
 
Artificial Neural Network Based Gait Patterns Identification 
Using Neuromuscular Signals and Soft Tissue Deformation 

Analysis of Lower Limbs Muscles  

S. M. N. Arosha Senanayake, Joko Triloka, Owais 
A. Malik 

Faculty of Science 
Universiti Brunei Darussalam 

Tungku Link Gadong, Brunei Darussalam  
arosha.senanayake@ubd.edu.bn,  

12h1052@ubd.edu.bn, 11h1202@ubd.edu.bn 
 

 

Pg. Mohammad Iskandar 
Faculty of Integrated Technology 

Universiti Brunei Darussalam 
Tungku Link Gadong, Brunei Darussalam  

iskandar.petra@ubd.edu.bn 

 
 

 
Abstract—The objective of this study is to investigate the use 

of electromyography (EMG) signals and video based soft tissue 
deformation (STD) analysis for identifying the gait patterns of 
healthy and injured subjects. The system includes a wireless 
surface electromyography (EMG) sensor unit and two video 
camera systems for measuring the neuromuscular activity of 
lower limb muscles, and a custom-developed artificial neural 
network based intelligent system software for identifying the gait 
patterns of subjects during walking activity. The system uses root 
mean square (RMS) value of EMG signals and soft tissue 
deformation parameter (STDP) as the input features. In order to 
estimate the STD during a muscular contraction while walking, 
flexible triangular meshes are built on reference points. The 
positions of these selected points are evaluated by applying the 
block matching motion estimation technique. Based on the 
extracted features, multilayer feed-forward backpropagation 
networks (FFBPNNs) with different network training functions 
were designed and their classification performances were 
compared. The system has been tested for a group of healthy and 
injured subjects. The results showed that FFBPNN with 
Levenberg-Marquardt training function provided better 
prediction behavior (98% overall accuracy) as compared to 
FFBPNN with other training functions for gait patterns 
identification based on RMS value of EMG and STDP. 

Keywords— electromyography; soft tissue deformation; gait 
patterns; artificial neural network. 

I. INTRODUCTION  
Neuromuscular and biomechanical adaptations in gait are 

common due to lower limb injuries (e.g. knee or ankle 
injuries) [1-4]. The altered neuromuscular control may be 
present even in the absence of significant kinematic or kinetic 
changes [5]. Due to knee injuries, the activation patterns of 
different muscles around knee are affected which result in gait 
alterations in subjects. Identification of these gait 
abnormalities using muscle movements and characteristics is a 
challenging research topic as various lower extremity muscles 
provide control and stability during walking by contracting at 

certain intervals within a gait cycle.  
A common technique to monitor the muscle movements is 

to use electromyography (EMG) which records the electrical 
potential generated by muscle cells when these cells are 
electrically or neurologically activated [6]. The surface EMG 
provides a non-invasive method for recording muscle 
activation patterns while the intramuscular EMG uses a 
needle/fine wire for noting the muscles activities.  

The usage of surface EMG sensors has been investigated in 
recent studies for observing the relationship between the 
muscle force (quadriceps, hamstrings and brachial biceps) and 
root mean square (RMS) value of the electromyographic 
signals [7]. A linear relationship was observed between the 
RMS value of the EMG signal and the contraction force of the 
rectus femoris, vastus medialis, lateralis, biceps femoris, 
semitendinosus, and brachial biceps muscles. An analysis  of 
EMG signals and force in human vastus lateralis muscle has 
been performed in [8] using multiple bipolar wire electrodes 
which describes the relationship between knee extension force 
and EMG signals detected by multiple bipolar wire electrodes 
inserted into the human vastus lateralis muscle under isometric 
conditions. Study of electromyography activity during sit-to-
stand on vastus medialis and vastus lateralis muscle has also 
been used to provide information that may inform  how heel 
height affects muscle activity around the knee joint [9]. EMG 
Analysis of lower limb muscles including gluteus maximus, 
gluteus medius, adductor longus, hamstrings, tibialis anterior, 
tricep surae, rectus femoris and erector spine muscles was 
used for developing robotic exoskeleton orthotic device [10]. 
In this study, the muscle activation patterns were estimated 
which were used to design the lower-limb exoskeletal assistive 
robotic systems for physically challenged persons.  

