 1 while a distance of 0 is as-
signed to identical values. Then, for a pair of categorical
data objects with multiple attributes, the Hamming distance
between them will be equal to the number of attributes in
which they mismatch. Although the Hamming distance is
easy to understand and convenient for computation, the main
drawback of this metric is that all attribute values have been
considered equally and the statistical properties of different
values have not been distinguished [10]. For this reason, more
researchers attempt to measure the distance for categorical
data with the distribution characteristics of categorical values.
For example, Cost and Salzberg [11] had proposed a distance
metric namely Modified Value Distance Matrix (MVDM) for
supervised learning task, in which the distance between two
categorical values is calculated with respect to the class label
of the data set. Additionally, for unsupervised distance measure
of categorical data, Le and Ho [2] presented an indirect
method which defines the distance between two values from
one attribute as the sum of the Kullback-Leibler Divergence
between conditional probability distributions of other attributes
given these two values. Similar idea has also been adopted by
[12], in which the distance of two values from one attribute
is quantified with respect to the co-occurrence probabilities of
the values from all the other attributes with these two values.

Besides of the aforementioned methods which directly
propose special distance metric for categorical data sets, some
similarity measures [13], [14], [15], [16], [17], [18], [19]
presented for categorical or mixed data can also be utilized
to quantify the relationship between different categorical data
objects. For example, the Goodall similarity metric proposed
in [13] assigns a greater weight to the matching of uncommon
attribute values than common values in similarity computation
without assuming the underlying distributions of categorical
values. Subsequently, the similarities between pairs of val-
ues are integrated with Lancaster’s method [20] to estimate
the similarity between data objects. Moreover, Gowda and
Diday [14], [15], [16] have proposed an algebraic method
to measure the similarity between categorical data. In this
method, the similarity between two attribute values is defined
based on three components: position, span, and content. Here,
the component “position” works only when the attribute type
is quantitative, the “span” indicates the relative sizes of the
attribute values without referring to common parts between
them, and the “content” is to measure the common parts
between attribute values. Finally, the summation of these three
similarity components is the estimate of the similarity between
given attribute values.
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In this paper, we further study the distance measure for
categorical data objects and propose a new distance metric
which can well quantify the distance between categorical val-
ues in unsupervised learning environment. This distance metric
is presented based on the characteristics of categorical values
and the core idea is to measure the distance with frequency
probability of each attribute value in the whole data set. More-
over, in order to well utilize the useful relationship information
accompanying with each pair of attributes, the interdependence
redundancy measure [24] has been introduced to evaluate the
dependent degree between different attributes. Subsequently,
the distance between two values from one attribute is not
only measured by their own frequency probabilities, but also
determined by the values of other attributes which are highly
correlated with this one. The effectiveness of the proposed met-
ric has been experimentally investigated on different real data
sets in terms of cluster discrimination and clustering analysis.
Competitive results indicate that the proposed distance metric
is appropriate for unsupervised learning on categorical data
as it can well reveal the true relationship between categorical
objects.

II. PROPOSED DISTANCE METRIC FOR CATEGORICAL
DATA

This section will propose a metric to well quantify the
distance between categorical data for unsupervised clustering
analysis. In this new distance metric, not only the character-
istics of categorical value but also the relationship between
different attributes will be taken into account.

A. Frequency Probability based Distance Metric

Suppose we have a data set with n objects, expressed as
X = {x1,x2, . . . ,xn}, represented by a set of categorical
attributes {A1, A2, . . . , Ad}, where d is the dimensionality
of the data. Each attribute Ar can be accompanied by a
value domain dom(Ar) (r = 1, 2, . . . , d), which contains
all the possible values that can be chosen by this attribute.
Since the value domains of categorical attributes are finite
and unordered, the domain of Ar with mr elements can be
expressed as dom(Ar) = {ar1, ar2, . . . , armr} and for any
a, b ∈ dom(Ar), either a = b or a ̸= b [21]. Subsequently,
each object xi can be denoted by a vector (xi1, xi2, . . . , xid)T ,
where xir ∈ dom(Ar) and T is the transpose operator of a
matrix.

