
 
 

 

  

Abstract— Generally, Steady-State Visually Evoked 
Potentials (SSVEP) has widely recognized advantages, like 
being easy to use, requiring little user training [1], while Motor 
Imagery (MI) is not easy to introduce for some subjects. This 
work introduces a hybrid brain-computer interface (BCI) 
combines MI and SSVEP strategies — such an approach allows 
us to improve performance and universality of the system, and 
also the number of EEG electrodes from 32 to 3 in central area 
can increase the efficiency of EEG preprocessing to design an 
effective and easy way to use hybrid BCI system. In this study 
the Common Spatial Pattern (CSP) algorithm was introduced as 
a feature extraction method, which provides a high accuracy in 
event-related synchronization/desynchronization (ERS/ERD) 
-based BCI. The four most common classifiers (KNNC, 
PARZENDC, LDC, SVC) were used for accuracy estimation. 
Results show that support vector classifier (SVC) and 
K-nearest-neighbor (KNN) classifier provide better 
performance than others, and it is possible to reach the same 
good accuracy using 3-channel (C3, Cz, C4) hybrid BCI system, 
as with usual 32-channel system. 

 
 Keywords – hybrid brain computer interface (BCI), Motor 
Imagery (MI), Steady State Visually Evoked Potentials 
(SSVEP), electroencephalogram (EEG) channel reduction. 
 

I. INTRODUCTION 

The brain-computer interface (BCI) system uses the 

brainwaves electrical signal acquisition to communicate 
between brain and some terminal device. The goal of BCI is 
not to determine a person’s intent by eavesdropping on 
thoughts, but rather to provide a new channel of output for the 
brain that gives a way to direct some external activity. Usage 
of noninvasive electroencephalogram (EEG), which has a 
high temporal resolution, appropriate for measuring every 
thousandth of a second, is the most prevalent method of signal 

 
L.-W. Ko, S-C Lin, M-S Song, Komarov O are with the Department of 
Biological Science and Technology, Institute of Bioinformatics and Systems 
Biology, and Brain Research Center in National Chiao Tung University, 
Hsinchu 300, Taiwan (e-mail: lwko@mail.nctu.edu.tw, 
saieva123@gmail.com, meng.s.song@gmail.com, zakoomar@gmail.com ). 
(Corresponding author: L.-W. Ko) 

  
This work was supported in part by the UST-UCSD International Center 

of Excellence in Advanced Bio-engineering sponsored by the Taiwan 
National Science Council I-RiCE Program under Grant NSC- 
102-2911-I-009-101, the Aiming for the Top University Plan of National 
Chiao Tung University, the Ministry of Education of Taiwan under Contract 
103W963, and the National Science Council, Taiwan, under Contract NSC 
102-2420-H-009 -003-MY3. 

 

acquisition in modern BCI systems. Normally application of 
the BCI requires voluntary adaptive control by the user. 
However, BCI systems do not work for all users — 
approximately 20% of subjects do not exhibit adequate BCI 
performance for effective controlling, a phenomenon called 
“BCI illiteracy” by some groups. This is why development of 
new BCI approaches to improve of BCI universality is an 
important problem [11]. 

Based on these studies, the system also combines two 
typical BCI approaches as hybrid technique: Motor Imagery 
(MI) and Steady-State Visually Evoked Potentials (SSVEP) 

tasks. 

 
Figure 1 ERD/ERS maps and time courses of four selected 
recording sites 
 
 SSVEP is a natural response for visual stimulation at 
specific frequencies. It is characterized by signal amplitude, 
increasing at the stimulus frequency [1, 3, 4]..  

