

Abstract — Computational protein structure prediction is

very important for many applications in bioinformatics. In the

process of predicting protein structures, it is essential to

accurately assess the quality of generated models. Although

many single-model quality assessment (QA) methods have been

developed, their accuracy is not high enough for most real

applications. In this paper, a new approach based on C-α atoms

distance matrix and machine learning methods is proposed for

single-model QA and the identification of native-like models.

Different from existing energy/scoring functions and consensus

approaches, this new approach is purely geometry based.

Furthermore, a novel algorithm based on deep learning

techniques, called DL-Pro, is proposed. For a protein model,

DL-Pro uses its distance matrix that contains pairwise distances

between two residues’ C-α atoms in the model, which sometimes

is also called contact map, as an orientation-independent

representation. From training examples of distance matrices

corresponding to good and bad models, DL-Pro learns a stacked

autoencoder network as a classifier. In experiments on selected

targets from the Critical Assessment of Structure Prediction

(CASP) competition, DL-Pro obtained promising results,

outperforming state-of-the-art energy/scoring functions,

including OPUS-CA, DOPE, DFIRE, and RW.

Keywords: deep learning, stacked autoencoder, protein model

quality assessment, energy and scoring function, classification,

Critical Assessment of Structure Prediction (CASP)

I. INTRODUCTION

nowledge of three-dimensional (3D) structure of a

protein is critical for understanding its function,

mutagenesis experiments and drug developments. Several

experimental methods such as the X-ray crystallography or

Nuclear Magnetic Resonance (NMR) can help determine a

good 3D structure but they are very time-consuming and

expensive [1]. To address those limitations, computational

protein structure prediction methods have been developed,

including Modeller [2], HHpred [3], I-TASSER [4], Robetta

[5], and MUFOLD [6]. The process of predicting protein

structure commonly involves generating a large number of

models, from which good models are selected using some

quality assessment method.

Although many protein model quality assessment (QA)

methods have been developed, such as MUFOLD-WQA [7],

QMEANClust [8] MULTICOM [9], OPUS_CA [10], RW

[11], etc, they all have various limitations and are not

applicable to real applications. The Critical Assessment of

Son P. Nguyen, Yi Shang, and Dong Xu are with the Department of

Computer Science, University of Missouri, Columbia, MO 65211 USA.

Dong Xu is also with the Christopher S. Bond Life Science Center,

University of Missouri at Columbia. (e-mail: spnf2f@mail.missouri.edu,

shangy@missouri.edu, and xudong@missouri.edu).

This work was supported in part by NIH under Grant R01-GM100701.

Structure Prediction (CASP) is a biennial world-wide event in

the structure prediction community to assess the current

protein modeling techniques, including QA methods. In

CASPs, different prediction software programs from various

research groups were given unknown proteins to predict their

structures. State-of-the-art single-model quality assessment

methods include various energy functions or scoring

functions, such as OPUS_CA [10], DFIRE [12], RW [11],

DOPE [13], etc. In CASP competitions [14,15], the accuracy

of single-model QA methods has been improving

consistently, but still not very high in most cases. In contrast,

consensus QA methods, such as MUFOLD-WQA and

United3D, which are based on structure similarity, performed

well on QA tasks, much better than single-model QA

methods [14, 15]. The drawback of consensus QA methods is

that they require a pool of diverse models to work well, which

is not always available. More importantly, they cannot

evaluate the quality of a single protein model, which is a very

common task in protein predictions and other applications.

In this paper, a novel QA method based on deep learning

techniques, called DL-Pro, is proposed for single-model

quality assessment, specifically the identification of

native-like models. Different from existing energy/scoring

functions and consensus approaches, DL-Pro is a purely

geometry based method. For a protein model, DL-Pro uses its

distance matrix that contains pairwise distances between two

residues’ C-α atoms in the model, which sometimes is also

called contact map, as an orientation-independent

representation. From training examples of distance matrices

corresponding to good and bad models, DL-Pro learns a

stacked autoencoder network as a classifier. In experiments

using CASP datasets, DL-Pro is compared with existing

state-of-the-art energy/scoring functions, including

OPUS-CA, DOPE, DFIRE, and RW, and shows

improvement in prediction accuracy.

This paper is organized as follows. Section II introduces

the basics of major techniques used in the proposed method

and some related works. Section III presents the new method

DL-Pro. Section IV presents experimental results on CASP

datasets. Finally, Section V concludes the paper.