However, EMG is a delicate signal which is affected by 
noise and crosstalk issues. Analyzing the muscle movements 
using EMG require expertise in terms of set-up and proper 
placement of electrodes [6]. A less expensive and supportive 
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Fig. 1. General framework of the proposed method for processing soft tissue deformation and root mean square of EMG signal 
 

method for analyzing the muscle movements is to use the 
soft tissue deformation (STD) analysis technique in 
conjunction with EMG signals [11, 12]. STD analysis can 
be performed in order to detect the changes in shape and 
size of muscles during contraction and stretching by using 
the video cameras. The elastic behavior of lower limb 
muscles can be modeled by analyzing the video sequences 
during the human motion.  

Artificial neural network (ANN) has been used in various 
clinical biomechanics applications [13]. One of the most 
common use of ANN has been in the area of classifying or 
diagnosing the walking conditions using different types of 
parameters including ground reaction forces, foot pressure, 
joint angles, cadence and walking velocity [13]. However, 
there have been fewer efforts in gait pattern recognition 
using EMG signals. This study proposes a multilayer feed-
forward backpropagation neural network (FFBPNN) based 
gait pattern identification model for healthy/injured subjects 
using surface EMG and video sequence analysis of lower 
limb muscles, EMG and video data have been collected from 
two lower limb muscle (vastus lateralis and vastus medialis) 
of healthy and knee injured subjects and feature set is 
generated in order to train and test the ANN for gait pattern 
recognition. Different types of training functions for 
multilayer FFBPNN have been tried and their training 
convergences and the classification accuracies  were 
compared. The EMG data are processed such that RMS value 
of EMG signal is extracted for different gait phases. The soft 
tissue modelling is accomplished by using triangular meshes 
that automatically adapt to the lower limb body segment during 
the execution of a dynamic muscle contraction during gait 
cycle with walking on a treadmill.  The aim of this initial 
study is to investigate the use of EMG and STD analysis for 
recognizing the gait patterns of healthy and knee injured 
subjects. 

II. METHODOLOGY 

A. General System Framework 
The general proposed Hardware/Software co-design for 

identifying the gait patterns of different subjects using 
artificial neural network (ANN) is illustrated in Fig. 1.  

 
1) Hardware Components: The system hardware includes 

the following major components: 

a) Wireless EMG Sensors: These body mounted sensors 
capture the electromyography signals from lower limb 
muscles during walking activity. These signals are 
transferred to the computer through BioRadio system for 
further processing. 

b) Video Cameras: The system used two video cameras in 
order to capture movements of human muscles and heel 
strike event during each gait cycle (GC) for walking 
activity.   

2)  Software Components: The software module of the 
system includes two major components: 

 
a) EMG Signals Processing Module: The EMG signal 
module acquires signals from the sensors attached to the 
lower limb muscles and prepares a feature set for designing 
the ANN for identifying the gait patterns. It consists of three 
components.  

 
(1) EMG signals pre-processing: This phase acquires the 
signals in raw form from EMG sensors and stores them in 
the database for initial processing (filtering and rectification 
etc.) 
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(2) Marking the Gait Cycle: This phase is used to identify 
the heel strike (HS) event from the collected data through 
BioRadio such that features from the EMG data shall be 
extracted. In order to mark the gait cycle in EMG data, the 
HS event was identified by using anteroposterior 
acceleration from a 2-D accelerometer available in 
BioCapture (Fig. 2) [14]. 

 
(3) EMG signals post-processing: This phase includes the 
processing of periodic EMG signals for extracting the RMS 
values from neuromuscular data based on the percentages of 
each phase of a gait cycle [21]. The selected features are 
used by the artificial neural network (ANN) for identifying 
the gait patterns of different subjects. 
 
b) Video Signal Processing Module 

The video signal processing modules acquire video 
recording of subjects during walking on the treadmill and 
extracts the relevant details (soft tissue deformation 
parameters) from frames of the video for each GC for 
designing the ANN for gait pattern identification. Different 
components of this module are described below. 

