
 

 

 

 

 

 

Abstract—Recent studies have shown that memristor crossbar 

based neuromorphic hardware enables high performance 

implementations of neural networks at low power and in low 

chip area. This paper presents circuits to train a cascaded set of 

memristor crossbars representing a multi-layered neural 

network. The circuits presented implement back-propagation 

training and would enable on-chip training of memristor 

crossbars. On-chip training of memristor crossbars can be 

necessary to overcome the effect of device variability and 

alternate current paths within crossbars being used as neural 

networks. We model the memristor crossbars in SPICE in 

order capture alternate current paths and the impact of wire 

resistance. Our design can be scaled to multiple neural layers 

and multiple output neurons. We demonstrate the training of 

up to three layered neural networks evaluating non-linearly 

separable functions through detailed SPICE simulations. This 

is the first study in the literature we have seen that examines 

the implementation of back-propagation based training of 

memristor crossbar circuits. The impact of this work would be 

to enable the design of highly energy efficient and compact 

neuromorphic processing systems that can be trained to 

implement large deep networks (such as deep belief networks). 

 
Key words: Neural networks; memristor crossbars; neuromorphic 

architectures. 

I. INTRODUCTION 

mbedded neuromorphic processing systems have 

significant advantages to offer, including the ability of 

solve complex problems and the potential to consume very 

low power and area. Several studies [1,2] have shown that 

specialized neuromorphic architectures consume very low 

processing power. Taha et al. [1] have compared the 

performance and power of several processing options for 

specialized neuromorphic systems. They have shown that 

memristor [1] crossbar based architectures can enable over 5 

orders of power reduction over Intel Xeon processors neural 

network evaluations, while also reducing chip area 

dramatically.  

With the reliability and power consumption for general 

purpose computers becoming increasing problematic [3], 

recent studies have started examining the potential of 

mapping of applications traditionally computed on general 

purpose computers, to neural network form. The key 
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objective is to take advantage of the low power consumption 

of specialized neuromorphic hardware and the inherent fault 

tolerance of neural algorithms. Chen et al. [4] have shown 

that Recognition, Mining, and Synthesis (RMS) applications 

(described by Intel as the key future application drivers [5]) 

can be represented as neural networks. They make the case 

that neural network accelerators can have broad applications. 

Esmaeilzadeh et al. [6] show that several key application 

kernels (such as FFT and JPEG) can be approximated using 

neural networks and made the case for specialized neural 

network accelerators on general purpose CPUs.  

Memristors [7] have received significant attention as a 

potential building block for neuromorphic systems [8,9]. The 

recent physical realization of the memristor [10] has 

produced a nanoscale non-volatile device with a large 

varying resistance range. Just as chemical pulses alter 

synaptic weights in brain tissue, voltage pulses can be 

applied to memristors to alter their conductivity.  

Physical memristors can be laid out in a high density grid 

known as a crossbar [11]. Using this layout, memristors have 

the potential to be fabricated with a synaptic density greater 

than that of brain tissue [12]. As shown in [1], using these 

memristor crossbars allow high density, extreme low-power, 

neuromorphic hardware that is capable of performing many 

multiply-add operations in parallel in the analog domain. 

Beside their area and computational efficiency, the non-

volatile nature of memristors can reduce the static power 

consumption of these systems significantly. 

To work around the device variability that may be present 

in a memristor crossbar, it may be necessary to develop on-

chip training hardware for memristor crossbar based 

neuromorphic processors. One of the most commonly used 

techniques to train neural networks is the back-propagation 

algorithm [13]. In this paper we develop circuits that can 

enable back-propagation based training of neural networks 

implemented through memristor crossbars. Our design can 

be scaled to multiple neural layers and multiple output 

neurons. We demonstrate the training of up to three layered 

neural networks evaluating non-linearly separable functions 

through detailed SPICE simulations of the memristor 

crossbar circuits. The use of SPICE simulations is essential 

to capture the impact of alternate current paths that exist in 

these circuits. 