Generally, the distance between two categorical data ob-
jects xi and xj can be calculated by

D(xi,xj) =
d∑
r=1

D(xir, xjr). (1)

Therefore, the key point is to define the distance between
two categorical values. To this end, we first consider the
characteristic of clustering analysis on categorical data, which
is the learning task we mainly focus on in this paper. Generally,
good prediction on new arriving data is an important goal
of clustering analysis. For purely categorical data, the lower
uncertainty the cluster structure has, the higher predictive
accuracy can usually be achieved. Therefore, to reduce the
uncertainty of the samples in each cluster, along one attribute,
the objects with the different dominative attribute values tend

to be divided into different clusters. This implies that two
different categorical values both with high frequency from
one attribute should have larger distance, while the distance
between an infrequent value and others should be smaller.
Consequently, the distance between categorical values can be
defined based on frequency probability as follows:

D(xir, xjr) =

{
p(Ar = xir|X) + p(Ar = xjr|X), if xir ̸= xjr,
0, if xir = xjr,

(2)
where i, j ∈ {1, 2, . . . , n}, r ∈ {1, 2, . . . , d}, and the frequen-
cy probability p(Ar = xir|X) is calculated by

p(Ar = xir|X) =
σAr=xir (X)

σAr ̸=NULL(X)
. (3)

Here, the operation σAr=xir (X) counts the number of objects
in data set X that have the value xir for attribute Ar and
the symbol NULL refers to the empty. Subsequently, the
expression of distance between categorical data xi and xj can
be written as

D(xi,xj) =
d∑
r=1

[δ(xir, xjr)(p(Ar = xir|X) + p(Ar = xjr|X))],

(4)
where the definition of δ(xir, xjr) is given by

δ(xir, xjr) =

{
1, if xir ̸= xjr,
0, if xir = xjr.

(5)

It can be easily derived that the distance metric defined by
Eq. (4) has the following properties:

(1) D(xi,xj) ≥ 0;
(2) D(xi,xj) = 0 if and only if xi = xj ;
(3) D(xi,xj) = D(xj ,xi);
(4) D(xi,xj) ≤ D(xi,xl) + D(xl,xj), where i, j, l ∈
{1, 2, . . . , n}.

B. Relationship between Categorical Attributes

In the previous distance metric, the distance along each
attribute has been computed individually. However, in practice,
we often have some attributes which are highly dependent on
each other. Under the circumstances, the computation of simi-
larity or dissimilarity for categorical attributes in unsupervised
learning task should be considered based on frequently co-
occurring items [22]. That is, the distance between two values
from one attribute should be calculated by taking into account
the other attributes which are highly correlated with this
one. Specifically, given the data set X , the dependent degree
between each pair of attributes Ai and Aj (i, j ∈ {1, 2, . . . , d})
can be quantified based on the mutual information [23] be-
tween them, which is defined as

I(Ai;Aj) =

mi∑
r=1

mj∑
l=1

p(air, ajl) log

(
p(air, ajl)

p(air)p(ajl)

)
. (6)

Here, the items p(air) and p(ajl) stand for the frequency
probability of the two attribute values in the whole data set,
which are calculated by

p(air) = p(Ai = air|X) =
σAi=air (X)

σAi ̸=NULL(X)
(7)
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p(ajl) = p(Aj = ajl|X) =
σAj=ajl(X)

σAj ̸=NULL(X)
. (8)

The expression p(air, ajl) is to calculate the joint probability
of these two attribute values, i.e., the frequency probability of
objects in X having Ai = air and Aj = ajl, which is given
by

p(air, ajl) =p(Ai = air ∧Aj = ajl|X)

=
σAi=air∧Aj=ajl(X)

σAi ̸=NULL∧Aj ̸=NULL(X)
.

(9)

The mutual information between two attributes actually mea-
sures the average reduction in uncertainty about one attribute
that results from learning the value of the other [23]. A
larger value of mutual information usually indicates greater
dependence. However, a disadvantage of using this index is
that its value increases with the number of possible values
that can be chosen by each attribute. Therefore, Au et al.
[24] proposed to normalize the mutual information with joint
entropy, which yields the interdependence redundancy measure
denoted as

R(Ai;Aj) =
I(Ai;Aj)

H(Ai, Aj)
, (10)

where the joint entropy H(Ai, Aj) is calculated by

H(Ai, Aj) = −
mi∑
r=1

mj∑
l=1

p(air, ajl) log[p(air, ajl)]. (11)

This interdependence redundancy measure evaluates the degree
of deviation from independence between two attributes [24].
Specifically, R(Ai;Aj) = 1 means that the attributes Ai and
Aj are strictly dependent on each other while R(Ai;Aj) = 0
indicates that they are statistically independent. If the value
of R(Ai;Aj) is between 0 and 1, we can say that these
two attributes are partially dependent. Since the number of
attribute values has no effect on the result of interdependence
redundancy measure, it is perceived as a more ideal index to
measure the dependent degree between different categorical
attributes.