(1) Video Sequence Processing: This phase includes 
acquiring the videos recorded from the video cameras 
and extracting the sequence of frames from them and 
storing them for further processing.     

(2) Marking the Gait Cycle: As per basic characteristics of 
gait, this phase is responsible to find the moment of heel 
strike for each gait cycle from the given frames stored 
for each subject (Fig. 3).  

(3) Feature Extraction from Video Frames: This phase 
provides a comprehensive environment to gain insight 
into images/frames of gait. It contains following steps: 

(a) Gait frames segmentation: In this research, gait 
frames segmentation has been used to locate an 
object (lower limbs) and the boundaries of the object 
in each frame. The application of segmentation to a 
frame significantly reduces the amount of data to be 
processed and may therefore filter out information 
that may be regarded as less relevant. 

(b) Threshold: It is important to filter the frames in order 
to smooth out any noise picked up during video 
recording. This is essential because noise introduced 
into a frame can result in false output from the soft 
tissue detector. Also with a specified threshold value, 
a better intensity value can be given to a frame. For 
calculating the threshold value, an auto threshold 
method was adapted in this research [15-17]. 

(c) Select region of interest (ROI): The selection of ROI 
from gait frames was an important step in order to 
locate the specific muscle of interest for this study. 
An ROI was selected by creating a cropped image 
from the threshold frame. The size of the ROI was 
set to 114×109 pixels for each muscle. 

 
 
 
 
 

 
 
 
 
 
 
Fig. 2. Heel strike detection of EMG signals using anterioposterior 
acceleration from accelerometer data 

 
 

 
 

Fig. 3. Heel strike event in a gait cycle 
 

(d) Motion Estimation: As the gait cycle is a dynamic 
movement, thus, in this research a block matching 
motion estimation algorithm was implemented in 
order to achieve sub pixel accuracy without 
interpolation [18]. In conventional block matching 
motion estimation algorithms, sub pixel motion 
accuracy is achieved by searching the best matching 
block in an enlarged (interpolated) reference search 
area. This, however, is computationally expensive as 
the number of operations required is directly 
proportional to the interpolation factor [18]. This 
method integrates the block matching algorithm and 
optical flow method to estimate the motion. Motion 
vectors are determined by a two-stage algorithm, 
with the first stage being a single layer block 
matching, and the second stage being a first order 
optical flow by solving a 2×2 linear system [18].  

(e) Incremental Delaunay Triangulations (IDT): In order 
to estimate the STD during a muscular contraction 
while walking, flexible triangular meshes are built on 
reference points. The positions of these selected 
points, during the walking are evaluated by applying 
the block matching motion estimation technique as 
described above. Mesh generator based motion 
estimation algorithms automatically select features in 
a reference frame sk and estimate the corresponding 
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feature position in a second frame sk+1 to get motion 
vectors. These feature points are then used as nodes 
of a mesh. Each node n has a source position pn,k in 
the reference frame sk and a target position pn,k+1 in 
the second frame sk+1. The motion of every other 
pixel of the image is interpolated using surrounding 
mesh nodes. In case of a triangular mesh, three nodes 
are used for the motion vector interpolation 
providing six parameters for an affine transform [19]. 
Fig. 4 illustrates the mesh generator based motion 
estimation.  Hence, the Soft Tissue Deformation 
Parameter (STDP) at frame i is calculated as follows 
(1)[11, 12] : 
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where M is the number of triangles which forms the 
meshes and  k

ia is the area of the single triangle k at 
the frame i. 
 