II. BASICS OF KEY TECHNIQUES AND RELATED WORK

A. Protein Model Quality Evaluation

Protein model quality assessment methods can be divided

into two main approaches: energy or scoring functions and

consensus methods [16]. Basically, energy or scoring

functions are designed based on either physical properties at

molecule levels [17, 18], such as thermodynamic equilibrium

or statistics based properties derived based on information

DL-PRO: A Novel Deep Learning Method for Protein Model Quality

Assessment

Son P. Nguyen, Yi Shang, and Dong Xu

K

2014 International Joint Conference on Neural Networks (IJCNN)
July 6-11, 2014, Beijing, China

978-1-4799-1484-5/14/$31.00 ©2014 IEEE 2071

from known structures [19, 20]. On the other hand, consensus

methods are based on the idea that given a pool of predicted

models, a model that is more similar to other models is closer

to the native structure [21].

1) Consensus methods based on structure similarity

A vital part of consensus methods is the measurement of

similarity between two 3-D structures. There are three

commonly used metrics: the Root-Mean-Squared Deviation

(RMSD) Score, Template Modeling Score (TM-score), and

Global Distance Test Total Score (GDT_TS) [22, 23, 24].

Since CASP data is used in this study and GDT-TS is a

main metric used in the official CASP evaluation, we use

GDT_TS as our main metric of evaluation. It is calculated by

(1) superimposing two models over each other and (2)

averaging the percentage of corresponding C-α atoms

between two models within a certain cutoff. The GDT-TS

value between two models is computed as follows:

 (1)

where Ui and Uj are two 3D models and Pd is the percentage

that the C-α atoms in Ui is within a defined cutoff distance d,

 { } from the corresponding C-α atoms in Uj .
GDT_TS values have the range of [0, 1] with higher value

means two structures are more similar.

 For a model of a protein, its true quality is the GDT_TS

value between it and the native structure of the protein, which

is called its true GDT_TS score in this paper.

 Using GDT_TS as the measurement of model similarity,

the consensus methods are designed as follows: given a set of

prediction models U and a reference set R, the consensus

score, the CGDT_TS score, of each model Si is defined as:

 ∑ () (2)

where the reference set R can be U or a subset of U.

CGDT_TS values also range from 0 to 1 with higher value

means better.

2) Energy or scoring functions

Energy or scoring functions are widely used for assessing

quality of a given predicted protein model. In this study, we

use 4 state-of-the-art energy functions, OPUS_CA, DFIRE,

RW, and DOPE, which have been used widely in practice as

well as in CASP competitions, for comparison.

OPUS_CA uses a statistics-based potential function based

on the C-α positions in a model. It mainly consists of seven

major representative molecular interactions in proteins:

distance-dependent pairwise energy with orientation

preference, hydrogen bonding energy, short-range energy,

packing energy, tri-peptide packing energy, three-body

energy, and salvation energy [10].

DFIRE is also a statistics-based scoring function, defined

based on a reference state, called the distance-scaled, finite

ideal-gas reference state. A residue-specific all-atom

potential of mean force from a database of 1011

nonhomologous (less than 30% homology) protein structures

with resolution less than 2 A is constructed by using the

reference state. DFIRE works better with a full atom model

than only backbone and C (beta) atoms. It belongs to

distance-dependent, residue-specific potentials [12].

RW is a side-chain orientation dependent potential method

derived from random-walk reference state for protein fold

selection and structure prediction. It has two major functions:

1) a side chain orientation-dependent energy function and 2) a

pairwise distance-dependent atomic statistical potential

function using an ideal random-walk chain as reference state

[11].

Discrete Optimized Protein Energy (DOPE) is an atomic

distance-dependent statistical potential method derived from

a sample of native protein structures. Like DFIRE, it is based

on a reference state that corresponds to non-interacting atoms

in a homogeneous sphere with the radius dependent on a

sample native structure. A non-redundant set of 1472

crystallographic structures was used to derive the DOPE

potential. It was incorporated into the modeling package

MODELLER-8 [8].

B. Distance Matrix

A 3D model with n C-α atoms can be converted into an n

by n distance matrix A, i.e. calculating the Euclidean distance

of two points in a 3D space, as follows:

 √(

)

 (

)

 (3)

where
 ,

 are the 3D coordinates of points i and j,

respectively.

 Figure 1 shows an example of the 3D structure and its

corresponding distance matrix of a protein model.