A hybrid BCI is composed of two or more BCIs. This 
particular one recognizes at least two brain activity patterns in 
a simultaneous or sequential manner [11-18]. Using two or 
more patterns, the hybrid BCI can achieve certain goals in a 
more efficient way than conventional BCI systems [18]. For 
example, Allison et al. demonstrated that classification 
accuracy can be improved by detection of MI and SSVEP 
simultaneously, especially for BCI-blind subjects [11]. 
Pfurtscheller et al. proposed a hybrid BCI, where an MI-based 
brain switch was used to turn ON/OFF an SSVEP-based BCI 
[1,15,17 ]. This study uses a hybrid MI and SSVEP combined 
BCI to distinguish the patterns, based on time-frequency 
analysis, with higher accuracy. 
During feature extraction the Common Spatial Pattern (CSP) 
algorithm shows high efficiency in calculation of spatial 
filters for ERD/ERS detection [18]. This study uses CSP 
function for simultaneous direction determination by 
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diagonalizing the two covariance matrices
two classes of motor imagery conditi
application of the CSP function, the avera
reach more than 85%. The average acc
method can reach up to 99%, which is hig
and SSVEP methods apart. 
In this study the 3-channel (C3, Cz and 
hybrid BCI system was designed based o
SSVEP pattern in central area. The system 
up to 97% — higher than only MI or 
Proposed approach provides a simpler way t
and SSVEP response.  

II. MATERIAL AND METHOD

A. Subjects 
For EEG experiment 11 right-handed 

selected - 8 males and 3 females, aged be
years (mean age 24േ3 years), with norma
normal vision. Subjects had no history of
cardiovascular, neurological or psychologica
healthy and had no prior experience with 
experiment. Each experiment was perform
with actual country laws and IRB regulati
volunteer felt uncomfortable during the exp
data was excluded from data analysis. In tot
conducted on 11 subjects.   

B. BCI experiment paradigm 
After EEG recording setup had been per

were seated in a comfortable position, and w
follow the experiment rule. The records for
been taken continuously in one day. In
experiment was divided in three sessions, as
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 (b) 

s, associated with 
ions [18]. With 
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C4) EEG-based 
on the observable 
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SSVEP sessions. 
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DS 

volunteers were 
etween 21 and 29 
al or corrected to 
f gastrointestinal, 
al disorders, were 
EEG-based BCI 

med in accordance 
ions. One female 
periment, thus her 
tal, the study was 

rformed, subjects 
were instructed to 
r one subject had 

n this study, the 
s shown on Fig.2 
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Figure. 2. The experiment proce
procedure of  MI task. (b) presents 
task. (c) presents the procedure of hy
 
a. MI Task Experiment Design 

In the MI task session (see Figure
blocks in one session; duration of ea
seconds, when a left hand arrow app
imagine grasping his/her left hand. I
were asked to either squeeze left or 
Then they were instructed to squee
imagery starting from the second blo
includes three runs without the sec
were collected for each subjects.   
 
b. SSVEP Task Experiment Desig

During SSVEP session (see Fig.2
to gaze at the monitor flicker, unti
order to determine the set of the mos
for flicker flashing, a special preli
conducted. As a result, four flicker s
selected: 13 Hz, 15 Hz, 17 Hz and
monitor (60 Hz refresh rate, 1920x
was used for visual stimulation
frequencies cannot be implemente
black/white flickering pattern, due t
the LCD screen. A special techn
approximate target frequencies of
variable black/white reversing inter
11 Hz target stimulus on a screen w
can be implemented with 11 cycles o
patterns lasting ( 3 3 3 2 3 3 3 2 3 3
frames per second.  Using this 
frequency up to half of the screen
realized. Totally, 10 trials per subje
session. 
 
c. Hybrid Task Experiment Design

In this session two different stim
obtain stronger response, determ
time-frequency power spectrum d
instructed to focus on the fixation do
was showed for 7 seconds. Demonst
accompanied by 20 Hz flashing, de
cue was accompanied by 15 Hz flash
subject were collected in this session

 

 

   

edure. (a) presents the 
the procedure of SSVEP 
ybrid task(MI+SSVEP) 

e. 2-(a)), there were five 
ch imagery session was 7 
eared, the subject need to 

In the first block, subjects 
right hand in real action. 
eze left or right hand in 
ock. The data for analysis 
ond run, totally 45 trials 

gn 
2-c), subjects were asked 
il it stopped flashing. In 
st appropriate frequencies 
iminary experiment was 

stimulus frequencies were 
d 20 Hz. A 21-inch LCD 
x1080 screen resolution) 
n. In general, selected 
ed with a fixed rate of 
to limited refresh rate of 

nique was developed to 
f SSVEP stimulus with 
rvals [1,9]. For example, 

with 60 Hz refreshing rate 
of black/white alternating 
3 2 3 3 3 2 3 3 3 2 3 3 2 ) 
approach, any stimulus 

n refreshing rate can be 
ect were collected in this 

n 
mulus were combined to 
mined by analysis of 
diagram. Subjects were 
ot for 2 seconds. Then cue 
tration of the left cue was 
emonstration of the right 
hing. Totally 45 trials per 
n. 
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Presentation® experiment program cont
used for stimulus presentation. 