This is the first study in the literature we have seen that 

examines the implementation of back-propagation based 

training of memristor crossbar circuits. The impact of this 

work would be to enable the design of highly energy 
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efficient and compact neuromorphic processing systems that 

can be trained to implement large deep networks (such as 

deep belief networks [14]). The rest of the paper is 

organized as follows: section II describes related works in 

the area. Section III examines memristor based neural 

network implementations. Sections IV and V demonstrate 

experimental setup and results respectively. Finally, section 

VI summarizes our work. 

II. RELATED WORK 

Specialized architectures can significantly reduce the 

power consumption for neural network applications and yet 

provide high performance [15-18]. IBM and Cornell [17,18] 

recently developed a fully digital synaptic core in 45 nm 

SOI technology. The system utilizes asynchronous logic to 

reduce power consumption. Each core models 256 integrate 

and fire neurons, with 1024 pre-synaptic inputs per neuron. 

Each synapse is represented through a pair of bits in a 

1024×256 bit SRAM crossbar memory that allows selection 

of up to three synaptic values (stored in a separate set of 

registers for each neuron). Rows within the SRAM array are 

activated depending on which input pre-synaptic 

connections fired. They proposed that multiple cores would 

communicate asynchronously using an address-event 

representation (AER) for spikes. In their study, training was 

carried out offline as the system is digital.  

Belhadj et al. [2] proposed a multicore architecture for 

spiking neural applications and examined the response of 

some signal processing applications on that system. They 

stored synaptic weights in digital form and used digital to 

analog converters to process the neurons. 

Several studies have examined MOS transistor based 

analog neuron circuits [17-22]. The Neurogrid project 

[20,22] aims to model cortical circuits using spiking neuron 

circuits. They used local analog wiring to minimize the need 

for digitization of on-chip communications. 

Zamarreño-Ramos et al. [23] proposed the use of a 

memristor grid to implement a highly dense neural network 

that can be used in visual image processing. Work has been 

completed that shows how memristors can be used in neural 

logic blocks in a Field Trainable Neural Array (FTNA) [24]. 

Each neural block contained a memristor crossbar array and 

CMOS learning cells to program the memristive weights. 

Chabi et al. [25] examined the implementation of linearly 

separable Boolean functions in Neural Logic Blocks (NLB) 

without taking sneak paths into consideration. They focused 

on robustness studies of NLB by using probabilistic 

predictive models of defects. Alibart et al. [26], 

demonstrated pattern classification using a single-layer 

perceptron network implemented with a memrisitive 

crossbar circuit and trained using the perceptron learning 

rule by ex situ and in situ methods. They did not study non-

linearly separable problems. 

III. MEMRISTOR CROSSBAR BASED NEURAL NETWORK 

IMPLEMENTATION 

A. Neuron Circuit 

Two possible approaches for implementing a neuron 

circuit using memristors are shown in Fig 1. The neurons 

shown have three inputs and a bias input. Each synapse is 

represented by a pair of memristors as shown. Both types of 

circuits are used in this study. 

In the first neuron circuit (Fig. 1(a)), each input is 

connected through a pair of memristors to a comparator. If 

the conductance of the memristor on the positive input to the 

 

 

 

 

  
(a) (b) 

Fig. 1. Two implementation of memristor-based neuron circuit. 
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(b) 

Fig. 2. (a) CMOS inverter and (b) inverter transfer curve. V(op2) is the 

neuron output and V(op1) is the inverted neuron output.  
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comparator is higher than the other memristor, then the pair 

of memristors represents a positive synaptic weight. The 

inverse represents a negative synaptic weight. The output of 

the comparator represents the neuron output. In addition to 

the three inputs A, B, and C, a bias input is necessary, along 

with a path to ground. 

In the second neuron circuit (Fig. 1(b)), each input signal 

and its complemented form (same magnitude but opposite 

polarity) are applied to a column of memristors. If the 

conductance of the memristor connected with an input signal 

is greater that the conductance of the memristor connected 

with the corresponding inverted signal, then the pair of 

memristors represents a positive weight (otherwise they 

represent a negative weight). The output of inverter pair 

represents the neuron output. 