Figure 1. The 3D structure and its corresponding distance matrix of

a protein model.

C. Principal component analysis (PCA)

PCA [25] is a widely used statistical method for linear

dimensionality reduction using orthogonal transformation.

Normally, the input is normalized to zero mean. Then the

singular value decomposition is used on the input’s

covariance matrix to derive eigenvectors and eigenvalues. A

subset of eigenvectors can be used to project the input to a

lower-dimensional representation. The eigenvalues indicate

how much information is retained when reducing the

dimensionality of the input.

D. Deep Learning with Sparse Autoencoder

An autoencoder [26-29] is a Feedforward Neural Network

2072

(FFNN) that tries to implement an identity function by setting

the outputs equal to the inputs in training. Figure 2 shows an

example. A compressed representation of the input data, as

represented by the hidden nodes, can be learned by placing

some restrictions on the network. One way is to force the

network to use fewer nodes to represent the input by limiting

the number of nodes in the hidden layer. Each hidden node

represents a certain feature of the input data. Autoencoders

can be viewed as nonlinear low-dimensional representations

as compared to linear low-dimensional representations

generated by PCA. In autoencoders, the mapping of the input

layer to the hidden layer is called encoding and the mapping

of the hidden layer to the output layer is called decoding. In

general, an autoencoder of a given structure tries to find the

weights to minimize the following objective function:

 (4)

where x is the input, W the weights, b the biases, and h the

function mapping input to output.

Figure 2. An example of autoencoder

Another technique of forcing an autoencoder to learn

compressed representation is sparsity regularization on the

hidden nodes, i.e., only a small fraction of hidden nodes are

active for an input. With sparsity regularization, the number

of hidden nodes can be more than that of the input nodes.

Specifically, let

 ̂

∑ [

]

 (5)

be the average activation of hidden unit j over a training set of

size m. The goal here is to make ̂ approximate a given

sparsity parameter p. To measure the difference between p

and ̂ an extra penalty term can be added to Eq. (4):

 ∑

 ̂

 ̂

 (6)

where is the number of nodes in the hidden layer and j a

hidden node. The value reaches minimum of 0 when ̂

and goes to infinity as ̂ approaches 0 or 1. Now, the overall

cost function becomes

 (7)

where parameter defines the tradeoff between the mapping

quality and the sparsity of a network.

Given the objective function in Eq. (7), its derivatives w.r.t.

 and can be derived analytically. Variants of

backpropagation algorithms can find optimal W and b values

iteratively on training examples.

Stacked autoencoders are deep learning networks

constructed using autoencoders layer-by-layer. Another

autoencoder can be constructed on top of a trained

autoencoder by treating the learned feature detectors in the

hidden layer of the trained autoencoder as visible input layer.

Autoencoder training is unsupervised learning since only

unlabeled data are used. The learned weights and biases will

be used as the starting point for the fine-tuning supervised

learning stage of deep learning.

The supervised learning stage adds a label layer, such as a

softmax classifier, as the highest layer. First, the softmax

classifier is trained using labeled data. Then the whole

multilayer deep network is treated as a feedforward network

and trained using backpropagation, starting with weights and

biases learned before.

III. DL-PRO, A NOVEL DEEP LEARNING METHOD FOR

PROTEIN MODEL QA

A. Problem formulation

The QA problem is formulated as a classification problem

in this paper: given a set of predicted models of a protein,

classify them into two classes, good (or near-native) and bad.

For the experiments, we prepare the dataset that contains

good and bad models, but not intermediate models, as

follows. Let A be a set of n predicted models for a target

protein of length l, A={ai, 1 ≤ i ≤ n}, and ai = {Uj, j [1,l]}

where Uj is the 3D coordinates of residue j of model ai. Let C

= {ci, 1 ≤ i ≤ n, 0 ≤ ci ≤ 1} be the true-GDT_TS scores, i.e. the

true quality, of models in A. Then, the classification label of a

model is P (for near native) if its true GDT_TS score ci ≥ 0.7,

and label (for not near native) if its true GDT_TS score ci <

0.4. Note that models with true GDT_TS scores between 0.4

and 0.7 are dropped from the dataset. Our focus in the paper is

to separate good models from bad models.

In this paper, the performance metric of a classification

algorithm is classification accuracy :

 (8)

where v is the number of correctly classified examples and n

is the total number of examples.

