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Abstract—Since the launch of the scramjet, recent years
have witnessed a growing interest in the study of airbreathing
hypersonic vehicles. Due to its strong coupling characteristics,
high nonlinearity, and uncertain parameters, the control of
hypersonic vehicle becomes a great challenge. To deal with
those design issues, we propose an adaptive learning control
method based on direct heuristic dynamic programming (direct
HDP), which is used to track the angle of attack despite the
presence of bounded uncertain parameters. Inspired by the
adaptive critic designs, direct HDP is one of the adaptive
dynamic programming (ADP) methods, which is a model-
free reinforcement learning algorithm using the online learning
scheme to solve dynamic control problems in realistic complex
environment. In this paper, this direct HDP method is improved
by embedding the fuzzy neural network (FNN) in the controller
design to enhance its self-learning ability and robustness.
Simulation results are provided to demonstrate the effectiveness
of our proposed method.

I. INTRODUCTION

Airbreathing hypersonic vehicle (AHV) presents a reli-
able and efficient way to transport at high Mach numbers
and carry more load with the airframe-integrated scramjet
utilized. Due to the flight conditions of high altitudes and
Mach numbers [1], AHV is a potential research objective
for its value in the field of military and commerce. For
military applications, it has global reach capability and can
be used as the platform for satellite launch, recovery, and
repair, even for launching anti-satellite weapons. In the field
of commercial applications, AHV represents a efficient way
to increases payload capability and makes access to space
routine [2].

Hypersonic vehicle has a huge difference with the
traditional aircraft. Because of its characteristics of high
altitudes and high Mach numbers, hypersonic aircraft is
sensitive to the changes of atmospheric in actual process
of flying, such as the dynamic pressure effect, viscous
effects, low-density effect, and so on [3]. Besides, it is
difficult to measure and estimate the aerodynamic charac-
teristics of the vehicle. In addition, hypersonic vehicle uses
advanced airframe/propulsion integration technology, which
makes each part of hypersonic vehicle show strong coupling

characteristics [4]. Due to the fact that the dynamics of
hypersonic vehicles is highly nonlinear and coupled, the
design of control system for AHV is a great challenge on the
condition of guaranteeing a stability and satisfactory control
performance.

Many linear control methods have been proposed for
the control of AHV in resent years, such as linear param-
eter varying (LPV) method [5], adaptive linear quadratic
(ALQ) algorithm [6], and linear quadratic regulation (LQR)
method [7]. Among the above approaches, LPV modeling
and control are implemented via the design of an uncertain
parameter-varying state matrix. The ALQ is described in
the altitude and velocity tracking control algorithm for
longitudinal model of a generic hypersonic vehicle. Since
the characteristics of highly nonlinear and coupled, the
capability of the linear approaches to represent the dynamics
realistically on the coupling effects is limited.

Nonlinear methods of AHV control include dynamic
inversion control based on differential geometry theory and
nonlinear dynamic inversion control, such as direct neural
control [8] and sliding mode control [9]–[11]. A new ap-
proach to designing a robust nonlinear controller for longitu-
dinal flexible body models of canard configured air-breathing
hypersonic flight vehicles with significant couplings and
interactions was presented in [12]. The design of an adaptive
flight control systems was proposed for hypersonic vehi-
cle models, which developed an architecture including a
robust adaptive nonlinear inner-loop controller, and a self-
optimizing guidance scheme that shapes the reference to
be tracked in order to avoid the occurrence of control
input saturations in [13]. However, these nonlinear methods
usually need precise analytical model to design controllers.
Actually, it is difficult for AHV to build analytical models
due to its highly nonlinear and time-varying nature.

During the controller design for hypersonic vehicle, vary-
ing flight conditions are taken into consideration. The robust
output-feedback control was designed in [14] to provide
robust velocity tracking with uncertain parameters. The L1
adaptive control architecture was proposed to compensate
for parametric uncertainties and unmodeled dynamics for
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hypersonic vehicle in [15]. Therefore, considering the strong
nonlinearity, highly time-varying changes of hypersonic ve-
hicle, and the difficulty in measuring and estimating the
aerodynamic characteristics, adaptive methods which do not
rely on exact data of flight may be effective.

