
 

 

 

 

Abstract — Computational protein structure prediction is 

very important for many applications in bioinformatics. In the 

process of predicting protein structures, it is essential to 

accurately assess the quality of generated models. Although 

many single-model quality assessment (QA) methods have been 

developed, their accuracy is not high enough for most real 

applications. In this paper, a new approach based on C-α atoms 

distance matrix and machine learning methods is proposed for 

single-model QA and the identification of native-like models. 

Different from existing energy/scoring functions and consensus 

approaches, this new approach is purely geometry based.  

Furthermore, a novel algorithm based on deep learning 

techniques, called DL-Pro, is proposed. For a protein model, 

DL-Pro uses its distance matrix that contains pairwise distances 

between two residues’ C-α atoms in the model, which sometimes 

is also called contact map, as an orientation-independent 

representation. From training examples of distance matrices 

corresponding to good and bad models, DL-Pro learns a stacked 

autoencoder network as a classifier. In experiments on selected 

targets from the Critical Assessment of Structure Prediction 

(CASP) competition, DL-Pro obtained promising results, 

outperforming state-of-the-art energy/scoring functions, 

including OPUS-CA, DOPE, DFIRE, and RW.  

 
Keywords: deep learning, stacked autoencoder, protein model 

quality assessment, energy and scoring function, classification, 

Critical Assessment of Structure Prediction (CASP) 

I. INTRODUCTION 

nowledge of three-dimensional (3D) structure of a 

protein is critical for understanding its function, 

mutagenesis experiments and drug developments. Several 

experimental methods such as the X-ray crystallography or 

Nuclear Magnetic Resonance (NMR) can help determine a 

good 3D structure but they are very time-consuming and 

expensive [1]. To address those limitations, computational 

protein structure prediction methods have been developed, 

including Modeller [2], HHpred [3], I-TASSER [4], Robetta 

[5], and MUFOLD [6]. The process of predicting protein 

structure commonly involves generating a large number of 

models, from which good models are selected using some 

quality assessment method.  

Although many protein model quality assessment (QA) 

methods have been developed, such as MUFOLD-WQA [7], 

QMEANClust [8] MULTICOM [9], OPUS_CA [10], RW 

[11], etc, they all have various limitations and are not 

applicable to real applications. The Critical Assessment of 
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Structure Prediction (CASP) is a biennial world-wide event in 

the structure prediction community to assess the current 

protein modeling techniques, including QA methods. In 

CASPs, different prediction software programs from various 

research groups were given unknown proteins to predict their 

structures. State-of-the-art single-model quality assessment 

methods include various energy functions or scoring 

functions, such as OPUS_CA [10], DFIRE [12], RW [11], 

DOPE [13], etc. In CASP competitions [14,15], the accuracy 

of single-model QA methods has been improving 

consistently, but still not very high in most cases. In contrast, 

consensus QA methods, such as MUFOLD-WQA and 

United3D, which are based on structure similarity, performed 

well on QA tasks, much better than single-model QA 

methods [14, 15]. The drawback of consensus QA methods is 

that they require a pool of diverse models to work well, which 

is not always available. More importantly, they cannot 

evaluate the quality of a single protein model, which is a very 

common task in protein predictions and other applications.  

In this paper, a novel QA method based on deep learning 

techniques, called DL-Pro, is proposed for single-model 

quality assessment, specifically the identification of 

native-like models. Different from existing energy/scoring 

functions and consensus approaches, DL-Pro is a purely 

geometry based method. For a protein model, DL-Pro uses its 

distance matrix that contains pairwise distances between two 

residues’ C-α atoms in the model, which sometimes is also 

called contact map, as an orientation-independent 

representation. From training examples of distance matrices 

corresponding to good and bad models, DL-Pro learns a 

stacked autoencoder network as a classifier. In experiments 

using CASP datasets, DL-Pro is compared with existing 

state-of-the-art energy/scoring functions, including 

OPUS-CA, DOPE, DFIRE, and RW, and shows 

improvement in prediction accuracy. 

This paper is organized as follows. Section II introduces 

the basics of major techniques used in the proposed method 

and some related works. Section III presents the new method 

DL-Pro. Section IV presents experimental results on CASP 

datasets. Finally, Section V concludes the paper. 

