

Abstract—Recent studies have shown that memristor crossbar

based neuromorphic hardware enables high performance

implementations of neural networks at low power and in low

chip area. This paper presents circuits to train a cascaded set of

memristor crossbars representing a multi-layered neural

network. The circuits presented implement back-propagation

training and would enable on-chip training of memristor

crossbars. On-chip training of memristor crossbars can be

necessary to overcome the effect of device variability and

alternate current paths within crossbars being used as neural

networks. We model the memristor crossbars in SPICE in

order capture alternate current paths and the impact of wire

resistance. Our design can be scaled to multiple neural layers

and multiple output neurons. We demonstrate the training of

up to three layered neural networks evaluating non-linearly

separable functions through detailed SPICE simulations. This

is the first study in the literature we have seen that examines

the implementation of back-propagation based training of

memristor crossbar circuits. The impact of this work would be

to enable the design of highly energy efficient and compact

neuromorphic processing systems that can be trained to

implement large deep networks (such as deep belief networks).

Key words: Neural networks; memristor crossbars; neuromorphic

architectures.

I. INTRODUCTION

mbedded neuromorphic processing systems have

significant advantages to offer, including the ability of

solve complex problems and the potential to consume very

low power and area. Several studies [1,2] have shown that

specialized neuromorphic architectures consume very low

processing power. Taha et al. [1] have compared the

performance and power of several processing options for

specialized neuromorphic systems. They have shown that

memristor [1] crossbar based architectures can enable over 5

orders of power reduction over Intel Xeon processors neural

network evaluations, while also reducing chip area

dramatically.

With the reliability and power consumption for general

purpose computers becoming increasing problematic [3],

recent studies have started examining the potential of

mapping of applications traditionally computed on general

purpose computers, to neural network form. The key

This work was supported through an NSF CAREER Award.

R. Hasan is with the University of Dayton, Dayton, OH 45469, USA.
(email: hasanm1@udayton.edu).

T. M. Taha is with the University of Dayton, Dayton, OH 45469, USA

(phone: 937-229-3119; email: tarek.taha@udayton.edu).

objective is to take advantage of the low power consumption

of specialized neuromorphic hardware and the inherent fault

tolerance of neural algorithms. Chen et al. [4] have shown

that Recognition, Mining, and Synthesis (RMS) applications

(described by Intel as the key future application drivers [5])

can be represented as neural networks. They make the case

that neural network accelerators can have broad applications.

Esmaeilzadeh et al. [6] show that several key application

kernels (such as FFT and JPEG) can be approximated using

neural networks and made the case for specialized neural

network accelerators on general purpose CPUs.

Memristors [7] have received significant attention as a

potential building block for neuromorphic systems [8,9]. The

recent physical realization of the memristor [10] has

produced a nanoscale non-volatile device with a large

varying resistance range. Just as chemical pulses alter

synaptic weights in brain tissue, voltage pulses can be

applied to memristors to alter their conductivity.

Physical memristors can be laid out in a high density grid

known as a crossbar [11]. Using this layout, memristors have

the potential to be fabricated with a synaptic density greater

than that of brain tissue [12]. As shown in [1], using these

memristor crossbars allow high density, extreme low-power,

neuromorphic hardware that is capable of performing many

multiply-add operations in parallel in the analog domain.

Beside their area and computational efficiency, the non-

volatile nature of memristors can reduce the static power

consumption of these systems significantly.

To work around the device variability that may be present

in a memristor crossbar, it may be necessary to develop on-

chip training hardware for memristor crossbar based

neuromorphic processors. One of the most commonly used

techniques to train neural networks is the back-propagation

algorithm [13]. In this paper we develop circuits that can

enable back-propagation based training of neural networks

implemented through memristor crossbars. Our design can

be scaled to multiple neural layers and multiple output

neurons. We demonstrate the training of up to three layered

neural networks evaluating non-linearly separable functions

through detailed SPICE simulations of the memristor

crossbar circuits. The use of SPICE simulations is essential

to capture the impact of alternate current paths that exist in

these circuits.