Adaptive dynamic programming (ADP) is an optimal
control scheme using a function approximation structure
such as neural network (NN) to approximate the cost func-
tion J(t), which avoids the curse of dimensionality and
reduces the computation time [16]. The approximate optimal
control is obtained by using the offline iteration algorithm
or the online update algorithm. In this paper, we use a
model-free ADP method called direct heuristic dynamic
programming (direct HDP) [17] for controller design of hy-
personic vehicle. Direct HDP has unique features [17]. The
application of direct HDP is focused on the optimal control
of nonlinear and complex system, such as maze navigation
[18], real-time tracking problem [19], and unknown discrete-
time nonlinear system control [20]. Furthermore, to deal
with parametric uncertainties, we use fuzzy neural networks
(FNNs) instead of NNs with one-hidden layer in the archi-
tecture of direct HDP to express the contextual information
of aerodynamic characteristics in nonlinear and dynamic
environment. FNN has good fault-tolerance property, which
can tolerate the changes of parameters of hypersonic vehicle
in practical flight situation [21]. In this way, direct HDP
using FNNs may be a promising method to simplify the
strong complexities of nonlinear dynamics.

This paper aims at presenting a direct HDP method using
FNNs to address the important but challenging issue in
the design of hypersonic vehicle controller. This paper is
organized as follows: Section 2 describes the longitudinal
model of a generic hypersonic vehicle; Section 3 presents the
architecture of direct HDP and the weights updating method
of direct HDP using FNNs; the simulation results are shown
in Section 4; finally, Section 5 contains the conclusion.

II. HYPERSONIC VEHICLE MODEL

The longitudinal model of the generic hypersonic vehicle
was developed at NASA Langley Research Center [22].
The flight phase of hypersonic vehicle is divided into three
stages: climb, cruise, and reentry, using an approach similar
to bounce to complete the flight. In the cruise stage, the
parameters such as height and speed maintain in a small
range, so that the change of the aerodynamic parameters
are regular and they can be expressed by a mathematical
formula. But in the climb stage and reentry stage, due to
the large variation of the height and speed, the atmospheric
parameters change greatly.

In the reentry stage, the scramjet is close and the hyper-
sonic vehicle can only control the elevator deflection angle to
balance itself. The longitudinal model of hypersonic vehicle

can be expressed as follows [23]:

V̇ =
T cosα−D

m
− µ

r2
sin γ (1)

γ̇ = −L+ T sinα

mV
− µ− V 2r

V r2
cos γ (2)

ḣ = V sin γ (3)
α̇ = q − γ̇ (4)

q̇ =
Myy

Iyy
(5)

where the system states V , q, h, α, γ are velocity, pitch rate,
altitude, angle of attack, and flight path angle, respectively.
Here m, Iyy , µ represent mass of the flight, moment of
inertia, and gravity constant, respectively.

Moreover, in the above equations aerodynamic forces lift
L, drag D, thrust T , and the pitching moment Myy are
illustrated as:

L = 0.5ρV 2SCL (6)
D = 0.5ρV 2SCD (7)
T = 0.5ρV 2SCT (8)

Myy =
1

2
ρV 2Sc̄[CM (α) + CM (δe) + CM (q)] (9)

r = h+RE (10)

where CD, CL, CT denote the drag, lift, and thrust coeffi-
cients, respectively. Here δe and S are the elevator deflection
angle and reference area, ρ and RE are the air density and
radius of the earth, c̄ is aerodynamic chord, r is the radial
distance from Earth’s center. And CM (α), CM (q), CM (δe)
are the moment coefficients due to angle of attack, pitch
rate, and elevator deflection, respectively. In this paper, we
design the controller of hypersonic vehicle in reentry stage.
In this stage, the engine is close and the thrust T is set to
0.

Due to the flight conditions of high altitudes and Mach
numbers, three aerodynamic parameters CD, CL, and CT
cannot be described with accurate mathematical formula. By
using the look-up table method [23], we can get the actual
flight data, which leads to the strong nonlinear characteristics
of the hypersonic vehicle.