B. Classification using energy or scoring functions

For comparison purpose, we adapt existing energy or

scoring functions for the classification problem defined in the

previous subsection. The general method, call EC (Energy

function based Classification), can be applied to existing

energy or scoring functions, including the four used in this

paper, OPUS-CA, DOPE, DFIRE, and RW. For these four

scoring functions, smaller values represent better models and

near-native models have very negative values. Since the true

GDT_TS scores of models are in the range [0-1] and larger

value means better, a linear mapping from energy scores to

the true GDT_TS scores is first learned from a set of training

examples and then the thresholds corresponding to good (true

2073

GDT_TS score ≥ 0.7) and bad (true GDT_TS score ci < 0.4)

models are determined. Later, the energy scores of test

examples are first converted using the linear mapping and

then their classes are determined using the learned thresholds.

Figure 3 shows the pseudocode of the EC algorithm. The

algorithm consists of a training phase, EC_Train, and a test

phase, EC_Test. Based on the energy scores and

corresponding true GDT_TS scores of a set of models, which

constitute the training examples, EC_Train first computes the

mean and standard deviation of the energy scores for

normalization, performs linear regression, and then

determines a threshold to label the positive (good) and

negative (bad) examples.

Specifically, EC_Train first flips the sign of energy scores

from negative to positive so that bigger value means better.

Then energy scores are normalized to zero mean and unit

variance. Next, a linear function with parameters Ө1 and Ө2 is

learned to fit the data of normalized energy scores and

true-GDTTS scores. Two values, s1 and s2, on the normalized

energy scores are calculated using the linear function from

true GDTTS scores 0.4 and 0.7. Finally, the average of s1 and

s1, s0, is the threshold on energy scores for labeling the two

classes, good and bad models.

Algorithm: EC(S, G, S’)

Input: S and G, energy scores and corresponding true

GDT_TS scores of a set of training examples (predicted

models)

 S’, energy scores of a set of test examples (predicted

models)

1. [s0, µ, σ] ← EC_Train(S, G)

2. [L] ← EC_Test(S’, s0, µ, σ)

Output: L, predicted labels of the test set

Function EC_Train(S, G)

Input: S and G, energy scores and true GDT_TS scores

1. S ← -1 * S

2. µ ← ∑ ⁄

3. σ ← √

∑

4. S ← ⁄

5. Learn a Linear Regression model with

G = Ө1 + Ө2*S

6. Derive s1 & s2 values from G = 0.4 & G = 0.7

respectively.

s1 ← (0.4 - Ө1)/ Ө2

s2 ← (0.7 - Ө1)/ Ө2

7. s0 ← (s1 + s2)/2

Return s0, threshold for classification

 µ, mean of energy scores

 σ, standard deviation of energy scores

Function EC_Test(S’, s0, µ, σ)

Input: S’, energy scores of test examples

 s0, threshold for classification

 µ, mean for normalization

 σ, standard deviation for normalization

1. S’ ← -1 * S’

2. S’ ← ⁄

3. If S’ ≥ s0

L ← P

else

L ←

Return L, predicted labels of test examples

Figure 3. Pseudocode of the EC (Energy function based

Classification) algorithm.

On test examples, EC_Test first normalizes the energy

score of a test example using the training example mean and

standard deviation. Then, the example gets a positive label if

the normalized energy score is larger than the threshold s0 and

gets a negative label otherwise.

C. New QA methods based on C-α atom distance matrix

In this section, a new approach based on C-α atoms

distance matrix and machine learning methods is proposed

for single-model quality assessment and the identification of

native-like models. Different from existing energy/scoring

functions and consensus approaches, this new approach is

purely geometry based. Various supervised machine learning

algorithm can be used in this approach and three algorithms

based on deep learning networks, support vector machines

(SVM), and feed-forward neural networks (FFNN),

respectively, are presented next.

1) DL-Pro, a new deep learning QA algorithm using C-α

atom distance matrix

DL-Pro is a novel QA algorithm based on deep learning

techniques. For a protein model, DL-Pro uses its distance

matrix that contains pairwise distances between two residues’

C-α atoms in the model, which sometimes is also called

contact map, as an orientation-independent representation.

From training examples of distance matrices corresponding to

good and bad models, DL-Pro learns a stacked sparse

autoencoder classifier to classify good and bad models.

 Figure 4 shows the pseudocode of the DL-Pro algorithm.