II. BASICS OF KEY TECHNIQUES AND RELATED WORK 

A. Protein Model Quality Evaluation 

Protein model quality assessment methods can be divided 

into two main approaches: energy or scoring functions and 

consensus methods [16]. Basically, energy or scoring 

functions are designed based on either physical properties at 

molecule levels [17, 18], such as thermodynamic equilibrium 

or statistics based properties derived based on information 
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from known structures [19, 20]. On the other hand, consensus 

methods are based on the idea that given a pool of predicted 

models, a model that is more similar to other models is closer 

to the native structure [21]. 

1) Consensus methods based on structure similarity 

A vital part of consensus methods is the measurement of 

similarity between two 3-D structures. There are three 

commonly used metrics: the Root-Mean-Squared Deviation 

(RMSD) Score, Template Modeling Score (TM-score), and 

Global Distance Test Total Score (GDT_TS) [22, 23, 24]. 

Since CASP data is used in this study and GDT-TS is a 

main metric used in the official CASP evaluation, we use 

GDT_TS as our main metric of evaluation. It is calculated by 

(1) superimposing two models over each other and (2) 

averaging the percentage of corresponding C-α atoms 

between two models within a certain cutoff. The GDT-TS 

value between two models is computed as follows: 

                                            (1) 

where Ui and Uj are two 3D models and Pd is the percentage 

that the C-α atoms in Ui   is within a defined cutoff distance d, 

   {       }  from the corresponding C-α atoms in Uj     . 
GDT_TS values have the range of [0, 1] with higher value 

means two structures are more similar.  

 For a model of a protein, its true quality is the GDT_TS 

value between it and the native structure of the protein, which 

is called its true GDT_TS score in this paper.  

    Using GDT_TS as the measurement of model similarity, 

the consensus methods are designed as follows: given a set of 

prediction models U and a reference set R, the consensus 

score, the CGDT_TS score, of each model Si is defined as: 

             ∑       (     )                (2) 

where the reference set R can be U or a subset of U. 

CGDT_TS values also range from 0 to 1 with higher value 

means better. 

2) Energy or scoring functions 

Energy or scoring functions are widely used for assessing 

quality of a given predicted protein model. In this study, we 

use 4 state-of-the-art energy functions, OPUS_CA, DFIRE, 

RW, and DOPE, which have been used widely in practice as 

well as in CASP competitions, for comparison. 

OPUS_CA uses a statistics-based potential function based 

on the C-α positions in a model. It mainly consists of seven 

major representative molecular interactions in proteins: 

distance-dependent pairwise energy with orientation 

preference, hydrogen bonding energy, short-range energy, 

packing energy, tri-peptide packing energy, three-body 

energy, and salvation energy [10].  

DFIRE is also a statistics-based scoring function, defined 

based on a reference state, called the distance-scaled, finite 

ideal-gas reference state. A residue-specific all-atom 

potential of mean force from a database of 1011 

nonhomologous (less than 30% homology) protein structures 

with resolution less than 2 A is constructed by using the 

reference state. DFIRE works better with a full atom model 

than only backbone and C (beta) atoms. It belongs to 

distance-dependent, residue-specific potentials [12]. 

RW is a side-chain orientation dependent potential method 

derived from random-walk reference state for protein fold 

selection and structure prediction. It has two major functions: 

1) a side chain orientation-dependent energy function and 2) a 

pairwise distance-dependent atomic statistical potential 

function using an ideal random-walk chain as reference state 

[11].  

Discrete Optimized Protein Energy (DOPE) is an atomic 

distance-dependent statistical potential method derived from 

a sample of native protein structures. Like DFIRE, it is based 

on a reference state that corresponds to non-interacting atoms 

in a homogeneous sphere with the radius dependent on a 

sample native structure. A non-redundant set of 1472 

crystallographic structures was used to derive the DOPE 

potential. It was incorporated into the modeling package 

MODELLER-8 [8]. 

B. Distance Matrix  

A 3D model with n C-α atoms can be converted into an n 

by n distance matrix A, i.e. calculating the Euclidean distance 

of two points in a 3D space, as follows: 
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where       
  ,       

 
 are the 3D coordinates of points i and j, 

respectively.  

 Figure 1 shows an example of the 3D structure and its 

corresponding distance matrix of a protein model. 