Assume that for a neuron, xi are the inputs and wj,i are the 

corresponding synaptic weights. In this case, 

    = ∑ 𝑥𝑖𝑤 ,𝑖𝑖             (1) 

and the neuron output is  

 yj=f(DPj)              (2) 

where f is the activation function. In a multi-layer feed 

forward neural network, a differentiable activation function 

(e.g. tan-1(x)) is desired. We are approximating the output of 

the neuron in Fig 1a as +1 or -1 through a comparator.  

In Fig 1(b), we are approximating the activation function 

using a pair of CMOS inverters with the power rails having 

Vdd=1V and Vss= -1V. Fig. 2(a) shows the inverter circuit 

and the transfer curve is shown in Fig. 2(b), where V(op2) is 

the neuron output and V(op1) is the inverted neuron output. 

This approach provides a very efficient way of 

implementing the activation function in terms of power, 

speed and circuit components. Moreover it provides a 

continuous neuron output, whereas the use of a comparator 

gives an output of two discrete values (1 or -1). 

B. Memristor Crossbar Based Neural Network 

Fig. 3 shows a simple two layer feed forward neural 

network with three inputs, two outputs, and six hidden layer 

neurons. Fig. 4 shows a memristor crossbar based circuit to 

evaluate the outputs of the neural network in Fig. 3. There 

are two memristor crossbars in this circuit, each representing 

a layer of neurons. Each crossbar utilizes the neuron circuit 

shown in Fig. 1(b). 

A neural network layer with n neurons and m inputs per 

neuron could be implemented using a (2m+3)×n memristor 

crossbar (2m memristors per column from the inputs, and 3 

from the bias and path to ground). This provides a very 

compact and fast way of implementing a layer of neurons. 

When the inputs are applied to the crossbar, the intermediate 

outputs DPj appear at the end of the crossbar columns almost 

instantly. Thus an entire crossbar can be processed in 

parallel within a cycle.  

In Fig. 4, the first layer of neurons is implemented using a 

9×6 crossbar. The second layer of neurons is implemented 

using a 15×2 memristor crossbar, where 12 of the inputs are 

coming from the 6 outputs of the first crossbar. 

C. The Back-propagation Algorithm 

In this paper we are utilizing the Back-propagation 

algorithm [13] for updating memristor crossbar resistances 

to implement non-linearly separable functions. The 

algorithm for training a memristor cross bar based on the 

back-propagation is stated as: 

 

1) Initialize the memristors with high random 

resistances. 

2) For each input pattern x: 

3) Apply the input pattern x to crossbar circuit 

and evaluate hidden neuron and output 

neuron values. 

4) For output layer neurons, calculate the error, 

δj, between the neuron output (Fj) and the 

target output (Dj): 

           𝛿 =   − 𝐹 .          (3) 

 
Fig. 3. Two layer network for learning three input odd parity function. 

 

 

 
Fig. 4. Schematic of the neural network shown in Fig. 3 for forward 

pass. 
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5) Back propagate the error. 

           𝛿 = ∑ 𝛿𝑘𝑤𝑘, 𝑘               (4) 

where neuron k has connection with previous 

layer neuron j. 

6) Determine the amount, Δw, that each 

memristor’s conductance should be changed 

(η is the learning rate):  

       Δ𝑤 ,𝑖 = 𝜂 × 𝛿 ×
1

1+𝐷𝑃𝑗
2 ×  𝑥 ,𝑖.           (5) 

7) Apply write pulses to the crossbar with pulse 

widths proportional to Δwj,i to update the 

memristor conductances. 

8) If the error does not converge to a sufficiently small 

value, go to step 2. 

 

D. Circuit implementation of back-propagation training 

The circuit implementation of back-propagation training 

for the neural network in Fig. 3 can be broken down into 

four major steps: 

1. Apply inputs to layer 1 and record layer 2 neuron 

output errors. 

2.  Back-propagate layer 2 errors through second layer 

weights and record layer 1 errors. 

3.  Update layer 2 synaptic weights based in part on 

layer 2 errors. 

4.  Update layer 1 synaptic weights based in part on 

layer 1 errors. 