DL-Pro consists of a training phase, DL-Pro_Train, and a test

phase, DL-Pro_Test. Based on the 3D structures and labels of

a set of training models, DL-Pro_Train first computes the

distance matrix composed of pairwise distances between

every pair of residues’ C-α atoms in the model. Then, the

distance matrix is normalized to mean 0 and standard

deviation 1 based on its mean and standard deviation, which

are kept for future use in testing. Next, PCA is applied to

reduce the dimension of the distance matrices to generate the

inputs of training examples. Significant reduction can be

achieved even when 99% of information is kept, i.e., keeping

99% variance of the original data set.

 The top eigenvectors are kept for future use in testing.

Finally, a deep learning network consisting of one or more

2074

layers of sparse autoencoders followed by a softmax classifier

is trained using the training examples.

On test examples, DL-Pro_Test first pre-processes a test

model by calculating its distance matrix, normalizing the

matrix using learned mean and standard deviation, and

reducing the matrix dimension using PCA with learned

eigenvectors. Then, the learned deep learning network

classifier is used to classify the data.

Algorithm: DL-Pro(U, L, U’)

Input: U and L, 3D structures and corresponding labels of

training examples

 U’, 3D structures of test examples

1. [DL_params,V, µ, σ] ← DL-Pro_Train(U, L)

2. [L”] ← DL-Pro_Test(U’, DL_params, V, µ, σ)

Output: L”, predicted labels of test examples

Function DL-Pro_Train(U, L)

Input: U and L, 3D structures and corresponding labels

1. M ← S2D (U)

2. µ ← ∑ ⁄

3. σ ← √

∑

4. M ← ⁄

5. [M’, V] ← PCA(M)

6. DL_params ← DL_Train(M’, L)

Return DL_params, parameters for deep learning classifier

 V, eigenvectors for dimension reduction

 µ, mean for normalization

 σ, standard deviation for normalization

Function DL-Pro_Test(U, DL_params, V, µ, σ)

1. M ← S2D(U)

2. M ← ⁄

3. [M’] ← PCA_Test(M, V)

4. [L’] ← DL(DL_params,M’)

Return L’

Function M = S2D(U)

 This function uses Eq. (3) to convert the 3D structure of

model U to distance matrix. Because the matrix is symmetric,

only its upper triangular part is kept in M.

Function [M’, V] = PCA(M)

 This function uses singular value decomposition to derive

eigenvectors, V, and eigenvalues of M. Then, M is converted

to M’ in reduced dimensions spanned by a subset of the most

significant eigenvectors of V.

Function DL_Train(M’, L)

This function trains a deep learning network using input

data M’ and corresponding labels L. The deep learning

network consists of one or more layers of sparse autoencoders

and a final layer of a softmax classifier.

Function PCA_Test(M, V)

This function uses the eigenvectors V to convert M to a

reduced size M’.

Function DL(DL_params, M’)

This function uses the learned deep learning network

classifier, DL_params, to classify test examples M’.

Figure 4. Pseudocode of the DL-Pro algorithm, a novel QA

algorithm based on deep learning and model distance matrix of

pairwise distances between two residues’ C-α atoms in a model.

2) A new Support Vector Machine (SVM) QA algorithm using

C-α atom distance matrix

Instead of stacked autoencoder classifiers, other classifiers

such as SVM can also be used in the approach based on C-α

atom distance matrix. The algorithm using SVM is very

similar to the DL-Pro algorithm in Figure 4, with only two

differences: 1) Step 6 of DL-Pro_Train is replaced by training

a SVM classifier using the examples to get SVM parameters.

2) Step 4 of DL-Pro_Test is replaced by SVM classification

[30].

3) A new Feedforward Neural Network (FFNN) algorithm

using C-α atom distance matrix

In this algorithm, FFNNs, instead of deep learning

classifiers or SVMs, are used to perform supervised learning

and classification. Again, Step 6 of DL-Pro_Train and Step 4

of DL-Pro_Test are replaced by FFNN training and testing.

IV. EXPERIMENTAL RESULTS

1) Data set

CASP dataset: 20 CASP targets with sequence length from

93 to 115 are selected. Each target has approximately 200

predicted models. To reduce redundancy, all models that have

the same GDT_TS score are removed. All models shorter

than 93 residues are also removed. To make all examples the

same input size, all models longer than 93 are truncated at the

beginning and end, and the middle segment of 93 residues are

kept. In the end, the dataset has good and bad 1,117 models.