        

 
Figure 1. The 3D structure and its corresponding distance matrix of 

a protein model.  

 

C. Principal component analysis (PCA) 

PCA [25] is a widely used statistical method for linear 

dimensionality reduction using orthogonal transformation. 

Normally, the input is normalized to zero mean. Then the 

singular value decomposition is used on the input’s 

covariance matrix to derive eigenvectors and eigenvalues. A 

subset of eigenvectors can be used to project the input to a 

lower-dimensional representation. The eigenvalues indicate 

how much information is retained when reducing the 

dimensionality of the input. 

D. Deep Learning with Sparse Autoencoder 

An autoencoder [26-29] is a Feedforward Neural Network 
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(FFNN) that tries to implement an identity function by setting 

the outputs equal to the inputs in training. Figure 2 shows an 

example. A compressed representation of the input data, as 

represented by the hidden nodes, can be learned by placing 

some restrictions on the network. One way is to force the 

network to use fewer nodes to represent the input by limiting 

the number of nodes in the hidden layer. Each hidden node 

represents a certain feature of the input data. Autoencoders 

can be viewed as nonlinear low-dimensional representations 

as compared to linear low-dimensional representations 

generated by PCA.  In autoencoders, the mapping of the input 

layer to the hidden layer is called encoding and the mapping 

of the hidden layer to the output layer is called decoding. In 

general, an autoencoder of a given structure tries to find the 

weights to minimize the following objective function:  

 

                            
      

        (4) 

where x is the input, W the weights, b the biases, and h the 

function mapping input to output. 

 

  

Figure 2. An example of autoencoder  

 

Another technique of forcing an autoencoder to learn 

compressed representation is sparsity regularization on the 

hidden nodes, i.e., only a small fraction of hidden nodes are 

active for an input. With sparsity regularization, the number 

of hidden nodes can be more than that of the input nodes. 

Specifically, let 
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be the average activation of hidden unit j over a training set of 

size m. The goal here is to make  ̂  approximate a given 

sparsity parameter p. To measure the difference between p 

and  ̂  an extra penalty term can be added to Eq. (4): 
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        (6) 

where    is the number of nodes in the hidden layer and j a 

hidden node. The value reaches minimum of 0 when   ̂    

and goes to infinity as  ̂ approaches 0 or 1. Now, the overall 

cost function becomes 

 

                                   (7) 

where parameter   defines the tradeoff between the mapping 

quality and the sparsity of a network.    

Given the objective function in Eq. (7), its derivatives w.r.t. 

 and   can be derived analytically. Variants of 

backpropagation algorithms can find optimal W and b values 

iteratively on training examples. 

Stacked autoencoders are deep learning networks 

constructed using autoencoders layer-by-layer. Another 

autoencoder can be constructed on top of a trained 

autoencoder by treating the learned feature detectors in the 

hidden layer of the trained autoencoder as visible input layer. 

Autoencoder training is unsupervised learning since only 

unlabeled data are used. The learned weights and biases will 

be used as the starting point for the fine-tuning supervised 

learning stage of deep learning.  

The supervised learning stage adds a label layer, such as a 

softmax classifier, as the highest layer. First, the softmax 

classifier is trained using labeled data. Then the whole 

multilayer deep network is treated as a feedforward network 

and trained using backpropagation, starting with weights and 

biases learned before.   

III. DL-PRO, A NOVEL DEEP LEARNING METHOD FOR 

PROTEIN MODEL QA   

A. Problem formulation 

The QA problem is formulated as a classification problem 

in this paper: given a set of predicted models of a protein, 

classify them into two classes, good (or near-native) and bad. 

For the experiments, we prepare the dataset that contains 

good and bad models, but not intermediate models, as 

follows. Let A be a set of n predicted models for a target 

protein of length l, A={ai, 1 ≤ i ≤ n}, and ai = {Uj, j   [1,l]} 

where Uj is the 3D coordinates of residue j of model ai. Let C 

= {ci, 1 ≤ i ≤ n, 0 ≤ ci ≤ 1} be the true-GDT_TS scores, i.e. the 

true quality, of models in A. Then, the classification label of a 

model is P (for near native) if its true GDT_TS score ci ≥ 0.7, 

and label   (for not near native) if its true GDT_TS score ci < 

0.4.  Note that models with true GDT_TS scores between 0.4 

and 0.7 are dropped from the dataset. Our focus in the paper is 

to separate good models from bad models. 