When the actual hypersonic vehicle is in flight, the
parameters of hypersonic vehicle vary all the time. For
instance, with the consumption of gas, the mass of hyper-
sonic vehicle decreases slowly. Considering these situation,
the parameter uncertainties are taken into account in the
simulation which are described as follows with each bound:

m=m0(1 + ∆m), |∆m| ≤ 0.03 (11)
Iyy = I0(1 + ∆I), |∆I| ≤ 0.02 (12)
S = S0(1 + ∆S), |∆S| ≤ 0.01 (13)
ρ= ρ0(1 + ∆ρ), |∆ρ| ≤ 0.06 (14)
c̄= c̄0(1 + ∆c̄), |∆c̄| ≤ 0.01 (15)

where m0, I0, S0, ρ0, and c̄0 are the nominal values.

III. DIRECT HDP BASED CONTROLLER DESIGN

In this section, direct HDP using FNNs is presented.
Moreover, the uniformly ultimately boundedness (UUB)

3686



result of our proposed approach is provided to select appro-
priate learning parameters in the action network and critic
network of direct HDP under the sufficient condition.

A. Fuzzy Neural Network (FNN)

Fig. 1. Architecture of ANFIS

In our proposed approach, FNNs are used in the critic
network and action network of the direct HDP. Adaptive-
network-based fuzzy inference system (ANFIS) is a neural
network implementation of a Takagi-Sugeno (T-S) fuzzy
inference system [24]. ANFIS constructs a set of fuzzy if-
then rules automatically and optimizes the rules with self-
learning of NN. ANFIS applies the hybrid algorithm, which
integrates backpropagation (BP) algorithm and least square
estimation (LSE) algorithm, so it has rapid learning speed.
Assuming that ANFIS shown in Fig.1 has n inputs, i.e.,
x1, · · · , xn, and one output y. The number of fuzzy sets is
Nf . Suppose that the rule base contains Nf fuzzy if-then
rules of T-S type:

Rulej : If x1 = A1j and · · · and xn = Anj , then
wj = z1jx1 + · · ·+ znjxn + zn+1,j ,

z1j , · · · , zn+1,j ∈ R; j = 1, 2, · · · , Nf .

The output of ANFIS is calculated as follows:

• Layer 1 (Fuzzification Layer)

µAij
(xi) = e

−
(xi−cij)

2

σ2
ij (16)

i = 1, · · · , n; j = 1, 2, · · · , Nf
where cij and σij are the excepted value and stan-
dard deviation of Gaussian function.

• Layer 2 (Rule Layer)

vj = µA1j
(x1)× · · · × µAnj

(xn) (17)
j = 1, 2, · · · , Nf

• Layer 3 (Normalization Layer)

v̄j =
vj∑Nf

j=1 vj
(18)

• Layer 4 (Defuzzification Layer)

v̄jwj = v̄j(z1jx1 + · · ·+ znjxn + zn+1,j) (19)
j = 1, 2, · · · , Nf

• Layer 5 (Output Layer)

y =

Nf∑
j=1

v̄jwj (20)

We can convert the ANFIS to a single-layer NN and
the number of nodes in the hidden layer is Nf . Let pk(t)
and qk(t) be the input and output of the hidden layer in
that converted ANFIS. The approximation function can be
expressed as follows:

pk(t) =
n∑
i=1

(
xi(t)− cik(t)

σik(t)
)2, k = 1, · · · , Nf (21)

qk(t) = ϕ(pk(t)), (22)

y(t) =

∑Nf

k=1 wk(t)qk(t)∑Nf

k=1 qk(t)
, (23)

where after the combination of Layer 1 and Layer 2, the
function ϕ(x) is defined as

ϕ(x) = e−
1
2x (24)

B. Direct HDP Based Controller

In the past decades, Werbos introduced an approach
called ADP. It uses a function approximation structure such
as NN to approximate cost function J(t), which avoids the
curse of dimensionality and reduces the computation time.
The approximate optimal control is obtained by using the
offline iteration algorithm or the online update algorithm.

According to the output of critic network used in ADP,
ADP can be categorized as [25] [26]: heuristic dynamic
programming (HDP), dual heuristic programming (DHP),
and globalized dual heuristic programming (GDHP). The
action dependent version of HDP and DHP are formed when
the critics inputs are augmented with the controllers output.

The direct HDP was developed in [17] which is most
relevant to action dependent HDP (ADHDP). Compare to
other ADP structure, the advantage of direct HDP is that
the previous J value is stored and calculated with current
J value in order to obtain the temporal difference used in
training. As a result, it is a model-free approach. Therefore,
the direct HDP can be applied to realistic and complex
control problems, such as cart-pole system [27] and power
system stability control [28]. The improvement of direct
HDP is focus on the combination with other NN [27], [29],
[30]. Thus, in this paper direct HDP using FNNs may be a
promising method in improving the classical direct HDP to
control the hypersonic vehicle.