 

c) Artificial Neural Network (ANN): The outputs from both 
software modules are used to design the ANN for detecting 
the gait patterns of different subjects. The feed-forward 
back-propagation paradigm of ANN has been used in this 
research which is a supervised learning method based on the 
generalization of least mean square error (LMS) algorithm. 
It uses gradient descent method to minimize the cost 
function, which is the mean square difference between 
target and actual net output. The inputs to the ANN are the 
RMS and STDP values for two selected muscles (vastus 
lateralis and vastus medialis) and the output is the class/type 
of the subject.  

 
 
 
 
 
 
 
 
 
 

Fig. 4. Mesh generator based motion estimation. (a). Original image motion 
vector. (b). Approximation image. (c). Delaunay triangulation. 
 
B. Participants 

Four male participants (2 healthy soldiers and 2 soldiers 
having knee injury) were recruited for this study. The 
average age, height and weight of the subjects were 24 
years, 168.4 cm and 69 kg, respectively. The participants 
were recruited from Ministry of Defense Brunei 
Darussalam. Ethical procedures were carried out according 

to the guidelines approved by Graduate Research Office and 
Ethics Committee at Universiti Brunei Darussalam. 

 
C.  Experimental Setup 

 
The EMG signals were recorded using BioCapture 

physiological monitoring system consisting of BioRadio and 
USB receiver. The BioRadio records the EMG signals, does 
initial processing and then wirelessly transmits them to the 
computer using USB receiver. For this study, the sampling 
rate to collect EMG signals was set to 960Hz at 12 bit A/D 
conversion. In order to record surface EMG signals, foam 
snap electrodes were placed on two lower limb muscles 
including vastus medialis (VM) and vastus lateralis (VL). 
SENIAM EMG guidelines were followed for skin 
preparation and electrodes placement [20]. The raw EMG 
signals for selected lower extremity muscles were band-pass 
filtered (20-480Hz) using 4th order Butterworth filter for 
removing the noise/motion artifacts and generating the 
required features set. 

In order to capture a video sequence for 2-dimensional 
analysis, two video cameras (Canon Legria HFM41 HD 
Camcoder and Sony HDR-XR520 Handycam) were set up 
so that the data from subjects in the narrow sagittal and 
frontal plane could be recorded at 29 frames per second 
(fps) with a resolution of 1920×1080 pixels per frame. The 
cameras were placed on a level tripod, perpendicular to the 
center of the pathway at a distance of 2 meters. One video 
camera (set in the sagittal plane) was used to record the 
muscles movements during walking activity. The other 
video camera was placed in the frontal in order to record the 
gait image from the first event of the gait cycle, which the 
timing of the heel is landed on the ground.   

 
 

D.  Data Collection and Feature Extraction 

The gait data from each subject were collected while he 
was walking on a treadmill at a speed of 4km/h for the 
duration of around 15-20 seconds. The data collection was 
performed indoors, with lighting at a constant level. The 
procedure for data collection was as follows; first each 
subject was requested to walk on the treadmill at the 
specified speed and EMG data were recorded using 
BioCapture system while he was wearing EMG sensors. 
Three trials were performed for recording the EMG data.  
Each subject was then requested to walk again on the 
treadmill at the specified speed and this time the muscle 
movements data were recorded using video cameras 
(without covering the muscles with electrodes). Thus, for 
same speed EMG and video data were collected for multiple 
gait cycles from each subject. Fig 5. shows video frames of 
a subject walking on treadmill.  

In total, 48 walking trials were completed, yielding 12 
gait cycles for each subject and there were 384 events of 
gait cycle for subsequent data analysis. This was a very 
important step as the total result depends on the accuracy 
and quality of the gait captured. 
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Fig. 5. Video sequences recording for one gait cycle with walking on 
treadmill at speed of 4 km/hour. (a). Front side camera. (b). Right side 
camera 

All post-processing and analysis were carried out off-line 
using the MATLAB programming environment. There were 
3 video files recorded per subject (one for each trial). One 
video file usually contained 118-122 frames and all video 
files yielded average 357 frames after walking three times. 
Each gait cycle was contained on average 29 frames with 4 
gait cycles in each video file. In total, after three trials of 
walking for all subjects, there were 1430 frames for 48 gait 
cycles for processing. 