In this paper, the performance metric of a classification 

algorithm is classification accuracy   :  

  
 

 
                                             (8) 

where v is the number of correctly classified examples and n 

is the total number of examples.  

B. Classification using energy or scoring functions 

For comparison purpose, we adapt existing energy or 

scoring functions for the classification problem defined in the 

previous subsection. The general method, call EC (Energy 

function based Classification), can be applied to existing 

energy or scoring functions, including the four used in this 

paper,  OPUS-CA, DOPE, DFIRE, and RW.  For these four 

scoring functions, smaller values represent better models and 

near-native models have very negative values.  Since the true 

GDT_TS scores of models are in the range [0-1] and larger 

value means better, a linear mapping from energy scores to 

the true GDT_TS scores is first learned from a set of training 

examples and then the thresholds corresponding to good (true 
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GDT_TS score ≥ 0.7) and bad (true GDT_TS score ci < 0.4) 

models are determined. Later, the energy scores of test 

examples are first converted using the linear mapping and 

then their classes are determined using the learned thresholds.  

Figure 3 shows the pseudocode of the EC algorithm. The 

algorithm consists of a training phase, EC_Train, and a test 

phase, EC_Test. Based on the energy scores and 

corresponding true GDT_TS scores of a set of models, which 

constitute the training examples, EC_Train first computes the 

mean and standard deviation of the energy scores for 

normalization, performs linear regression, and then 

determines a threshold to label the positive (good) and 

negative (bad) examples.  

Specifically, EC_Train first flips the sign of energy scores 

from negative to positive so that bigger value means better. 

Then energy scores are normalized to zero mean and unit 

variance. Next, a linear function with parameters Ө1 and Ө2 is 

learned to fit the data of normalized energy scores and 

true-GDTTS scores. Two values, s1 and s2, on the normalized 

energy scores are calculated using the linear function from 

true GDTTS scores 0.4 and 0.7. Finally, the average of s1 and 

s1, s0, is the threshold on energy scores for labeling the two 

classes, good and bad models.   

 

Algorithm: EC(S, G, S’)  

Input:  S and G, energy scores and corresponding true 

GDT_TS scores of a set of training examples (predicted 

models)  

            S’, energy scores of a set of test examples (predicted 

models)  

  

1. [s0, µ, σ] ← EC_Train(S, G) 

2. [L] ← EC_Test(S’, s0, µ, σ) 

 

Output: L, predicted labels of the test set 

 

Function EC_Train(S, G)   

Input:  S and G, energy scores and true GDT_TS scores         

1. S ← -1 * S 

2. µ ← ∑    ⁄ 
    

3. σ ← √
 

 
∑         

     

4. S ←       ⁄  

5. Learn a Linear Regression model with  

G = Ө1 + Ө2*S  

6. Derive s1 & s2 values from G = 0.4 & G = 0.7 

respectively. 

s1 ← (0.4 - Ө1)/ Ө2 

s2 ← (0.7 - Ө1)/ Ө2 

7. s0 ← (s1 + s2)/2 

Return s0, threshold for classification 

             µ, mean of energy scores  

             σ, standard deviation of energy scores 

 

Function EC_Test(S’, s0, µ, σ)  

Input: S’, energy scores of test examples 

           s0, threshold for classification 

           µ, mean for normalization  

           σ, standard deviation for normalization 

1. S’ ←  -1 * S’ 

2. S’ ←         ⁄  

3. If S’ ≥ s0 

L ← P 

else 

L ←   

Return  L, predicted labels of test examples 

             

Figure 3. Pseudocode of the EC (Energy function based 

Classification) algorithm.  

 

On test examples, EC_Test first normalizes the energy 

score of a test example using the training example mean and 

standard deviation. Then, the example gets a positive label if 

the normalized energy score is larger than the threshold s0 and 

gets a negative label otherwise.  