Utilizing the interdependence measure, we can maintain a
d × d relationship matrix R to store the dependent degree of
each pair of attributes. Each element R(i, j) of this matrix
is given by R(i, j) = R(Ai;Aj). It is obvious that R is a
symmetric matrix with all diagonal elements equal to 1. To
take into account the interdependent attributes simultaneously
in distance measure, for each attribute Ai we find out all
the attributes that have obvious interdependency with it and
store them in a set denoted as Si. Specifically, the set Si is
constructed by

Si = {Ar|R(Ai;Ar) > β, 1 ≤ r ≤ d}, (12)

where β is a specific threshold. Subsequently, the distance
metric for categorical data in considering the dependency
relationship between different attributes can be defined as

D(xir, xjr) =



∑
Al∈Sr

R(r, l)[p(xir, xil) + p(xjr, xjl)],

if xir ̸= xjr,∑
Al∈Sr

R(r, l)δ(xil, xjl)[p(xir, xil) + p(xjr, xjl)],

if xir = xjr,
(13)

where δ(xil, xjl) is defined by Eq. (5), and the joint probability
p(xir, xil) and p(xjr, xjl) are calculated by

p(xir, xil) = p(Ar = xir ∧Al = xil|X) (14)

p(xjr, xjl) = p(Ar = xjr ∧Al = xjl|X). (15)

It can be observed that when we utilize the further defined
metric to measure the distance between two categorical values
from one attribute, not only the frequency probability of
these two values, but also the co-occurrent probability of
them with other values from highly correlated attributes are
investigated. Moreover, if we assume that all attributes are
totally independent with each other, R will become an identity
matrix and the set Si will only contain one item Ai for all
i ∈ {1, 2, . . . , d}. Under the circumstances, Eq. (13) will
degenerate to Eq. (2). That is, the distance metric defined by
Eq. (2) is actually a special case of the one given by Eq. (13).

C. Algorithm for Distance Computation

According to the newly defined distance measure, for the
given categorical data set X , the algorithm to calculate the
distance between each pair of objects can be summarized as
Algorithm 1. Moreover, it can be observed that this algorithm
has a threshold parameter β to be set in advance. Generally, the
value of β has effect on the number of attributes that should
be jointly considered in the distance calculation. Specifically,
a too small β will result in many attributes with insignificant
interdependence relationship being jointly considered. The
dependency information between these attributes actually has
negligible contribution to the distance measure and will lead an
unnecessarily increase in computation load. By contrast, a too
large value of β will lead to the loss of useful dependency in-
formation and degrade the contribution of correlated attributes
to the distance measure. By a rule of thumb, we find that a
value from [0.1, 0.4] is more appropriate for the parameter β
in practice.

Algorithm 1 Distance calculation for categorical data
1: Input: data set X = {x1,x2, . . . ,xn}
2: Output: D(xi,xj) for i, j ∈ {1, 2, . . . , n}
3: For each pair of attributes (Ar, Al) (r, l ∈ {1, 2, . . . , d}),

calculate R(Ar;Al) according to Eq. (10).
4: Construct the relationship matrix R.
5: Get the index set Sr for each attribute Ar by Sr =
{l|R(r, l) > β, 1 ≤ l ≤ d}.

6: Choose two objects xi and xj from X .
7: Let D(xi,xj) = 0.
8: for r = 1 to d do
9: if xir ̸= xjr then

10: D(xir, xjr) =
∑
l∈Sr

R(r, l)[p(xir, xil) + p(xjr, xjl)]

11: else

12:
D(xir, xjr) =

∑
l∈Sr

R(r, l)δ(xil, xjl)

[p(xir, xil) + p(xjr, xjl)]
13: end if
14: D(xi,xj) = D(xi,xj) +D(xir, xjr)
15: end for
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III. EXPERIMENTS

To investigate the effectiveness of the unsupervised dis-
tance metric for categorical data proposed in this paper, two
different kinds of experiments have been conducted on four
real data sets in comparison with existing distance metric.
The first experiment is to validate the ability of the proposed
distance metric in discriminating different clusters and the
other one is to investigate its effectiveness in unsupervised
clustering analysis.