Protein native structure dataset: The native structures of a

set of protein with sequence length from 93 to 113 are

downloaded from Protein Data Bank’s website. These native

structures are compared with the native structures of the 20

CASP targets selected. If a native structure is more than 80%

similar to a CASP target, it is removed to make sure that the

training set and test set used in our experiments do not

overlap. Similarly to the CASP set, structures longer than 93

are truncated on both ends to get to 93. In the end, the dataset

has 972 structures.

For a model of length 93, the size of the upper triangle

portion of the 93 by 93 distance matrix is 4278, a very high

dimensional input to a typical classifier. After applying PCA

with 99% information retained, the input dimension is

reduced to 358, much more manageable.

2075

2) Classification performance of energy functions

In this experiment, the EC (Energy function based

Classification) algorithm in Figure 3 is applied to the CASP

dataset with different energy scores obtained from

OPUS-CA, DOPE, DFIRE, and RW, respectively. The

experiment results are from 4-fold cross-validation: the

dataset is divided into 4 folds, each containing models of 5

targets. The EC algorithm is run 4 times total, each using 3

folds as training examples and 1 fold as test examples. The

final result is the average of the 4 runs.

Figure 5 shows classification accuracy of the four energy

function based algorithms. EC-DFIRE achieves the best

performance, 75% accuracy, while the other three have

similar results, around 66%. Table 1 shows the confusion

matrix of EC-DFIRE. Positive examples are predicted very

accurately, 660 out of 740, 89%, whereas prediction accuracy

on negative examples is much lower, 182 out of 375, 49%.

Figure 5. Classification performance of energy function based

classification algorithms. The EC algorithm in Figure 3 is applied to

the CASP dataset with different energy scores obtained from

OPUS-CA, DOPE, DFIRE, and RW, respectively.

Table 1. Confusion matrix of EC-DFIRE on the CASP dataset

 Predicted
Positive

Predicted
Negative

Actual Positive 660 82
Actual Negative 193 182

3) Classification performance of QA algorithms based on C-α

atom distance matrix: DL-Pro, SVM, and FFNN

In this experiment, the CASP dataset is again divided into 4

folds, each containing models of 5 targets, and the results of

4-fold cross-validation are reported. The SVM and FFNN

algorithms only use the CASP dataset, whereas DL-Pro uses

something extra, the protein native structure dataset, in its

unsupervised autoencoder learning stage.

For the FFNN algorithm, 1 hidden layer networks with

different hidden units (25, 50, 100, 150, 200, and 250) were

tried. For the DL-Pro algorithm, 1 and 2 hidden layer

networks were tried. For 1-hidden-layer configurations

(referred to as DL-Pro1), various numbers of hidden units

(50, 100, 150, 200, and 250) were tried. For 2-hidden-layer

configurations (referred to as DL-Pro2), the first hidden layer

is fixed at 300 hidden units, while the 2nd hidden layer has

various numbers of hidden units (100, 200, 300, 400, and

500). Other parameters are listed in Table 2. For each

configuration, DL-Pro and FFNN ran for 10 times from

random initial weights and their average results are reported.

Figure 6 shows classification accuracy of DL-Pro1

(DL-Pro with one-hidden-layer configurations), DL-Pro2

(DL-Pro with two-hidden-layer configurations), and FFNN

with various hidden units. Their performance changes

slightly as the number of hidden units changes. DL-Pro1 with

100 hidden units yields the best result with accuracy of 0.78.

Figure 7 compares classification performance of

EC-DFIRE (the best of energy functions), SVM, FFNN,

DL-Pro1 and DL-Pro2. SVM with quadratic kernel function

and DL-Pro algorithms are better than FFNN. Both DL-Pro1

and DL-Pro2 are slightly better than EC-DFIRE, with

DL-Pro1 achieving 78% accuracy, the best overall. The

performance difference between FFNN and DL-Pro shows

that deep learning is able to learn better features from both

labeled and unlabeled data to achieve improved performance

over traditional neural networks.

Table 3 shows the confusion matrix of SVM with a pretty

low number of False Negative predictions. Table 4 shows the

confusion matrix of FFNN with 1 hidden layer of 150 hidden

units. Its accuracy is 81% on positive examples and 47% on

negative examples. Finally, Table 5 shows the confusion

matrix of DL-Pro1 with 1 hidden layer of 100 hidden units. Its

accuracy on positive examples is excellent, 95%, but not so

good on negative examples, only 45%.