C. New QA methods based on C-α atom distance matrix 

In this section, a new approach based on C-α atoms 

distance matrix and machine learning methods is proposed 

for single-model quality assessment and the identification of 

native-like models. Different from existing energy/scoring 

functions and consensus approaches, this new approach is 

purely geometry based.  Various supervised machine learning 

algorithm can be used in this approach and three algorithms 

based on deep learning networks, support vector machines 

(SVM), and feed-forward neural networks (FFNN), 

respectively, are presented next.   

1) DL-Pro, a new deep learning QA algorithm using C-α 

atom distance matrix 

DL-Pro is a novel QA algorithm based on deep learning 

techniques. For a protein model, DL-Pro uses its distance 

matrix that contains pairwise distances between two residues’ 

C-α atoms in the model, which sometimes is also called 

contact map, as an orientation-independent representation. 

From training examples of distance matrices corresponding to 

good and bad models, DL-Pro learns a stacked sparse 

autoencoder classifier to classify good and bad models. 

 Figure 4 shows the pseudocode of the DL-Pro algorithm. 

DL-Pro consists of a training phase, DL-Pro_Train, and a test 

phase, DL-Pro_Test. Based on the 3D structures and labels of 

a set of training models, DL-Pro_Train first computes the 

distance matrix composed of pairwise distances between 

every pair of  residues’ C-α atoms in the model. Then, the 

distance matrix is normalized to mean 0 and standard 

deviation 1 based on its mean and standard deviation, which 

are kept for future use in testing. Next, PCA is applied to 

reduce the dimension of the distance matrices to generate the 

inputs of training examples. Significant reduction can be 

achieved even when 99% of information is kept, i.e., keeping 

99% variance of the original data set.  

 The top eigenvectors are kept for future use in testing. 

Finally, a deep learning network consisting of one or more 
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layers of sparse autoencoders followed by a softmax classifier 

is trained using the training examples.  

On test examples, DL-Pro_Test first pre-processes a test 

model by calculating its distance matrix, normalizing the 

matrix using learned mean and standard deviation, and 

reducing the matrix dimension using PCA with learned 

eigenvectors. Then, the learned deep learning network 

classifier is used to classify the data.  

 

 

Algorithm: DL-Pro(U, L, U’) 

 

Input:  U and L, 3D structures and corresponding labels of 

training examples  

             U’, 3D structures of test examples   

 

1. [DL_params,V, µ, σ] ← DL-Pro_Train(U, L) 

2.  [L”] ← DL-Pro_Test(U’, DL_params, V, µ, σ) 

 

Output: L”, predicted labels of test examples 

 

Function DL-Pro_Train(U, L)  

Input:  U and L, 3D structures and corresponding labels    

1. M ← S2D (U) 

2. µ ← ∑    ⁄ 
    

3. σ ← √
 

 
∑         

     

4. M ←       ⁄  

5. [M’, V] ← PCA(M) 

6. DL_params ← DL_Train(M’, L) 

Return   DL_params, parameters for deep learning classifier 

             V, eigenvectors for dimension reduction 

             µ, mean for normalization 

             σ, standard deviation for normalization 

 

Function DL-Pro_Test(U, DL_params, V, µ, σ)  

1. M ← S2D(U) 

2. M ←       ⁄  

3. [M’] ← PCA_Test(M, V) 

4. [L’] ← DL(DL_params,M’) 

Return   L’ 

  

Function M = S2D(U)  

    This function uses Eq. (3) to convert the 3D structure of 

model U to distance matrix. Because the matrix is symmetric, 

only its upper triangular part is kept in M. 

 

Function [M’, V] = PCA(M) 

    This function uses singular value decomposition to derive 

eigenvectors, V, and eigenvalues of M. Then, M is converted 

to  M’ in reduced dimensions spanned by a subset of  the most 

significant eigenvectors of V. 

  

Function DL_Train(M’, L)  

This function trains a deep learning network using input 

data M’ and corresponding labels L. The deep learning 

network consists of one or more layers of sparse autoencoders 

and a final layer of a softmax classifier.  

 

Function PCA_Test(M, V)  

This function uses the eigenvectors V to convert M  to a 

reduced size M’. 

 

Function DL(DL_params, M’)  

This function uses the learned deep learning network 

classifier, DL_params, to classify test examples M’.  

 

Figure 4. Pseudocode of the DL-Pro algorithm, a novel QA 

algorithm based on deep learning and model distance matrix of 

pairwise distances between two residues’ C-α atoms in a model. 