In order to extract the features (RMS and STDP) from 
EMG and video frames, the gait cycles were marked using 
HS detection and gait phases were identified using the 
percentage value for each phase [21]. There are seven 
phases during a gait cycle but the selected muscles are 
active mostly in three gait phases namely load response 
(LR), Mid-Stance (MSt) and terminal swing (Tsw). So the 
features were extracted for these gait phases only. RMS 
values for pre-processed and normalized EMG data were 
calculated for these three phases (2). 
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Fig. 6. Motion vectors estimated applying motion estimation without 
interpolation algorithm. (a) frame 5 (b) frame 12 (c) frame 29 
 

The STDP calculations were performed on each frame 
captured during three selected phases of each gait cycle. For 
each gait cycle, 29 frames were divided by the percentage 

value of each event, e.g. Load Response (LR) consists of 
10% of GC time then dividing 29 by 10 gives 2.9 frames for 
LR. This value was then rounded off which means there 
were 3 frames of 29 frames of LR for which the STDP 
values were computed as described in next section.  
 
1) Motion Vectors Estimation: The first step for the 
generation of a triangular mesh from an image was the 
choice of a set of points to be triangulated [12]. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Fig. 7. IDT Mesh Generator 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
Fig. 8. IDT Mesh processing. 
 

The input data for a triangulation process was a set of 
points that were linked by edges which had to be preserved 
after the triangulation. The estimation of soft tissues 
deformation during dynamic muscular contraction has been 

(a) (c) (b) 
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carried out by using flexible triangular meshes built on 
reference points [12]. The positions of these selected points, 
during the walking were evaluated by applying the motion 
estimation technique based on the motion estimation 
without interpolation [18]. This motion estimation technique 
was used in order to extract the motion of the selected points 
on the body segment. The  estimated  positions  of the  
selected points  have  been  considered  as  reference for  the 
construction of  the triangular mesh.  

The video of a gait cycle was composed of 29 frames 
and the spatial resolution was 51pixels/cm. In order to test 
the functionality of the method, three relevant frames of the 
video sequences (frame 5/LR, frame 12/MSt and frame 
29/TSw) have been taken into account. 114 pixels of the 
first frame have been chosen as reference points. These 
pixels have been selected on the lower limb surface. Their 
motion in the sequence has been estimated by applying the 
motions estimation without interpolation algorithm. The 
sample results can be seen in Figure 6.  

2) IDT Mesh Generator: The meshes of the subsequent 
frames have been fixed on the reference points. The pixel 
interval has been automatically set in order to obtain the 
number of nodes of the net of the first frame. Fig. 7 shows 
the meshes on the related frames. In this research, the 
calculation of soft tissue deformation refers VL and VM. 
Based on the results of Fig. 7, a region of interest (ROI) of 
two muscles was selected separately to get the new selected 
points. Fig. 8 shows a sample of selected ROI at frame 5 of 
VL muscle and the processing done by motion estimation 
algorithm.  In order to quantify the soft tissue modification 
during the frames, the obtained triangular meshes are 
analyzed and the STDP at each frame is calculated by using 
(1). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 9. ANN Architecture for Gait Patterns Identification using RMS and 
Soft Tissue Deformation Inputs of healthy/injured subjects. 

 

E. Gait Pattern Identification using Artificial Neural 
Network 

For identification of gait pattern based on RMS of EMG 
signals and STDP, the multilayer FFBPNN has been used in 
this study [22]. A general architecture for ANN for twelve 
input parameters and one output parameter used to 
identification gait pattern for the healthy and injured 
subjects is shown in Fig. 9. The inputs to the network were 