This is the first study in the literature we have seen that

examines the implementation of back-propagation based

training of memristor crossbar circuits. The impact of this

work would be to enable the design of highly energy

Enabling Back Propagation Training of Memristor Crossbar

Neuromorphic Processors

Raqibul Hasan and Tarek M. Taha

E

2014 International Joint Conference on Neural Networks (IJCNN)
July 6-11, 2014, Beijing, China

978-1-4799-1484-5/14/$31.00 ©2014 IEEE 21

efficient and compact neuromorphic processing systems that

can be trained to implement large deep networks (such as

deep belief networks [14]). The rest of the paper is

organized as follows: section II describes related works in

the area. Section III examines memristor based neural

network implementations. Sections IV and V demonstrate

experimental setup and results respectively. Finally, section

VI summarizes our work.

II. RELATED WORK

Specialized architectures can significantly reduce the

power consumption for neural network applications and yet

provide high performance [15-18]. IBM and Cornell [17,18]

recently developed a fully digital synaptic core in 45 nm

SOI technology. The system utilizes asynchronous logic to

reduce power consumption. Each core models 256 integrate

and fire neurons, with 1024 pre-synaptic inputs per neuron.

Each synapse is represented through a pair of bits in a

1024×256 bit SRAM crossbar memory that allows selection

of up to three synaptic values (stored in a separate set of

registers for each neuron). Rows within the SRAM array are

activated depending on which input pre-synaptic

connections fired. They proposed that multiple cores would

communicate asynchronously using an address-event

representation (AER) for spikes. In their study, training was

carried out offline as the system is digital.

Belhadj et al. [2] proposed a multicore architecture for

spiking neural applications and examined the response of

some signal processing applications on that system. They

stored synaptic weights in digital form and used digital to

analog converters to process the neurons.

Several studies have examined MOS transistor based

analog neuron circuits [17-22]. The Neurogrid project

[20,22] aims to model cortical circuits using spiking neuron

circuits. They used local analog wiring to minimize the need

for digitization of on-chip communications.

Zamarreño-Ramos et al. [23] proposed the use of a

memristor grid to implement a highly dense neural network

that can be used in visual image processing. Work has been

completed that shows how memristors can be used in neural

logic blocks in a Field Trainable Neural Array (FTNA) [24].

Each neural block contained a memristor crossbar array and

CMOS learning cells to program the memristive weights.

Chabi et al. [25] examined the implementation of linearly

separable Boolean functions in Neural Logic Blocks (NLB)

without taking sneak paths into consideration. They focused

on robustness studies of NLB by using probabilistic

predictive models of defects. Alibart et al. [26],

demonstrated pattern classification using a single-layer

perceptron network implemented with a memrisitive

crossbar circuit and trained using the perceptron learning

rule by ex situ and in situ methods. They did not study non-

linearly separable problems.

III. MEMRISTOR CROSSBAR BASED NEURAL NETWORK

IMPLEMENTATION

A. Neuron Circuit

Two possible approaches for implementing a neuron

circuit using memristors are shown in Fig 1. The neurons

shown have three inputs and a bias input. Each synapse is

represented by a pair of memristors as shown. Both types of

circuits are used in this study.

In the first neuron circuit (Fig. 1(a)), each input is

connected through a pair of memristors to a comparator. If

the conductance of the memristor on the positive input to the

(a) (b)

Fig. 1. Two implementation of memristor-based neuron circuit.

(a)

(b)

Fig. 2. (a) CMOS inverter and (b) inverter transfer curve. V(op2) is the

neuron output and V(op1) is the inverted neuron output.

A
B

β
C

+ -

yj

C

C

β
β

A

A

B
B

yj

Vdd=1 V

Vss=-1 V

in op1 op2

Vdd=1 V

Vss=-1 V

0ns 100ns 200ns 300ns 400ns 500ns

-1.0V

-0.6V

-0.2V

0.2V

0.6V

1.0V

-1.0V

-0.6V

-0.2V

0.2V

0.6V

1.0V

-1.0V

-0.6V

-0.2V

0.2V

0.6V

1.0V

V(op2)

V(op1)

V(in)

22

comparator is higher than the other memristor, then the pair

of memristors represents a positive synaptic weight. The

inverse represents a negative synaptic weight. The output of

the comparator represents the neuron output. In addition to

the three inputs A, B, and C, a bias input is necessary, along

with a path to ground.