 

2) A new Support Vector Machine (SVM) QA algorithm using 

C-α atom distance matrix  

Instead of stacked autoencoder classifiers, other classifiers 

such as SVM can also be used in the approach based on C-α 

atom distance matrix. The algorithm using SVM is very 

similar to the DL-Pro algorithm in Figure 4, with only two 

differences: 1) Step 6 of DL-Pro_Train is replaced by training 

a SVM classifier using the examples to get SVM parameters. 

2) Step 4 of DL-Pro_Test is replaced by SVM classification 

[30]. 

3) A new Feedforward Neural Network (FFNN) algorithm 

using C-α atom distance matrix 

In this algorithm, FFNNs, instead of deep learning 

classifiers or SVMs, are used to perform supervised learning 

and classification. Again, Step 6 of DL-Pro_Train and Step 4 

of DL-Pro_Test are replaced by FFNN training and testing. 

IV. EXPERIMENTAL RESULTS 

1) Data set  

CASP dataset: 20 CASP targets with sequence length from 

93 to 115 are selected. Each target has approximately 200 

predicted models. To reduce redundancy, all models that have 

the same GDT_TS score are removed. All models shorter 

than 93 residues are also removed. To make all examples the 

same input size, all models longer than 93 are truncated at the 

beginning and end, and the middle segment of 93 residues are 

kept. In the end, the dataset has good and bad 1,117 models. 

Protein native structure dataset: The native structures of a 

set of protein with sequence length from 93 to 113 are 

downloaded from Protein Data Bank’s website. These native 

structures are compared with the native structures of the 20 

CASP targets selected. If a native structure is more than 80% 

similar to a CASP target, it is removed to make sure that the 

training set and test set used in our experiments do not 

overlap.  Similarly to the CASP set, structures longer than 93 

are truncated on both ends to get to 93. In the end, the dataset 

has 972 structures. 

For a model of length 93, the size of the upper triangle 

portion of the 93 by 93 distance matrix is 4278, a very high 

dimensional input to a typical classifier. After applying PCA 

with 99% information retained, the input dimension is 

reduced to 358, much more manageable. 
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2) Classification performance of energy functions  

In this experiment, the EC (Energy function based 

Classification) algorithm in Figure 3 is applied to the CASP 

dataset with different energy scores obtained from 

OPUS-CA, DOPE, DFIRE, and RW, respectively. The 

experiment results are from 4-fold cross-validation: the 

dataset is divided into 4 folds, each containing models of 5 

targets. The EC algorithm is run 4 times total, each using 3 

folds as training examples and 1 fold as test examples. The 

final result is the average of the 4 runs.  

Figure 5 shows classification accuracy of the four energy 

function based algorithms. EC-DFIRE achieves the best 

performance, 75% accuracy, while the other three have 

similar results, around 66%.  Table 1 shows the confusion 

matrix of EC-DFIRE. Positive examples are predicted very 

accurately, 660 out of 740, 89%, whereas prediction accuracy 

on negative examples is much lower, 182 out of 375, 49%.  

 

 

 
Figure 5. Classification performance of energy function based 

classification algorithms. The EC algorithm in Figure 3 is applied to 

the CASP dataset with different energy scores obtained from 

OPUS-CA, DOPE, DFIRE, and RW, respectively. 

 

Table 1. Confusion matrix of EC-DFIRE on the CASP dataset 

 Predicted 
Positive 

Predicted 
Negative 

Actual Positive 660 82 
Actual Negative 193 182 

 

 

3) Classification performance of QA algorithms based on C-α 

atom distance matrix: DL-Pro, SVM, and FFNN 

In this experiment, the CASP dataset is again divided into 4 

folds, each containing models of 5 targets, and the results of 

4-fold cross-validation are reported. The SVM and FFNN 

algorithms only use the CASP dataset, whereas DL-Pro uses 

something extra, the protein native structure dataset, in its 

unsupervised autoencoder learning stage.  