Figure 6. Classification performance of DL-Pro1 (DL-Pro with

one-hidden-layer configurations), DL-Pro2 (DL-Pro with

two-hidden-layer configurations), and FFNN with various hidden

units.

0.6665 0.6578 0.6755

0.75

0.5
0.55

0.6
0.65

0.7
0.75

0.8

A
cc

u
ra

cy

2076

Table 2. Parameters of sparse autoencoder training in the DL-Pro

algorithm used in the experiments.

Parameter Value

Sparsity 0.1
Weight decay λ 3e-3
Weight of sparsity penalty β 3
Maximum number of iterations 500
Optimization method ‘lbfgs’

Table 3. Confusion matrix of the SVM QA algorithm based on C-α

atom distance matrix

 Predicted
Positive

Predicted
Negative

Actual Positive 740 2
Actual Negative 263 112

Table 4. Confusion matrix of FFNN with 1 hidden layer of 150

hidden units.

 Predicted
Positive

Predicted
Negative

Actual Positive 604 138
Actual Negative 198 177

Table 5. Confusion matrix of DL-Pro1 with 1 hidden layer of 100

hidden units.

 Predicted
Positive

Predicted
Negative

Actual Positive 704 38
Actual Negative 207 168

Figure 7. Classification performance of EC-DFIRE (the best of

energy functions), SVM, FFNN, DL-Pro1 and DL-Pro2.

V. SUMMARY

This paper presents a new approach based on C-α atoms

distance matrix and machine learning methods for

single-model QA. To the best of our knowledge, this is the

first attempt to use purely geometric information of a model

and deep learning for single-model QA. Three new QA

algorithms, DL-Pro, FFNN, and SVM using different

learning methods have been proposed within the common

framework.

Experiments using selected CASP models and targets show

very promising results. Compared to traditional feedforward

neural networks, deep learning is better, as demonstrated by

the performance difference between DL-Pro and FFNN. Deep

learning was able to learn useful features representing good

models and DL-Pro achieved the best results, outperforming

state-of-the-art energy/scoring functions, including DFIRE,

OPUS-CA, DOPE, and RW. Yet, the information used by

DL-Pro is far less than other single-model QA methods. With

additional model information, DL-Pro is expected to improve

further.

ACKNOWLEDGMENT

The authors would like to thank valuable help and

suggestion from Dr. Ioan Kosztin, Frank Howard, Dan Wang,

Yan Chen, Chao Fang, and Zhiquan He.

REFERENCES

[1] M. S. Johnson, N. Srinivasan, R. Sowdhamini, and T. L. Blundell,

"Knowledge-based protein modeling," Crit Rev Biochem Mol Biol,

vol. 29, pp. 1-68, 1994.

[2] A. Sali and T.L. Blundell, "Comparative protein modelling by

satisfaction of spatial restraints," J Mol Biol, 234(3):779-815, Dec 5

1993.

[3] J. Söding, A. Biegert, and A. N. Lupas, "The HHpred interactive server

for protein homology detection and structure prediction," Nucleic

Acids Res, 33(Web Server issue):W244-8, Jul 1 2005.

[4] Y. Zhang, "I-TASSER server for protein 3D structure prediction,"

BMC Bioinformatics, 9:40, Jan 23 2008.

[5] D. E. Kim, D. Chivian, and D. Baker, "Protein structure prediction and

analysis using the Robetta server," Nucleic Acids Res, 32(Web Server

issue):W526-31, Jul 1 2004.

[6] J. Zhang, Q. Wang, B. Barz, Z. He, I. Kosztin, Y. Shang, and D. Xu,

"MUFOLD: A new solution for protein 3D structure prediction,"

Proteins, 78(5): 1137–1152, April 2010.

[7] Q. Wang, K. Vantasin, D. Xu, and Y. Shang, "MUFOLD-WQA: A

New Selective Consensus Method for Quality Assessment in Protein

Structure Prediction," Proteins, 79(Suppl 10): 185–195, 2011.

[8] P. Benkert, S. C. Tosatto, and T. Schwede, "Global and local model

quality estimation at CASP8 using the scoring functions QMEAN and

QMEANclust," Proteins, 77 Suppl 9:173-80, 2009.

[9] J. Cheng, Z. Wang, A. N. Tegge, and J. Eickholt, "Prediction of global

and local quality of CASP8 models by MULTICOM series," Proteins,

77 Suppl 9:181-4, 2009.

[10] Y. Wu, M. Lu, M. Chen, J. Li and J. Ma, "OPUS-Ca: A

knowledge-based potential function requiring only Ca positions,"

Protein Science, vol. 16, no. 7, pp. 1449-1463, 2007.