In the second neuron circuit (Fig. 1(b)), each input signal

and its complemented form (same magnitude but opposite

polarity) are applied to a column of memristors. If the

conductance of the memristor connected with an input signal

is greater that the conductance of the memristor connected

with the corresponding inverted signal, then the pair of

memristors represents a positive weight (otherwise they

represent a negative weight). The output of inverter pair

represents the neuron output.

Assume that for a neuron, xi are the inputs and wj,i are the

corresponding synaptic weights. In this case,

 = ∑ 𝑥𝑖𝑤 ,𝑖𝑖 (1)

and the neuron output is

 yj=f(DPj) (2)

where f is the activation function. In a multi-layer feed

forward neural network, a differentiable activation function

(e.g. tan-1(x)) is desired. We are approximating the output of

the neuron in Fig 1a as +1 or -1 through a comparator.

In Fig 1(b), we are approximating the activation function

using a pair of CMOS inverters with the power rails having

Vdd=1V and Vss= -1V. Fig. 2(a) shows the inverter circuit

and the transfer curve is shown in Fig. 2(b), where V(op2) is

the neuron output and V(op1) is the inverted neuron output.

This approach provides a very efficient way of

implementing the activation function in terms of power,

speed and circuit components. Moreover it provides a

continuous neuron output, whereas the use of a comparator

gives an output of two discrete values (1 or -1).

B. Memristor Crossbar Based Neural Network

Fig. 3 shows a simple two layer feed forward neural

network with three inputs, two outputs, and six hidden layer

neurons. Fig. 4 shows a memristor crossbar based circuit to

evaluate the outputs of the neural network in Fig. 3. There

are two memristor crossbars in this circuit, each representing

a layer of neurons. Each crossbar utilizes the neuron circuit

shown in Fig. 1(b).

A neural network layer with n neurons and m inputs per

neuron could be implemented using a (2m+3)×n memristor

crossbar (2m memristors per column from the inputs, and 3

from the bias and path to ground). This provides a very

compact and fast way of implementing a layer of neurons.

When the inputs are applied to the crossbar, the intermediate

outputs DPj appear at the end of the crossbar columns almost

instantly. Thus an entire crossbar can be processed in

parallel within a cycle.

In Fig. 4, the first layer of neurons is implemented using a

9×6 crossbar. The second layer of neurons is implemented

using a 15×2 memristor crossbar, where 12 of the inputs are

coming from the 6 outputs of the first crossbar.

C. The Back-propagation Algorithm

In this paper we are utilizing the Back-propagation

algorithm [13] for updating memristor crossbar resistances

to implement non-linearly separable functions. The

algorithm for training a memristor cross bar based on the

back-propagation is stated as:

1) Initialize the memristors with high random

resistances.

2) For each input pattern x:

3) Apply the input pattern x to crossbar circuit

and evaluate hidden neuron and output

neuron values.

4) For output layer neurons, calculate the error,

δj, between the neuron output (Fj) and the

target output (Dj):

 𝛿 = − 𝐹 . (3)

Fig. 3. Two layer network for learning three input odd parity function.

Fig. 4. Schematic of the neural network shown in Fig. 3 for forward

pass.

A B C

F1 F2

C
B

β
C

A
A
B

β

β
β

in
p

u
ts

∑ target_2

+

-

δL2,2

output_2

∑
-

δL2,1

+
target_1

output_1

Layer 1

crossbar

Layer 2

crossbar

23

5) Back propagate the error.

 𝛿 = ∑ 𝛿𝑘𝑤𝑘, 𝑘 (4)

where neuron k has connection with previous

layer neuron j.

6) Determine the amount, Δw, that each

memristor’s conductance should be changed

(η is the learning rate):

 Δ𝑤 ,𝑖 = 𝜂 × 𝛿 ×
1

1+𝐷𝑃𝑗
2 × 𝑥 ,𝑖. (5)

7) Apply write pulses to the crossbar with pulse

widths proportional to Δwj,i to update the

memristor conductances.

8) If the error does not converge to a sufficiently small

value, go to step 2.