A. Cluster Discrimination

It is known that a cluster partition on a data set is to make
sure that the similarities between objects in the same cluster
are high while the similarities between objects in different
clusters are low. As distance metric is a kind of important and
frequently-used dissimilarity metric, its ability in cluster dis-
crimination is a significant criterion to evaluate its effectiveness
in data analysis. That is, given a data set with true class labels,
a good distance metric should make the intra-cluster distances
as small as possible and the inter-cluster distances as large
as possible. Therefore, to investigate the cluster-discrimination
ability of proposed distance metric, we utilized it to calculate
the average intra-cluster and inter-cluster distances for some
categorical data sets from the UCI Machine Learning Data
Repository (URL: http://archive.ics.uci.edu/ml/). According to
[12], for a cluster Cr of data set X with nr objects, the average
intra-cluster distance is calculated by

AAD(Cr) =

∑
xi∈Cr

∑
xj∈Cr

D(xi,xj)

n2r
.

Moreover, for every two clusters Cr with nr objects and Ct
with nt objects, the average inter-cluster distance is given by

AED(Cr, Ct) =

∑
xi∈Cr

∑
xj∈Ct

D(xi,xj)

nrnt
.

Additionally, since the distances calculated with the different
metrics usually have the different scales, it is better to normal-
ize the result with the maximum distance value obtained on
the data set to ensure a fair comparison. In our experiments,
the value of β was set at 0.2 and the information of the data
sets we utilized is as follows:

• Congressional Voting Records Data Set: There are
435 votes based on 16 key features and each vote
comes from one of the two different party affiliations:
democrat (267 votes) and republican (168 votes).

• Wisconsin Breast Cancer Database (WBCD): This
data set has 699 instances described by 9 categorical
attributes with the values from 1 to 10. Each instance
belongs to one of the two clusters labeled by benign
(contains 458 instances) and malignant (contains 241
instances).

• Small Soybean Database: There are 47 instances char-
acterized by 35 multi-valued categorical attributes.
According to the different kind of diseases, all the
instances should be divided into four groups.

• Zoo Data Set: This data set consists of 101 instances
represented by 16 attributes, in which each instance
belongs to one of the 7 animal categories.

The average intra-cluster distance of each cluster and the
average inter-cluster distance between each pair of clusters
obtained by the proposed distance metric on the four data sets
have been presented in Tables I–IV. For comparative study,
the results obtained by the Hamming distance metric have also
been listed in the tables. It can be roughly observed from these
tables that the average intra-cluster distances calculated based
on the proposed distance metric have a significant decrease
in comparison with that obtained by Hamming distance while
the inter-cluster distances obtained by these two metrics are
comparable. Moreover, although the inter-cluster distances
obtained by Hamming distance are slightly larger than that
obtained by proposed metric on Voting and WBCD data sets
as shown in Table I and Table II, the difference between intra-
cluster and inter-cluster distances in the result of the proposed
metric is larger than that of Hamming distance. This indicates
that the proposed distance metric can better distinguish the
different clusters in these two data sets.

TABLE I. AVERAGE INTRA/INTER-CLUSTER DISTANCE OBTAINED BY
THE DIFFERENT METRICS ON THE VOTING DATA SET

Hamming distance metric Proposed distance metric
Clusters C1 C2 Clusters C1 C2

C1 0.4330 0.6757 C1 0.3806 0.6630
C2 0.6757 0.3125 C2 0.6630 0.2531

TABLE II. AVERAGE INTRA/INTER-CLUSTER DISTANCE OBTAINED BY
THE DIFFERENT METRICS ON THE WBCD DATA SET

Hamming distance metric Proposed distance metric
Clusters C1 C2 Clusters C1 C2

C1 0.3796 0.8716 C1 0.3059 0.7001
C2 0.8716 0.8128 C2 0.7001 0.3106

Furthermore, to present the experimental result simply
and clearly, we proposed a new criterion namely cluster-
discrimination index (CDI) based on the average intra-cluster
and inter-cluster distance. For a data set with k clusters, the
value of this index was calculated by

CDI =
1

k

k∑
r=1

AAD(Cr)
1

k−1
∑
t̸=r

AED(Cr, Ct)
.