. 

C. Data Recording 
To record EEG signal, an elasticated cap

was used (Contact Precision Instrum
Neuroscan Acquire software). An elect
strategy suggested by International 10/20 sy
this study (Fig.3). Data was collected with a
500 Hz. The impedance of each channel w
kΩ.   

Figure 3 32-channel EEG position the data u
 

D. Data Processing 
The data analysis process is listed below:
 
1. Bandpass filter 1~50 Hz was used t

power line noise and other high frequency n
2. Noise/artifact removal was applied to

pattern determination; 
3. Fixation time (2 sec) was used to recor

normalization; 
4. Epoch extraction to study the ev

dynamics of continuously recorded data; 

trol software was 

p with 32 sensors 
ments amplifiers, 
trodes placement 
ystem was used in 
a sampling rate of 
was kept below 5 

 
using 

 

to remove 60 Hz 
noise; 
o avoid incorrect 

rd the baseline for 

vent-related EEG 

5. A Fast Fourier Transform with 
points) overlapped by 0.5 secon
implemented by Hamming window;

MATLAB R2009b and EEGLAB
S, 2004) were used for data analysis

Figure 4. Paradigm of EEG data ana

III. RESULTS AND DI

Fig. 5-a shows that, during imag
right and left hands are opposite, w
previous studies. Pattern of MI res
power spectrum diagram is based
extracted from symmetric electrode
that ERD pattern is presented in alph
occurs in C4 channel for left hand
respectively. And vice versa, ERS o
band for left and right hands, respec

As shown in Fig.5-b, hybrid task c
patterns can be observed on C3 
decrease of mu rhythm occurs on C
and symmetrically on C3 for righ
increases at 20 Hz and 15 Hz for left
respectively.  

Fig.5-c shows power increasi
corresponds to the one used in each 

 

 

1 second step (500 data 
nds (250 data points), 
 

B (Delorme A & Makeig 
s 

 
alysis.  

ISCUSSION 
gery task, the results for 
which is consistent with 

sponse in time-frequency 
 on ERD/ERS patterns, 

e pairs. This study shows 
ha band (8~12 Hz), and it 
, and C3 for right hand, 
ccurs in C3 and C4 alpha 
tively. 
combination of the signal 
and C4 electrodes. The 

C4 for left hand imagery, 
ht hand. SSVEP power 

ft and right hand imagery, 

ing in frequency that 
type of stimulus flicker. 
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Figure 5-(a) According to previous study, po
of C3, C4 in the international 10–20 EEG sy
left and right movement imagery. The top tw
hand (RH) imagery. 

Figure.5-(b) The combination signal patter
ipsilateral side, and a power increase corresp
 

Figure 5-(c) shows 15 Hz and 20 Hz stimuli 
C4, the duration of flicker is 4s and the re
itself as an increase in amplitude of the stim
 

To sum up, in comparison with MI task,
showed clearer patterns in SSVEP, and all
the clearest patterns in hybrid task. The str
SSVEP starts from occipital area and decrea
to frontal area. 

  

ower of EEG in alpha band and beta band in central area, o
ystem, which can provide power for discriminating and h
wo pictures present left hand (LH) imagery; the bottom tw

rn in C3 and C4. An ERD occurred in contralateral bra
ponding to flicker stimuli. 

 
pattern in C3 and 

esponse manifests 
mulated frequency. 

, 9 of 11 subjects 
l subjects showed 
rongest pattern of 
ases progressively 

IV. PROPOSED HYBRID BCI SSY
CENTRAL ELECTR

A. Hybrid BCI System Design  
In consistency with previous result

SSVEP at C3, Cz and C4 was observ
of MI mainly focus in central area
reduce the number of channels, ap
and compare results. Successful sep
hand imagery results by machine
allowing to design a three-channel 
6). To estimate the system’s accurac
tasks was collected at C3, Cz and C
feature extraction, combined w
performed. 