For the FFNN algorithm, 1 hidden layer networks with 

different hidden units (25, 50, 100, 150, 200, and 250) were 

tried. For the DL-Pro algorithm, 1 and 2 hidden layer 

networks were tried. For 1-hidden-layer configurations 

(referred to as DL-Pro1), various numbers of hidden units 

(50, 100, 150, 200, and 250) were tried. For 2-hidden-layer 

configurations (referred to as DL-Pro2), the first hidden layer 

is fixed at 300 hidden units, while the 2nd hidden layer has 

various numbers of hidden units (100, 200, 300, 400, and 

500). Other parameters are listed in Table 2. For each 

configuration, DL-Pro and FFNN ran for 10 times from 

random initial weights and their average results are reported.    

Figure 6 shows classification accuracy of DL-Pro1 

(DL-Pro with one-hidden-layer configurations), DL-Pro2 

(DL-Pro with two-hidden-layer configurations), and FFNN 

with various hidden units. Their performance changes 

slightly as the number of hidden units changes. DL-Pro1 with 

100 hidden units yields the best result with accuracy of 0.78. 

Figure 7 compares classification performance of 

EC-DFIRE (the best of energy functions), SVM, FFNN, 

DL-Pro1 and DL-Pro2. SVM with quadratic kernel function 

and DL-Pro algorithms are better than FFNN. Both DL-Pro1 

and DL-Pro2 are slightly better than EC-DFIRE, with 

DL-Pro1 achieving 78% accuracy, the best overall. The 

performance difference between FFNN and DL-Pro shows 

that deep learning is able to learn better features from both 

labeled and unlabeled data to achieve improved performance 

over traditional neural networks. 

Table 3 shows the confusion matrix of SVM with a pretty 

low number of False Negative predictions.  Table 4 shows the 

confusion matrix of FFNN with 1 hidden layer of 150 hidden 

units. Its accuracy is 81% on positive examples and 47% on 

negative examples. Finally, Table 5 shows the confusion 

matrix of DL-Pro1 with 1 hidden layer of 100 hidden units. Its 

accuracy on positive examples is excellent, 95%, but not so 

good on negative examples, only 45%.  

 

 

 

 
Figure 6. Classification performance of DL-Pro1 (DL-Pro with 

one-hidden-layer configurations), DL-Pro2 (DL-Pro with 

two-hidden-layer configurations), and FFNN with various hidden 

units.  
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Table 2. Parameters of sparse autoencoder training in the DL-Pro 

algorithm used in the experiments. 

Parameter Value 

Sparsity 0.1 
Weight decay λ 3e-3 
Weight of sparsity penalty β 3 
Maximum number of iterations 500 
Optimization method ‘lbfgs’ 

 

 

 
Table 3. Confusion matrix of the SVM QA algorithm based on C-α 

atom distance matrix 

 Predicted 
Positive 

Predicted 
Negative 

Actual Positive 740 2 
Actual Negative 263 112 

 

 

 

Table 4. Confusion matrix of FFNN with 1 hidden layer of 150 

hidden units. 

 Predicted 
Positive 

Predicted 
Negative 

Actual Positive 604 138 
Actual Negative 198 177 

 

 

 

Table 5. Confusion matrix of DL-Pro1 with 1 hidden layer of 100 

hidden units. 

 Predicted 
Positive 

Predicted 
Negative 

Actual Positive 704 38 
Actual Negative 207 168 

 

 

 

 
Figure 7. Classification performance of EC-DFIRE (the best of 

energy functions), SVM, FFNN, DL-Pro1 and DL-Pro2. 

 

 

V. SUMMARY 

This paper presents a new approach based on C-α atoms 

distance matrix and machine learning methods for 

single-model QA. To the best of our knowledge, this is the 

first attempt to use purely geometric information of a model 

and deep learning for single-model QA. Three new QA 

algorithms, DL-Pro, FFNN, and SVM using different 

learning methods have been proposed within the common 

framework.  

Experiments using selected CASP models and targets show 

very promising results. Compared to traditional feedforward 

neural networks, deep learning is better, as demonstrated by 

the performance difference between DL-Pro and FFNN. Deep 

learning was able to learn useful features representing good 

models and DL-Pro achieved the best results, outperforming 

state-of-the-art energy/scoring functions, including DFIRE, 

OPUS-CA, DOPE, and RW.  Yet, the information used by 

DL-Pro is far less than other single-model QA methods. With 

additional model information, DL-Pro is expected to improve 

further. 
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