D. Circuit implementation of back-propagation training

The circuit implementation of back-propagation training

for the neural network in Fig. 3 can be broken down into

four major steps:

1. Apply inputs to layer 1 and record layer 2 neuron

output errors.

2. Back-propagate layer 2 errors through second layer

weights and record layer 1 errors.

3. Update layer 2 synaptic weights based in part on

layer 2 errors.

4. Update layer 1 synaptic weights based in part on

layer 1 errors.

The circuit implementations of these four steps are detailed

below:

Step 1: A set of inputs is applied to the layer 1 neurons,

and the layer 2 neuron outputs are measured. This process is

shown in Fig. 4. The terms δL2,1 and δL2,2 are the error terms

and are based on the difference between the observed

outputs and the expected outputs. These values are generated

using a comparator that provides a discretized error value of

+1 or -1. Thus these errors can easily be recorded in binary

form for later use. More complex circuitry (such as op amps)

can be utilized to give a higher resolution on the error, but

will be more expensive in terms of power and area. We will

explore the impact of using these circuits as future work.

Step 2: The layer 2 errors (δL2,1 and δL2,2) are applied to

the layer 2 weights as shown in Fig. 5 to generate the layer 1

errors (δL1,1, δL1,2, etc). The memristor crossbar in Fig. 5 is

the same as the layer 2 crossbar in Fig. 4, with the outputs

generated using the comparators based neuron circuit in Fig.

1(a). The use of the two circuits in Fig 1 allows us to use the

layer 2 memristor crossbar in both the forward and the

backward pass.

Step 3: A training unit (see Fig. 6) takes the layer 2 errors,

along with the layer 2 intermediate outputs (DPL2,1 and

DPL2,2) to generate a set of training pulses. These pulses are

applied to the layer 2 memristor crossbar to update the layer

2 synaptic weights.

Step 4: A process similar to step 3 is applied to update the

synaptic weights in the layer 1 memristor crossbar. The layer

1 errors, along with the layer 1 intermediate outputs (DPL1,1

and DPL1,2, etc) are used as shown in Fig. 7.

Fig. 8 shows the overall back-propagation training circuit,

combining the circuits in Figs. 4 through 7. The training

units in Figs. 6 and 7 have not been reproduced in Fig. 8. A

set of pass transistors have been added to the second layer

memristor crossbar that are controlled by signals ctrl1 and

ctrl2. Ctrl1 enables forward propagation through the layer 2

memristor crossbar to generate neuron outputs, while ctrl2

enables back-propagation to generate error values. Table I

shows the state of these control signals for each of the four

steps earlier. In step 2, ctrl1 is set to 0 to isolate the second

layer crossbar from the first layer crossbar to enable error

generation.

Fig. 5. Schematic of the neural network shown in Fig. 3 for back

propagating errors to layer 1.

Fig. 6. Schematic of the neural network shown in Fig. 3 for updating

layer 2 weights.

β
β

 1,

 1,1

. .
 .

+
-

+
-

+
-

+
-

+
-

+
-

Training

Unit (L1)

 ,1 ,

Back propagated

errors for layer 1

Error inputs from layer 2

C
B

β
C

A
A
B

β

β
β

in
p

u
ts

Training

Unit δL2,2

δL2,1

DPL2,1

DPL2,2

Layer 2 training pulses

24

Fig. 7. Schematic of the neural network shown in Fig. 3 for updating

layer 1 weights.

Fig. 8. Combined Schematic of the neural network shown in Fig. 3

TABLE I

CONTROL SIGNAL VALUES IN FIG. 9.

 ctrl1 ctrl2

Step 1 1 0

Step 2 0 1

Step 3 1 0

Step 4 0 0

E. Memristor weight update approach

This section presents details on the memristor weight

update technique utilized by the training unit. In the weight

update equation (eqn. 5), the term η is constant, while the

terms δ and x are discrete, with values of +1 or -1. The key

impact of δ and x are to determine the direction of the weight

update. The magnitude of the weight update is determined

by DPj and is the same for all the synapses of a particular

neuron j.