the root mean square (RMS) values of EMG signal and 
STDP for two muscles: vastus lateralis (VL) and vastus 
medialis (VM), for the selected gait phases. The network 
was trained based on sequence of the above parameters for 
the healthy and injured of each subject and then tested on 
data from both also. In order to estimate the status, the input 
parameters were first normalized between the ranges of 0 to 
1 so that appropriate activation functions could be used. 
FFBPNN with four different training functions (Gradient 
Descent (GD), Levenberg-Marquardt (LM), Random Order 
Weight/Bias (ROWB) and Scaled Conjugate Gradient 
(SCG)) were designed and tested using MATLAB 7.0 [23, 
24, 25]. The input vectors and target vectors were randomly 
divided into training (80 percent of input/output data for 
adjusting the network according to its error) and testing (20 
percent of input/output data for providing an independent 
measure of network performance) sets. Each of the networks 
was trained with 12 inputs, 20 hidden layer tansig neurons 
and a single tansig output neuron for gait pattern of 
healthy/injured (1/0) subjects. A 10-fold cross validation 
was performed to test the performance of FFBPNNs with 
different training functions.  
 

III. RESULTS 
In order to observe the relationship between RMS value 

of EMG signals and STDP, the correlation between these 
two variables was computed. The coefficient of correlation 
is a measure of the strength and direction of the linear 
relationship between two variables (EMG Parameter and 
STDP) that are defined as the (sample) covariance of the 
variables divided by the product of their (sample) standard 
deviations. For assuring RMS value of EMG signals and 
STDP can be used for identification of gait patterns, the 
correlation between two parameters was tested for each 
muscle from different phases of gait cycle. Based on the 
average value from 12 gait cycles for each subject, Table I 
and Table II show the correlation between EMG RMS and 
STDP values for VL and VM muscles, respectively. The 
average values of coefficient of correlation for VL and VM 
muscles for all subjects were found as 0.760391 and 
0.811655, respectively. 

Based on the values of coefficient correlation, root mean 
square (RMS) and STDP from two different muscles of four 
subjects were used to design artificial neural network. The 
FFBPNNs were designed, trained and tested for all subjects 
walking at 4 km/h. The targeted mean square error was 
0.001 for higher precision. Initially, two multilayer 
FFBPNNs with Levenberg-Marquardt (LM) training 
function were designed separately for RMS values of EMG 
and STDP values. The first FFBPNN was trained and tested 
using only RMS value of EMG for all subjects. This 
network converged to a mean square error of 0.0014759 
with an average accuracy of 99.66% at training phase and 
98.6% at test phase for healthy subjects. For injured 
subjects, the average accuracy was 54.18% for training 
phase and 100% for test phase. Additionally, a FFBPNN 
was designed using only STDP values which converged to a 
mean square error of 0.0036694 with an average accuracy of  
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TABLE I.  COEFFICIENT OF CORRELATION BETWEEN RMS AND STDP 

VALUES FOR VASTUS LATERALIS MUSCLE FOR ALL SUBJECTS 

Subject Coefficient of Correlation 

Healthy Subject 1 0.7047 

Healthy Subject 2 0.8582 

Injured Subject 1 0.7509 

Injured Subject 2 0.7275 

TABLE II.  COEFFICIENT OF CORRELATION BETWEEN RMS AND STDP 
VALUES FOR VASTUS MEDIALIS MUSCLE FOR ALL SUBJECTS 

Subject Coefficient of Correlation 

Healthy Subject 1 0.8109 

Healthy Subject 2 0.8672 

Injured Subject 1 0.8101 

Injured Subject 2 0.7582 
 

99.63% during training phase and 99% for test phase for 
healthy subjects. For injured subjects, the average accuracy 
was 54.91% at training phase and 100% at test phase. 

In the second step, multilayer FFBPNN with four training 
functions were designed for combined RMS and STDP 
features. Fig. 10 illustrated the convergence curves for 
different training functions used in this study. The overall 
performances (average classification accuracy) of all 
training functions are shown in Fig. 11. The maximum 
training (100.00%) and testing (98.50±4.11) classification 
accuracies were achieved by using Levenberg-Marquardt 
training function. While the next highest average training 
(99.68±1.62) and testing (97.50±5.39) classification 
accuracies were obtained by using Scaled Conjugate 
Gradient training function.  Table III shows the average 
accuracy of multilayer FFBPNNs for healthy and injured 
subjects, separately, during training phase and test phase.  