As shown in Fig.2, direct HDP is structured to estimate
the cost function J in the Bellman equation of dynamic
programming.

J(t) =

∞∑
k=0

αkU(t+ k) (25)

where α (0 < α < 1) is a discount factor, U
is the utility function, r(t) is the reinforcement signal.
And the inputs are the n measured states, i.e., x(t) =
(x1(t), · · · , xn(t))T, and the outputs are the m actions, i.e.,
u(t) = (u1(t), · · · , um(t))T.
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Fig. 2. Architecture of direct HDP

Without any ambiguity and for the ease of discussion,
from now the subscript “a” and “c” stand for the action
network and critic network, respectively. According to (22),
ϕc(t) = (qc1 , · · · , qck)T and ϕa(t) = (qa1 , · · · , qak)T are
the hidden layer vectors of the critic network and action
network, respectively. Nfc and Nfa are the numbers of fuzzy
rules in the critic network and action network.

The critic network of direct HDP is used to calculate J as
an approximate of the optimal value function J∗. The critic
network tries to minimize the following error Ec measured
over time:

Ec(t) = 0.5× e2c(t) (26)
ec(t) = αJ(t)− r(t) + J(t− 1) (27)

The critic network weights ŵc is updated as

ŵc(t+ 1) = ŵc(t)− lc
∂Ec(t)

∂Ĵ(t)

∂Ĵ(t)

∂ŵc(t)

= ŵc(t)− αlcϕc(t)[αŵc(t)Tϕc(t)
+ r(t)− ŵT

c (t− 1)ϕc(t− 1)]T (28)

where lc is the learning rate of critic network.

The action network of direct HDP is to backpropagate the
error between the desired objective Uc and the approximator
J . In our proposed approach, Uc is set to zero. The action
network tries to minimize the square error Ea below

Ea(t) = 0.5× e2a(t) (29)
ea(t) = J(t)− Uc(t) (30)

The action network weight ŵa is updated as

ŵa(t+ 1) = ŵa(t)− la
∂Ea(t)

∂Ĵ(t)

∂Ĵ(t)

∂û(t)

∂û(t)

∂ŵa(t)

= ŵa(t)− laϕa(t)[ŵc(t)TC(t)]
× [ŵc(t)

Tϕc(t)]
T (31)

where la is the learning rate of action network. And C(t)
is a matrix of Nfc ×m dimension, and its elements can be
expressed as

Ckj(t) =
−ϕck(t)(uj(t)− ccj+n,k

(t))

σ2
cj+n,k

(t)
(32)

k = 1, · · · , Nfc; j = 1, · · · ,m.

C. Uniformly Ultimately Boundedness (UUB) of Direct
HDP using ANFIS

In [31], a UUB result for the direct HDP learning
controller is provided under mild and intuitive conditions. In
this paper, we use ANFIS in the critic network and action
network within the framework of direct HDP and we can
prove that the estimation errors of the weights in ANFIS
remain UUB. The UUB result of our proposed approach
requires the following conditions:

1) Let w∗c and w∗a be the optimal weights for the critic
and action network, respectively, and assume they
are bounded by two positive constants, i.e.,

∥w∗c∥ ≤ wcm ∥w∗a∥ ≤ wam (33)

where wcm, wam ∈ R+ are two known positive
constants.

2) The errors between the optimal weights w∗c , w
∗
a and

their estimates ŵc(t), ŵa(t) are UUB, respectively,
provided that the following conditions are satisfied:

1√
2
< α < 1, lc <

1

α2Nfc
, la <

1

Nfa
(34)

where Nfa and Nfc are the numbers of fuzzy
rules in the action network and critic network,
respectively.

The above results give a simple sufficient condition
which can be used to guide the selection of learning rates in
direct HDP using ANFIS to maintain stability of the weight
updates.