The circuit implementations of these four steps are detailed 

below: 

Step 1: A set of inputs is applied to the layer 1 neurons, 

and the layer 2 neuron outputs are measured. This process is 

shown in Fig. 4. The terms δL2,1 and δL2,2 are the error terms 

and are based on the difference between the observed 

outputs and the expected outputs. These values are generated 

using a comparator that provides a discretized error value of 

+1 or -1. Thus these errors can easily be recorded in binary 

form for later use. More complex circuitry (such as op amps) 

can be utilized to give a higher resolution on the error, but 

will be more expensive in terms of power and area. We will 

explore the impact of using these circuits as future work. 

Step 2: The layer 2 errors (δL2,1 and δL2,2) are applied to 

the layer 2 weights as shown in Fig. 5 to generate the layer 1 

errors (δL1,1, δL1,2, etc). The memristor crossbar in Fig. 5 is 

the same as the layer 2 crossbar in Fig. 4, with the outputs 

generated using the comparators based neuron circuit in Fig. 

1(a). The use of the two circuits in Fig 1 allows us to use the 

layer 2 memristor crossbar in both the forward and the 

backward pass. 

Step 3: A training unit (see Fig. 6) takes the layer 2 errors, 

along with the layer 2 intermediate outputs (DPL2,1 and 

DPL2,2) to generate a set of training pulses. These pulses are 

applied to the layer 2 memristor crossbar to update the layer 

2 synaptic weights. 

Step 4: A process similar to step 3 is applied to update the 

synaptic weights in the layer 1 memristor crossbar. The layer 

1 errors, along with the layer 1 intermediate outputs (DPL1,1 

and DPL1,2, etc) are used as shown in Fig. 7. 

Fig. 8 shows the overall back-propagation training circuit, 

combining the circuits in Figs. 4 through 7. The training 

units in Figs. 6 and 7 have not been reproduced in Fig. 8. A 

set of pass transistors have been added to the second layer 

memristor crossbar that are controlled by signals ctrl1 and 

ctrl2. Ctrl1 enables forward propagation through the layer 2 

memristor crossbar to generate neuron outputs, while ctrl2 

enables back-propagation to generate error values. Table I 

shows the state of these control signals for each of the four 

steps earlier. In step 2, ctrl1 is set to 0 to isolate the second 

layer crossbar from the first layer crossbar to enable error 

generation. 

 
Fig. 5. Schematic of the neural network shown in Fig. 3 for back 

propagating errors to layer 1. 

 
Fig. 6. Schematic of the neural network shown in Fig. 3 for updating 

layer 2 weights. 
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Fig. 7. Schematic of the neural network shown in Fig. 3 for updating 

layer 1 weights. 

 
Fig. 8. Combined Schematic of the neural network shown in Fig. 3 

TABLE I 

CONTROL SIGNAL VALUES IN FIG. 9. 

 ctrl1 ctrl2 

Step 1 1 0 

Step 2 0 1 

Step 3 1 0 

Step 4 0 0 

 

E. Memristor weight update approach 

This section presents details on the memristor weight 

update technique utilized by the training unit. In the weight 

update equation (eqn. 5), the term η is constant, while the 

terms δ and x are discrete, with values of +1 or -1. The key 

impact of δ and x are to determine the direction of the weight 

update. The magnitude of the weight update is determined 

by DPj and is the same for all the synapses of a particular 

neuron j. 

All the weights within an entire crossbar can be updated 

in four steps. Each step considers one of the possible 

combinations of δ and x and updates all memristors that are 

affected by that specific combination. The four possible 

combinations of δ and x are shown in Table II along with the 

direction that the weight is changed. 

If a voltage greater than the memristor write threshold is 

applied across a memristor, its conductance increases or 

decreases depending on the polarity of the device 

(determined by the fabrication process). To make desirable 

changes in memristor conductances, we need to apply a 

voltage of appropriate magnitude and polarity for a suitable 

duration across the memristor. 
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(a) 

 
(b) 

Fig. 9. (a) Pulse width modulation circuit and (b) waveform shows 

different pulse widths for different input magnitudes. 