That is, the value of CDI is determined by the average ratio of
intra-cluster distance to the inter-cluster distance. Generally,
a smaller value of CDI indicates a better discrimination on
the cluster structure of the data set. Table V records the CDI
values obtained by different distance metrics on each data
set. In this table, DM1 means the distance metric defined by
Eq. (2) without considering the relationship between attributes
while DM2 stands for the complete distance metric given
by Eq. (13). It can be found from the table that the DM2
metric has obtained the best result on every tested data set
and the average improvement is over 26% in comparison with
the Hamming distance metric. Both without considering the
attribute interdependency, the average performance of DM1
metric is still over 10% better than the Hamming distance. This
result indicates that quantifying distance between categorical
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TABLE III. AVERAGE INTRA/INTER-CLUSTER DISTANCE OBTAINED BY THE DIFFERENT METRICS ON THE SOYBEAN DATA SET

Hamming distance metric Proposed distance metric
Clusters C1 C2 C3 C4 Clusters C1 C2 C3 C4

C1 0.2368 0.6632 0.6011 0.6421 C1 0.1515 0.6445 0.6047 0.6723
C2 0.6632 0.2379 0.8237 0.7616 C2 0.6445 0.1090 0.8966 0.8314
C3 0.6011 0.8237 0.2463 0.4985 C3 0.6047 0.8966 0.1351 0.4758
C4 0.6421 0.7616 0.4985 0.2968 C4 0.6723 0.8314 0.4758 0.2517

TABLE IV. AVERAGE INTRA/INTER-CLUSTER DISTANCE OBTAINED BY THE DIFFERENT METRICS ON THE ZOO DATA SET

Hamming distance metric Proposed distance metric
Clusters C1 C2 C3 C4 C5 C6 C7 Clusters C1 C2 C3 C4 C5 C6 C7

C1 0.18 0.60 0.44 0.59 0.47 0.65 0.68 C1 0.16 0.72 0.52 0.66 0.59 0.72 0.77
C2 0.60 0.14 0.42 0.55 0.46 0.46 0.52 C2 0.72 0.11 0.41 0.52 0.48 0.42 0.47
C3 0.44 0.42 0.21 0.33 0.27 0.51 0.42 C3 0.52 0.41 0.21 0.31 0.28 0.51 0.43
C4 0.59 0.55 0.33 0.08 0.34 0.70 0.45 C4 0.66 0.52 0.31 0.06 0.30 0.67 0.44
C5 0.47 0.46 0.27 0.34 0.08 0.48 0.12 C5 0.59 0.48 0.28 0.30 0.06 0.51 0.37
C6 0.65 0.46 0.51 0.69 0.48 0.12 0.35 C6 0.72 0.42 0.51 0.67 0.51 0.12 0.31
C7 0.68 0.52 0.42 0.45 0.37 0.35 0.21 C7 0.77 0.47 0.43 0.44 0.37 0.31 0.16

values with frequency probability rather than constant is more
reasonable for the analysis of relationship between categorical
objects. Moreover, comparing the performance of DM1 and
DM2 we can find that the information of interdependency
between attributes is important for distance measurement.
Making a good use of this information can significantly
improve the effectiveness of learning method on categorical
data. Additionally, it can be observed that the DM1 and DM2
metrics have very similar results on the WBCD data set. This
is because that the dependent degree between attributes in this
data set is very low and there is only one pair of attributes
whose value of the interdependence redundancy measure has
exceeded the threshold β.

TABLE V. CLUSTER-DISCRIMINATION INDEX OBTAINED BY THE
DIFFERENT METRICS ON FOUR REAL DATA SETS

Data sets Hamming Distance DM1 DM2
Voting 0.5517 0.5232 0.4778
WBCD 0.6840 0.4457 0.4403
Soybean 0.3856 0.3478 0.2402