[11] J. Zhang and Y. Zhang, "A Novel Side-Chain Orientation Dependent

Potential Derived from Random-Walk Reference State for Protein Fold

Selection and Structure Prediction," PLoS ONE, vol. 5, no. 10, pp.

1-13, 2010.

[12] H. Zhou and Y. Zhou, "Distance-scaled, finite ideal-gas reference state

improves structure-derived potentials of mean force for structure

selection and stability prediction," Protein Sci, 11(11):2714-26, Nov

2002.

0.75

0.7

0.78

0.76
0.77

0.66

0.68

0.7

0.72

0.74

0.76

0.78

0.8

A
cc

u
ra

cy

2077

[13] M. Y. Shen and A. Sali, "Statistical potential for assessment and

prediction of protein structures," Protein Sci, 15(11):2507-24, Nov

2006.

[14] A. Kryshtafovych, K. Fidelis, and A. Tramontano, "Evaluation of

model quality predictions in CASP9," Proteins, 79 (Suppl 10):91–106,

2011.

[15] A. Kryshtafovych1, A. Barbato, K. Fidelis1, B. Monastyrskyy, T.

Schwede, and A. Tramontano, "Assessment of the assessment:

Evaluation of the model quality estimates in CASP10," Proteins:

Structure, Function, and Bioinformatics. Aug 2013.

[16] J. Skolnick, "In quest of an empirical potential for protein structure,"

Curr Opin Struct Biol, vol. 16, pp. 166-171, 2006.

[17] B. R. Brooks, R. E. Bruccoleri, B. D. Olafson, D. J. States, S.

Swaminathann, and M. Karplus "Charmm a program for

macromolecular energy, minimization, and dynamics calculations,"

Journal of Computational Chemistry, 4:187–217, 1982.

[18] Y. Duan, C. Wu, S. Chowdhury, M. C. Lee, G. Xiong, W. Zhang, R.

Yang, P. Cieplak, R. Luo, T. Lee, J. Caldwell, J. Wang, and P. Kollman

"A point-charge force field for molecular mechanics simulations of

proteins based on condensed-phase quantum mechanical calculations,"

Journal of Computational Chemistry, 24(16):1999–2012, 2003.

[19] H. Lu and J. Skolnick "A distance-dependent atomic knowledge-based

potential for improved protein structure selection," Proteins,

44(3):223-32, Aug 15 2001.

[20] H. Gohlke, M. Hendlich, and G. Klebe "Knowledge-based scoring

function to predict protein-ligand interactions," J Mol Biol,

295(2):337-56, Jan 14 2000.

[21] J. Qiu, W. Sheffler, D. Baker, and W. S. Noble "Ranking predicted

protein structures with support vector regression," Proteins,

71(3):1175-82, May 15 2008.

[22] C. Anjum, "Protein Tertiary Model Assessment Using Granular," 2012.

[23] Q. Wang, Y. Shang, and D. Xu, "Improving a Consensus Approach for

Protein Structure Selection by Removing Redundancy," IEEE/ACM

transactions on computational biology and bioinformatics, vol. 8, no. 6,

pp. 1708-1715, 2011.

[24] A. Zemla, "LGA: a method for finding 3D similarities in protein

structures," Nucleic acids research, vol. 31, pp. 3370-3374, 2003.

[25] H. Hotelling, "Analysis of a complex of statistical variables into

principal components," J. Educ. Psych., vol. 24, pp. 417-441, 498-520,

1933.

[26] Y. Le Cun, "Modeles Connexionnistes de L'Apprentissage," PhD

Dissertation, PARIS 6, 1987.

[27] H. Bourlard and Y. Kamp, "Auto-Association by multilayer

perceptrons and singular value decomposition," Biological cybernetics,

Vol. 59, pp. 291-294, 1988.

[28] G. E. Hinton and R. S. Zemel, "Autoencoders, minimum description

length, and helmholtz free energy," Advances in Neural Information

Processing, pp. 3-10, 1994.

[29] A. Ng, "Sparse autoencoder" Lecture note. Available online at:

http://www.stanford.edu/class/cs294a/sparseAutoencoder.pdf

[30] A. Ng, "Support Vector Machine" Lecture note. Available online at:

http://cs229.stanford.edu/notes/cs229-notes3.pdf

2078