All the weights within an entire crossbar can be updated

in four steps. Each step considers one of the possible

combinations of δ and x and updates all memristors that are

affected by that specific combination. The four possible

combinations of δ and x are shown in Table II along with the

direction that the weight is changed.

If a voltage greater than the memristor write threshold is

applied across a memristor, its conductance increases or

decreases depending on the polarity of the device

(determined by the fabrication process). To make desirable

changes in memristor conductances, we need to apply a

voltage of appropriate magnitude and polarity for a suitable

duration across the memristor.

C
B

β
C

A
A
B

β

in
p

u
ts

Training

Unit

δL1,6

δL1,1
DPL1,1 DPL1,6

. . .

.

.

.

Layer 1 training pulses

Training

Unit (L2)

C
B

β
C

A
A
B

β

β
β

in
p

u
ts

𝛿 1,

𝛿 1,1

. .
 .

+
-

+
-

+
-

+
-

+
-

+
-

ctrl2ctrl1

∑ target_2

+

-

δL2,2

output_2

∑
-

δL2,1

+
target_1

output_1

Training

Unit (L1)

𝛿 ,1 𝛿 ,

(a)

(b)

Fig. 9. (a) Pulse width modulation circuit and (b) waveform shows

different pulse widths for different input magnitudes.

Fig. 10. Training curve approximating 1/(1+DPj

2) as g(DPj) where

g(DPj)=1-|DPj| if |DPj|<0.95 otherwise 0.05.

TABLE II
WEIGHT UPDATE DIRECTION.

Input Error Δw

+ve +ve Increase

+ve -ve Decrease

-ve +ve Decrease

-ve -ve Increase

+

-Vin

Vref

Vop

RL

0µs 5µs 10µs 15µs 20µs 25µs 30µs 35µs 40µs 45µs 50µs

0.0V

0.2V

0.4V

0.6V

0.8V

1.0V

0.0V

0.2V

0.4V

0.6V

0.8V

1.0V

V(in) V(ref)

V(op)

0 200 400 600 800
0

200

400

600

800

1000

1200

Epoch

E
rr
o
r

25

Fig. 11. Block diagram displaying how the MATLAB and SPICE

simulation platform was used to train and evaluate the neuron circuit.

In this study, we have varied the pulse width to get

different amounts of updates in the memristor conductances.

One option for determining the training pulse width is to

sense the dot product value (DPj), discretize it and use it to

determine the pulse width or number of pulses. Another

option is to sense the analog dot product and use it directly

to determine the pulse width through appropriate analog

circuits. Fig. 9 shows a tentative analog circuit for pulse

width modulation which could be used to pulse the

memristor crossbars. Here a smaller Vin generates a longer

pulse and vice versa.

To simplify the training hardware, in the training rule

(eqn. 4) we can approximate 1/(1+DPj
2) as a piecewise

linear function. Fig. 10 shows the training curve for the

MNIST dataset (with 1000 inputs) when approximating

1/(1+DPj
2) as g(DPj) where g(DPj)=1-|DPj| if |DPj|<0.95

(0.05 otherwise). For this experiment a two layer network

having 20 hidden neurons and 10 output neurons was

utilized. The error in Fig. 10 approaches zero, indicating that

this approximation was valid.

IV. EXPERIMENTAL SETUP

We evaluated all operations on the memristor crossbars

using SPICE circuit level simulations. As opposed to

carrying out the simulation in high level tools, such as

MATLAB, evaluating the actual memristor circuit in SPICE

allows for more accurate modelling of the memristor grid.

The alternate current paths and wire resistances within the

crossbar are simulated. Our studies show that training a

crossbar without the presence of alternate current paths leads

to improper operation when the final weights are simply

written to the memristors in the circuit. We utilized an

accurate memristor device model [27] for the simulations.

MATLAB and SPICE were used to develop a simulation

framework for applying the back-propagation learning

algorithm to a multi-layered neuron circuit. Fig. 11 shows

the simulation flow. The circuit was evaluated by applying

an input pattern. For each input, the output and dot products

(DPj) were recorded from the SPICE simulation. Errors in

the output layer were determined in MATLAB and the back-

propagated errors were determined using the SPICE circuit.