 

IV. DISCUSSION 
This preliminary study shows that the use of root mean 

square (RMS) of EMG signals and soft tissue deformation 
parameter (STDP) with FFBPNN provides assistance in 
making an objective and informed decisions about 
identification of gait patterns from lower limb muscles. The 
methods used in this study demonstrate that the 
comprehensive information about muscle contraction during 
a gait cycle can be obtained using combination of 
neuromuscular signals and soft tissue deformation analysis 
of muscles. 

The system has been tested for a small group of subjects 
and shows promising results. The results shown in Table I 
and Table II depict that there is a positive high correlation 
between the RMS values of EMG data and STDP values of 
VL and VM muscles for healthy and injured subjects. It 
suggests that video frames based analysis of muscle 
movements can also be used as a supporting tool to observe 
the neuromuscular alterations in injured subjects.  
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Fig. 10. The curve of network error convergence 
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Fig. 11. Performance of comparison using four classifiers 

 

TABLE III 
AVERAGE ACCURACY OF MULTILAYER FFBPNN FOR HEALTHY AND 
INJURED SUBJECT BASED ON COMBINED RMS AND STDP FEATURES 

 

Method 
Healthy Injured 

Training Test Training Test 

GD 69.1±18.34 62.2±24.76 98.7±3.54 98.2±6.42 

LM 100.0±0 97.0±8.23 100.0±0 100.0±0 

ROWB 100.0±0 95.2±11.05 49.2±18.81 48.6±27.3 

SCG 99.2±4.18 95.0±10.78 100.0±0 100.0±0 

 
The use of FFBPNN with different training methods has 

also proved to be helpful in objective identification of gait 
patterns. The identification accuracy results were improved 
for injured subjects when combined RMS and STDP 
features were used. The difference in targeted and actual 
values suggests that further estimation accuracy requires 
considering more input parameters. It also indicates that 
RMS of EMG signals and STDP have a strong correlation in 
terms of acquiring strength of muscle contraction. The 
accuracy of the network can further be improved by 
including large data set and using more features both from 
EMG signals and STDP.  

The accuracy of results depends on number of factors 
including position of video cameras in different planes, 
placement of EMG sensors on different body parts and 
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muscles during movement, techniques used for data 
processing and the type of features extracted from data. The 
limited feature set has been used for training FFBPNN 
which can be further enhanced by inclusion of more features 
e.g. time-frequency domain features for EMG signals. 
Additionally, all these data for each gait phase can also be 
stored and later reused to compare the performance of same 
or difference subjects.  

In this study, the system has been applied for vastus 
lateralis (VL) and vastus medialis (VM) muscles which can 
be generalized using common features at different lower 
limb muscles. As the gait patterns of individuals vary and 
designing a completely autonomous system is far 
challenging which requires further investigations in terms of 
features and the type of intelligent mechanism used for 
classification. 

V. CONCLUSION 
This study demonstrates that the combined parameters; 

root mean square values of EMG signals and soft tissue 
deformation parameter are very useful for identification of 
gait patterns of healthy and injured subjects based on 
artificial neural network. Based on the muscles movements 
captured through EMG sensing device and video cameras, 
the trained FFBPNN can differentiate and classify the gait 
patterns of the subjects. This study also evaluates the 
modification of the body segment shape during contraction 
and stretching of muscles using video sequence analysis. 
The proposed method analyzes the video sequences 
recorded during the execution of dynamic muscle’s 
contractions and models the soft tissue by using incremental 
triangular meshes that automatically adapts to the body 
segment. The alterations of the body lower limb have been 
evaluated in terms of STDP. The obtained results are 
promising and the proposed method can be extended to 
other applications in human movement analysis. The future 
study will focus on enhancing the motion capture system to 
optimize the human movement analysis together with 
human musculoskeletal modeling using high-precision 
motion capture cameras and solutions.  
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