 
Fig. 10. Training curve approximating 1/(1+DPj

2) as g(DPj) where 

g(DPj)=1-|DPj| if |DPj|<0.95 otherwise 0.05. 

 

TABLE II 
WEIGHT UPDATE DIRECTION. 

Input Error Δw 

+ve +ve Increase 

+ve -ve Decrease 

-ve +ve Decrease 

-ve -ve Increase 

 

+

-Vin

Vref

Vop

RL

0µs 5µs 10µs 15µs 20µs 25µs 30µs 35µs 40µs 45µs 50µs

0.0V

0.2V

0.4V

0.6V

0.8V

1.0V

0.0V

0.2V

0.4V

0.6V

0.8V

1.0V

V(in) V(ref)

V(op)

0 200 400 600 800
0

200

400

600

800

1000

1200

Epoch

E
rr
o
r

25



 

 

 

 

 
Fig. 11. Block diagram displaying how the MATLAB and SPICE 

simulation platform was used to train and evaluate the neuron circuit. 

In this study, we have varied the pulse width to get 

different amounts of updates in the memristor conductances. 

One option for determining the training pulse width is to 

sense the dot product value (DPj), discretize it and use it to 

determine the pulse width or number of pulses. Another 

option is to sense the analog dot product and use it directly 

to determine the pulse width through appropriate analog 

circuits. Fig. 9 shows a tentative analog circuit for pulse 

width modulation which could be used to pulse the 

memristor crossbars. Here a smaller Vin generates a longer 

pulse and vice versa. 

To simplify the training hardware, in the training rule 

(eqn. 4) we can approximate 1/(1+DPj
2) as a piecewise 

linear function. Fig. 10 shows the training curve for the 

MNIST dataset (with 1000 inputs) when approximating 

1/(1+DPj
2) as g(DPj) where g(DPj)=1-|DPj| if |DPj|<0.95 

(0.05 otherwise). For this experiment a two layer network 

having 20 hidden neurons and 10 output neurons was 

utilized. The error in Fig. 10 approaches zero, indicating that 

this approximation was valid. 

IV. EXPERIMENTAL SETUP  

We evaluated all operations on the memristor crossbars 

using SPICE circuit level simulations. As opposed to 

carrying out the simulation in high level tools, such as 

MATLAB, evaluating the actual memristor circuit in SPICE 

allows for more accurate modelling of the memristor grid. 

The alternate current paths and wire resistances within the 

crossbar are simulated. Our studies show that training a 

crossbar without the presence of alternate current paths leads 

to improper operation when the final weights are simply 

written to the memristors in the circuit. We utilized an 

accurate memristor device model [27] for the simulations. 

MATLAB and SPICE were used to develop a simulation 

framework for applying the back-propagation learning 

algorithm to a multi-layered neuron circuit. Fig. 11 shows 

the simulation flow. The circuit was evaluated by applying 

an input pattern. For each input, the output and dot products 

(DPj) were recorded from the SPICE simulation. Errors in 

the output layer were determined in MATLAB and the back-

propagated errors were determined using the SPICE circuit. 

These voltages (DPj and errors) along with the neuron inputs 

are used to determine the amount of change that must be 

applied to each weight in MATLAB. To change the weights, 

a set of pluses is applied to the SPICE circuit based on pulse 

widths determined by the leaning algorithm. The circuit is 

evaluated again with the updated weights, and the cycle 

continues until the error is minimized. 

It is assumed that this entire training process would be 

managed through hardware surrounding the memristor 

crossbars. The actual hardware design that will record the 

inverter inputs (or dot products) and generate pulses of 

appropriate width for updating the memristor conductances 

will be studied in more detail in future work.  

V. RESULTS  

A. Two Layer Network 

Three Input Odd Parity Function: We have utilized a two 

layer network having six neurons in the hidden layer and one 

neuron in the output layer for training the non-linearly 

separable three input odd parity function. Table III shows 

the truth table of the three input odd parity function and the 

encodings used for inputs and output for our 

implementations. The schematic of the circuit is similar to 

that in Fig. 8, except that there is only one output instead of 

two. Fig. 12 shows the training curve obtained from 

MATLAB-SPICE simulation utilizing the back-propagation 

algorithm stated in section III. After four epochs, the 

recognition error becomes zero, indicating that the training 

was successful. 