IV. EXPERIMENT

A. Parameter Setting

Here we use the error between the flight speed, pitch
angular velocity, height, attack angle, and heading angel
as the inputs of action network in direct HDP. The rudder
angle is used as the control signal. According to [32], we
set the initial value described in Table I. In the simulation,

0 500 1000 1500 2000 2500 3000
0

1

2

3

4

5

6

7

8

9

10

11

A
n

g
le

 o
f 

A
tt

a
c
k
 (

d
e

g
re

e
)

time step

Fig. 3. Angle of attack command
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the control parameter is bounded within [−30, 30]deg. The
simulation lasts 120s and each time step is 0.02s.

TABLE I. INITIAL VALUE OF AHV MODEL

Parameter Initial value
V 6000 m/s
γ 0 deg
h 60000 m
α 2 deg
q 0 deg/s

TABLE II. NOMINAL VALUE OF AHV MODEL

Parameter Nominal Value
m0 4353 kg
I0 34979.599 kg·m2

S0 3.45 m2

ρ0 1.225 kg/m3

c̄0 12.7 m
Re 6.3713× 106 m
µ 3.98855× 1014 N·m2/kg

In the simulation, the number of the fuzzy rules in
the critic network and action network are set to 4. The
discount factor is set to α = 0.95. The internal cycle of
the critic network and action network are set to 50 and
100, respectively. The internal training error threshold for
the critic network and action network are set to 0.05 and
0.005, respectively. According to the UUB result mentioned
above, the learning rates of two networks are 0.1 and they
satisfy the conditions (34).

B. Experimental Results without Parameter Uncertainties

According to [33], the attack angle command is shown
in Fig.3 .

During the attach angle tracking for a hypersonic vehicle
without parameter uncertainties, simulations are conducted
for 120s in two methods: ADP and direct HDP using ANFIS
in which each time step is 0.02s. All parameters are used
in their nominal values. Simulation results of attach angle
are shown in Fig.4. From Fig.4, we can see that ADP with
single-layer NN and direct HDP using ANFIS can track the
attack angle signal. From Fig.5, it shows that ADP with
single-layer NN has a large fluctuation at the beginning of
simulation and with the online learning of direct HDP, our
proposed method performs well.

Fig.6 shows the change of the velocity, path angle,
altitude, and pitch rate, respectively. From Fig.6, we can
know that the hypersonic vehicle is slowly landing.

C. Experimental Results with Parameter Uncertainties

During the attach angle tracking for a hypersonic vehicle
with parameter uncertainties, simulations are conducted for
120s in two methods: ADP and direct HDP using ANFIS in
which each time step is 0.02s. Simulation results are shown
in Fig.7. The bound of uncertain parameters is provided in
(11)-(15) and the uncertainties are all set to be uniformly
distributed random numbers within the bound.

When the uncertainties are added to the mass of the
flight, the moment of inertia, reference area, and throttle
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Fig. 4. Experimental result of attach angle without parameter uncertainties
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Fig. 5. Tracking error without parameter uncertainties

setting, direct HDP using ANFIS performs better than ADP
with single-layer NN. From Fig.8, we can see that our pro-
posed approach can well track the angle of attack command
with the increase of the time step. However, ADP with
single-layer NN can no longer track the command signal
anymore. It means that when the number of online learning
step increases, ANFIS can reduce the tracking error and
direct HDP using ANFIS exhibits strong robustness despite
the presence of bounded uncertain parameters.

Fig.9 shows the change of the velocity, path angle,
altitude, and pitch rate, respectively. From the change of
altitude, we can see that the hypersonic vehicle is slowly
landing.

V. CONCLUSION

In this paper, a direct HDP method using ANFIS is
designed for the control of hypersonic vehicle. Direct HDP
takes advantage of the potential scalability of adaptive
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Fig. 6. Experimental Results without parameter uncertainties
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Fig. 7. Experimental Result of attach angle with parameter uncertainties

critic designs and Q-learning to achieve optimal control.
Considering the highly time-varying changes of hypersonic
vehicle and the difficulty in measuring and estimating the
aerodynamic characteristics, we embed ANFIS in the critic
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Fig. 8. Tracking error with parameter uncertainties

network and action network of direct HDP to achieve better
fault-tolerance performance. To make sure that the estima-
tion errors of the weights in our approach remain UUB, we
give a simple sufficient condition for the selection of the
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Fig. 9. Experimental results with parameter uncertainties

learning rates in direct HDP related to the number of fuzzy
rules in ANFIS. Simulation results prove the practicality and
efficiency of our proposed method.
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