These voltages (DPj and errors) along with the neuron inputs

are used to determine the amount of change that must be

applied to each weight in MATLAB. To change the weights,

a set of pluses is applied to the SPICE circuit based on pulse

widths determined by the leaning algorithm. The circuit is

evaluated again with the updated weights, and the cycle

continues until the error is minimized.

It is assumed that this entire training process would be

managed through hardware surrounding the memristor

crossbars. The actual hardware design that will record the

inverter inputs (or dot products) and generate pulses of

appropriate width for updating the memristor conductances

will be studied in more detail in future work.

V. RESULTS

A. Two Layer Network

Three Input Odd Parity Function: We have utilized a two

layer network having six neurons in the hidden layer and one

neuron in the output layer for training the non-linearly

separable three input odd parity function. Table III shows

the truth table of the three input odd parity function and the

encodings used for inputs and output for our

implementations. The schematic of the circuit is similar to

that in Fig. 8, except that there is only one output instead of

two. Fig. 12 shows the training curve obtained from

MATLAB-SPICE simulation utilizing the back-propagation

algorithm stated in section III. After four epochs, the

recognition error becomes zero, indicating that the training

was successful.

MATLAB SPICE

Call SPICE to evaluate the

network for an input Evaluate the crossbar

circuits and export output

voltages

Determine errors in

output layer and call SPICE

to back propagate the

errors Evaluate backward phase of

the network and export

the back propagated errors

Determine pulse widths

using training rule that will

be applied to the crossbar

networks
Apply pulses to the

crossbar circuits to change

memristor conductances
Repeat with next input until convergence

TABLE III

TRUTH TABLE OF THREE INPUT ODD PARITY FUNCTION AND THE

ENCODING USED FOR INPUTS AND OUTPUT FOR OUR

IMPLEMENTATIONS.
Inputs Output Encoded inputs Encoded output

0 0 0 0 -1 -1 -1 -1

0 0 1 1 -1 -1 1 1

0 1 0 1 -1 1 -1 1

0 1 1 0 -1 1 1 -1

1 0 0 1 1 -1 -1 1

1 0 1 0 1 -1 1 -1

1 1 0 0 1 1 -1 -1

1 1 1 1 1 1 1 1

Fig. 12. Learning curve for three input odd parity function on a two

layer network.

1 2 3 4
0

5

10

15

20

25

Epoch

E
rr
o
r

26

Wisconsin Breast Cancer Dataset: We have utilized the

Wisconsin breast-cancer dataset [28] consisting of 699

patterns of two classes (benign and malignant). Each pattern

consists of 9 attributes/features which were normalized such

that the maximum attribute magnitude was 1. Although the

inputs to the first layer were continuous, all the intermediate

neuron outputs and errors were discretized as described

earlier. We have trained a two layer neural network having 6

neurons in the hidden layer and one in the output layer.

Utilizing the BP learning algorithm we have trained a

memristor crossbar in our MATLAB-SPICE platform taking

200 patterns and were able to achieve less than 3% error.

Fig. 13 shows the learning curve and Table IV shows the

percentage of recognition error on another 200 test patterns.

We can observe that on the test dataset, the recognition error

is less than 8%.

B. Three Layer Network

We utilized a three layer network (Fig. 14) for learning

the three input odd parity function. This network consists of

6 neurons in the first hidden layer, 3 neurons in the second

hidden layer, and one output neuron. Fig. 15 shows the

circuit schematic for this network and Fig. 16 shows the

training curve obtained from a MATLAB-SPICE simulation.

The results indicate that the system learned the function with

zero error.

Fig. 15. Schematic of the neural network shown in Fig. 14.

Fig. 16. Learning curve for three input odd parity function on three layer

network.

VI. CONCLUSION

This paper demonstrates that it is possible to implement

back-propagation based training of memristor crossbar

circuits directly into hardware. This implies that it is feasible

to build memristor crossbar based neuromorphic processing

tiles that are able to learn complex data sets directly through

low level hardware circuits. Memristor crossbar based

neuromophic processors have been shown to be 5 orders of

magnitude more energy efficient than high performance Intel

Xeon processors [1].