Zoo 0.3045 0.3012 0.2678

B. Study of the Threshold Parameter

To investigate the impact of the threshold parameter β on
the effectiveness of proposed distance metric, we have utilized
the DM2 metric with the different values of β to calculate
the intra-cluster and inter-cluster distances for Soybean and
Zoo data sets. The curves which depict the changing trend of
obtained CDI values with increasing β have been shown in
Fig. 1 and Fig. 2. From the figures, we can find that, when
β is set at a very small value (i.e. β < 0.1), the performance
of DM2 metric improves as the value of β increases. This
is because, when the threshold β is too small, many useless
relationships between attributes are taken into account, which
will degrade the accuracy of obtained object distances. By
contrast, when β is larger than 0.1, the performance of DM2
metric degrades as β increases. Overall, the effectiveness of
DM2 metric can keep at a satisfactory level with β ≤ 0.4
and when the value of β exceeds 0.4, the performance of this
distance metric degrades obviously. Therefore, a value from
[0.1, 0.4] for β can get a good balance between computational

load and practical effectiveness for the proposed distance
metric.
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Fig. 1. Cluster-discrimination index obtained by the proposed metric with
the different values of β on the Soybean data set.
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Fig. 2. Cluster-discrimination index obtained by the proposed metric with
the different values of β on the Zoo data set.
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TABLE VI. CLUSTERING ERRORS OBTAINED BY K-MODES ALGORITHM WITH THE DIFFERENT DISTANCE METRICS

Data sets k-modes with Hamming Distance k-modes with DM1 k-modes with DM2
Voting 0.1391±0.0070 0.1307±0.0047 0.1216±0.0021
WBCD 0.1612±0.1574 0.1008±0.1136 0.0809±0.0904
Soybean 0.1631±0.1719 0.1589±0.1617 0.1107±0.1256

Zoo 0.2884±0.0953 0.2518±0.1018 0.2347±0.0915
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Fig. 3. Graphical representation of clustering error rate and standard deviation for different methods on (a) Voting data set, (b) WBCD data set, (c) Soybean
data set, and (d) Zoo data set.

C. Clustering Analysis

Generally, clustering analysis based on distance measure
is to partition the given objects into several clusters such that
the distances between objects in the same cluster are small
while the distances between objects in different clusters are
large. That is, distance metric plays a key role in clustering
accuracy. Therefore, in this experiment, we further investigated
the effectiveness of the proposed distance metric by embedding
it into the framework of k-modes algorithm [25], which is
the most popular distance-based clustering method for purely
categorical data, and comparing its clustering result with
the original k-modes method (i.e., k-modes algorithm with
Hamming distance metric). According to [26], the clustering
accuracy has been estimated by

ACC =

∑n
i=1 δ(ci,map(li))

n
,

where ci stands for the provided label, map(li) is a mapping
function which maps the obtained cluster label li to the

equivalent label from the data corpus, and the delta func-
tion δ(ci,map(li)) = 1 only if ci = map(li), otherwise
0. Correspondingly, the clustering error rate is computed as
e = 1−ACC.

Clustering analysis was conducted on the four categorical
data sets: Voting, WBCD, Soybean, and Zoo. Each algorithm
has been executed 50 times on every data set and the average
clustering error rate as well as the standard deviation in
error has been recorded in Table VI. Moreover, the graphical
representation of the clustering results for the three methods
is shown in Fig. 3. It can be seen that, for distance based
clustering on categorical data, k-modes algorithm with the
proposed distance metric has competitive advantage in terms
of clustering accuracy compared to the other two methods. The
average improvement in clustering accuracy on these four data
sets obtained by DM2 metric is over 27% in comparison with
the Hamming distance. It means that the proposed distance
metric is more appropriate for unsupervised data analysis as
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it can better reveal the true relationship between categorical
objects.

IV. CONCLUSION

In this paper, we have presented a new distance metric,
which measures the distance between categorical data with
the frequency probability of each attribute value in the whole
data set. Moreover, the interdependence redundancy measure
was utilized to evaluate the dependent degree between each
pair of attributes. Subsequently, the distance between two
values from one attribute is not only measured by their own
frequency probabilities, but also determined by the values of
other attributes which have high interdependency with the
calculated one. Different experiments on benchmark data sets
have shown the effectiveness of the proposed metric.

Moreover, the basic assumption of the proposed metric in
this paper has paid more attention to the major clusters in
a given data set, i.e., the clusters with a noticeable number
of objects. Therefore, under some special situations, such as
the existence of noise or cluster with few objects, clustering
algorithm based on this distance metric may not so applicable
as it tends to merge these minority objects together with the
other clusters. Our future work will further investigate this
problem elsewhere.
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