MATLAB SPICE

Call SPICE to evaluate the 

network for an input Evaluate the crossbar 

circuits and export output 

voltages

Determine errors in 

output layer and call SPICE 

to back propagate the 

errors Evaluate backward phase of 

the network and export 

the back propagated errors

Determine pulse widths 

using training rule that will 

be applied to the crossbar 

networks
Apply pulses to the 

crossbar circuits to change 

memristor conductances
Repeat with next input until convergence

TABLE III 

TRUTH TABLE OF THREE INPUT ODD PARITY FUNCTION AND THE 

ENCODING USED FOR INPUTS AND OUTPUT FOR OUR 

IMPLEMENTATIONS. 
Inputs Output Encoded inputs Encoded output 

0 0 0 0 -1   -1   -1 -1 

0 0 1 1 -1   -1   1 1 

0 1 0 1 -1   1   -1 1 

0 1 1 0 -1    1    1 -1 

1 0 0 1 1  -1   -1 1 

1 0 1 0 1   -1   1 -1 

1 1 0 0 1   1   -1 -1 

1 1 1 1 1    1    1 1 

 

 
Fig. 12. Learning curve for three input odd parity function on a two 

layer network. 
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Wisconsin Breast Cancer Dataset: We have utilized the 

Wisconsin breast-cancer dataset [28] consisting of 699 

patterns of two classes (benign and malignant). Each pattern 

consists of 9 attributes/features which were normalized such 

that the maximum attribute magnitude was 1. Although the 

inputs to the first layer were continuous, all the intermediate 

neuron outputs and errors were discretized as described 

earlier. We have trained a two layer neural network having 6 

neurons in the hidden layer and one in the output layer. 

Utilizing the BP learning algorithm we have trained a 

memristor crossbar in our MATLAB-SPICE platform taking 

200 patterns and were able to achieve less than 3% error. 

Fig. 13 shows the learning curve and Table IV shows the 

percentage of recognition error on another 200 test patterns. 

We can observe that on the test dataset, the recognition error 

is less than 8%. 

B. Three Layer Network 

We utilized a three layer network (Fig. 14) for learning 

the three input odd parity function. This network consists of 

6 neurons in the first hidden layer, 3 neurons in the second 

hidden layer, and one output neuron. Fig. 15 shows the 

circuit schematic for this network and Fig. 16 shows the 

training curve obtained from a MATLAB-SPICE simulation. 

The results indicate that the system learned the function with 

zero error. 

 
Fig. 15. Schematic of the neural network shown in Fig. 14. 

 
Fig. 16. Learning curve for three input odd parity function on three layer 

network. 

VI. CONCLUSION 

This paper demonstrates that it is possible to implement 

back-propagation based training of memristor crossbar 

circuits directly into hardware. This implies that it is feasible 

to build memristor crossbar based neuromorphic processing 

tiles that are able to learn complex data sets directly through 

low level hardware circuits. Memristor crossbar based 

neuromophic processors have been shown to be 5 orders of 

magnitude more energy efficient than high performance Intel 

Xeon processors [1].  

In this paper we have demonstrated training non-linearly 

separable functions using memristor crossbar circuits 

through back-propagation. We have examined 2 layer and 3 

layer neural networks and shown training of non-linearly 

separable functions on these networks. As future work, we 

will investigate the implementation of neural networks with 

a larger number of layers and large numbers of neurons per 

layer using memristor crossbar circuits. 
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Fig. 13. Learning curve for training on Wisconsin breast cancer 

dataset. 

 
Fig. 14. Three layer network for learning three input odd parity 

function. 

TABLE IV 

RECOGNITION ERROR ON TEST DATA ON WISCONSIN BREAST 

CANCER DATASET. 
 Recognition error (%) 

Benign 8 

Malignant 7 
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