In this paper we have demonstrated training non-linearly

separable functions using memristor crossbar circuits

through back-propagation. We have examined 2 layer and 3

layer neural networks and shown training of non-linearly

separable functions on these networks. As future work, we

will investigate the implementation of neural networks with

a larger number of layers and large numbers of neurons per

layer using memristor crossbar circuits.

Training

Unit (L3)

C
B

β
C

A
A
B

β

β
β

in
p

u
ts

𝛿 1,

𝛿 1,1

. .
 .

+
-

+
-

+
-

+
-

+
-

+
-

ctrl2ctrl1

+target

output

𝛿 , 𝛿 ,

∑
-

δL3,1

𝛿 ,1

+
-

+
-

+
-

β
β

𝛿 ,

𝛿 ,

𝛿 ,1

𝛿 ,1

ctrl1 ctrl2

Training

Unit (L2)

Training

Unit (L1)

0 5 10 15 20
0

5

10

15

20

25

Epoch

E
rr
o
r

Fig. 13. Learning curve for training on Wisconsin breast cancer

dataset.

Fig. 14. Three layer network for learning three input odd parity

function.

TABLE IV

RECOGNITION ERROR ON TEST DATA ON WISCONSIN BREAST

CANCER DATASET.
 Recognition error (%)

Benign 8

Malignant 7

0 2 4 6
0

10

20

30

40

50

Epoch

E
rr
o
r

A

B

C

F

27

REFERENCES

[1] T. M. Taha, R. Hasan, C. Yakopcic, and M. R. McLean, "Exploring

the Design Space of Specialized Multicore Neural Processors," IEEE
International Joint Conference on Neural Networks (IJCNN), August

2013.

[2] B. Belhadj, A. J. L. Zheng, R. Héliot, and O. Temam. “Continuous
real-world inputs can open up alternative accelerator designs,”

SIGARCH Comput. Archit. News 41, 3 (June 2013)

[3] H. Esmaeilzadeh, E. Blem, R. Amant, K. Sankaralingam, and D.
Burger, “Dark silicon and the end of multicore scaling,” in Proceeding

of the 38th Annual International Symposium on Computer

Architecture, 2011, pp. 365–376.
[4] T. Chen, Y. Chen, M. Duranton, Q. Guo, A. Hashmi, M. Lipasti, A.

Nere, S. Qiu, M. Sebag, O. Temam, “BenchNN: On the Broad

Potential Application Scope of Hardware Neural Network
Accelerators,” IEEE International Symposium on Workload

Characterization (IISWC), November 2012.

[5] P. Dubey, “Recognition, mining and synthesis moves computers to
the era of tera,” Technology@Intel Magazine, Feb. 2005.

[6] H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger, “Neural

Acceleration for General-Purpose Approximate Programs,”
International Symposium on Microarchitecture (MICRO), 2012.

[7] L. O. Chua, "Memristor—The Missing Circuit Element," IEEE

Transactions on Circuit Theory, 18(5), 507–519 (1971).
[8] D. Chabi, W. Zhao, D. Querlioz, J.-O. Klein, “Robust Neural Logic

Block (NLB) Based on Memristor Crossbar Array” IEEE/ACM

International Symposium on Nanoscale Architectures, pp.137-143,
2011.

[9] C. Zamarreño-Ramos, L. A. Camuñas-Mesa, J. A. Pérez-Carrasco, T.

Masquelier, T. Serrano-Gotarredona, and B. Linares-Barranco, “On
spike-timing-dependent-plasticity, memristive devices, and building a

self-learning visual cortex,” Frontiers in Neuroscience, Neuromorphic

Engineering, vol. 5, pp. 1-22, Article 26, Mar. 2011.
[10] D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams, “The

missing Memristor found,” Nature, 453, 80–83 (2008).

[11] S. H. Jo, K.-H. Kim, and W. Lu, "High-Density Crossbar Arrays
Based on a Si Memristive System" Nano Letters, 9(2), 2009, pp. 870-

874.

[12] G. S. Snider, “Cortical Computing with Memristive Nanodevices,”
SciDAC Review, (2008).

[13] Russell, S. & Norvig, P. (2002). Artificial Intelligence: A Modern

Approach (2nd Edition). Prentice Hall, ISBN-13: 978-01379039555.
[14] D. C. Cireşan, U. Meier, L. M. Gambardella, and J. Schmidhuber,

“Deep, big, simple neural nets for handwritten digit recognition,”

Journal of Neural Computation, Vol. 22, issue 12, 3207-3220, 2010.
[15] S. B. Furber, S. Temple and A. D. Brown, “High-Performance

Computing for Systems of Spiking Neurons,” Proceedings of AISB'06

workshop on GC5: Architecture of Brain and Mind, vol.2, pp 29-36,
Bristol, April, 2006.

[16] J. Schemmel, J. Fieres, K. Meier, “Wafer-Scale Integration of Analog

Neural Networks”, IEEE International Joint Conference on Neural

Networks (IJCNN), 2008.

[17] P. Merolla, J. Arthur, F. Akopyan, N. Imam, R. Manohar, D. S.

Modha, “A digital neurosynaptic core using embedded crossbar
memory with 45pJ per spike in 45nm,” IEEE Custom Integrated

Circuits Conference (CICC), vol., no., pp.1-4, 19-21 Sept. 2011.

[18] J. V. Arthur, P. A. Merolla, F. Akopyan, R. Alvarez, A. Cassidy, S.
Chandra, S. K. Esser, N. Imam, W. Risk, D. B. D. Rubin, R. Manohar,

D. S. Modha, “Building block of a programmable neuromorphic

substrate: A digital neurosynaptic core,” The International Joint
Conference on Neural Networks (IJCNN), pp.1-8, June 2012.

[19] G. Indiveri, B. L. Barranco, T. J. Hamilton, A. van Schaik, R. E.

Cummings, T. Delbruck, S. C. Liu, P. Dudek, P. Häfliger, S. Renaud,
J. Schemmel, G. Cauwenberghs, J. Arthur, K. Hynna, F. Folowosele,

S. Saighi, T. S. Gotarredona, J. Wijekoon, Y. Wang, and k. Boahen,

“Neuromorphic silicon neuron circuits,” Frontier of Neuroscience,
2011.

[20] P. A. Merolla, K. Boahen, “Dynamic computation in a recurrent

network of heterogeneous silicon neurons,” Proceedings of IEEE
International Symposium on Circuits and Systems, May 2006.

[21] J. H. B. Wijekoon , P. Dudek, “Compact silicon neuron circuit with

spiking and bursting behaviour,” Proceedings of Neural Networks,
Volume 21, Issues 2–3, Pages 524-534, 2008.

[22] J. Lin, P. Merolla, J. Arthur, K. Boahen, “Programmable Connections

in Neuromorphic Grids,” IEEE International Midwest Symposium on
Circuits and Systems (MWSCAS), pp.80-84,Aug. 2006.

[23] C. Zamarreño-Ramos, L. A. Camuñas-Mesa, J. A. Pérez-Carrasco, T.
Masquelier, T. Serrano-Gotarredona, and B. Linares-Barranco, “On

spike-timing-dependent-plasticity, memristive devices, and building a

self-learning visual cortex,” Frontiers in Neuroscience, Neuromorphic
Engineering, vol. 5, pp. 1-22, Article 26, Mar. 2011.

[24] D. Chabi, W. Zhao, D. Querlioz, and J.-O. Klein, “Robust neural logic

block (NLB) based on memristor crossbar array,” in Proc.
NANOARCH, 2011, pp.137-143.

[25] D. Chabi, W. Zhao, D. Querlioz, J-O. Klein, “Robust Neural Logic

Block (NLB) based on Memristor Crossbar Array,” IEEE/ACM
ISNA, pp. 137-143 (2011).

[26] F. Alibart, E. Zamanidoost, and D.B. Strukov, "Pattern classification

by memristive crossbar circuits with ex-situ and in-situ training",
Nature Communications, 2013.

[27] C. Yakopcic, T. M. Taha, G. Subramanyam, and R. E. Pino,

"Memristor SPICE Model and Crossbar Simulation Based on Devices
with Nanosecond Switching Time," IEEE International Joint

Conference on Neural Networks (IJCNN), August 2013.

[28] http://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Dia
gnostic)

28