Figure 6. System paradigm of three 
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ved. Moreover, ERD/ERS 
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paration of left and right 
e learning technique is 
hybrid BCI system (Fig. 
y, data of MI and SSVEP 
4 channels. Furthermore, 

with classification, was 

 
channel BCI system 
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B. Hybrid BCI Analysis 
This study extracted the 7 seconds imagery dataset and 

transferred it into 1~50Hz frequency as a feature. Also, the 
analysis of two different datasets was planned to compare the 
accuracy. The first dataset was based on the 32-channel 
sample dataset (which is shown in Figure 3), while the other 
dataset was based on the 3-channel (which is shown Figure 6) 
one. The goal of the analysis is to compare the accuracy 
between the two datasets. 

 
a. Feature Extraction 

This study designs spatial filters that lead to new 
frequency-domain data whose variances are optimal for the 
discrimination of two populations of EEG related to left and 
right motor imagery. The method is based on common spatial 
pattern, designed spatial filters using simultaneous 
diagonalization of two covariance matrix, was applied to the 
classification of imagining hand movement. 

This study uses the frequency-domain data of a single trial, 
that presents as an N ൈ H matrix E, where N is the number of 
channels and H  is the number of frequency. The average 
spatial covariance of this data can be obtained from 

 
                                       C ൌ EᇱEN                                          (1) 
 
where Ԣ denotes the transpose operator. For separating two 
distributions, the spatial covariance is averaging over the 
trials of each group. The composite spatial covariance is 
calculated as 
                                       Cc= ܥ  ܥ                                (2) 

ܥ  can be factored asܥ  ൌ  ܷߣܷԢ, where ܷ is the matrix 
of eigenvectors and ߣ is the diagonal matrix of eigenvalues. 
The eigenvalues are assumed to be sorted in descending order 
in this section. 
The whitening transformation 
 
                                     P ൌ  ඥߣି ଵܷԢ                                (3) 

 
equalizes the variances in the space spanned by ܷ, i.e., all 
eigenvalues of PܥܲԢ  are equal to one. If ܥ  and ܥതതത  are 
transformed as 
 
                              ܵ ൌ PܥܲԢ and ܵ ൌ  ܲԢ                (4)ܥܲ

 
Then ܵ and ܵ  share common eigenvectors, i.e., 
 
             ܵ ൌ Ԣ , ܵܤߣܤ ൌ ߣ Ԣ , andܤߣܤ  ߣ ൌ  (5)         ܫ

 
Where I is the identity matrix. Because the sum of ߣ and ߣ 
is always one, the eigenvector with largest eigenvalue for ܵ 
has the smallest eigenvalue for ܵ  and vice versa. 
Eigenvectors B  are useful for discriminating of these two 
distributions. The projection of whitened EEG onto the first 
and the last eigenvectors in B gives feature vectors that are 
optimal for discriminating. 

With the projection matrix  W ൌ PԢB, the mapping of a trial E 
is given as 

                                         Z ൌ WE                                  (6) 
 

The rows of ܹିଵ are common spatial patterns. 
For classification, the features used are obtained by filtering 
EEG according to (6). For these two imagined movement, the 
diagonals of only a small number m  of signals are most 
suitable as features for constructing classifier. The signals ܼԢ 
(p ൌ 1 ڮ 2m) that maximize the difference of covariance of 
left versus right motor EEG are associated with largest 
eigenvalue ߣ  and ߣ . These signals are the m first and last 
columns of Z due to the calculation of W. 
 

                                  ݂ ൌ ௗሺ௩൫ುᇲ ൯ሻே                            (7) 
 

The feature vectors ݂  of left and right trials are used to 
calculate a linear classifier. The average serves to 
approximate normalization [6].  
 
b. Classifier 

For classification, the study uses the following four 
classifiers: KNNC, PARZENDC, LDC and SVC 
respectively. The k-nearest-neighbor classifier is one of the 
most basic classifiers for pattern recognition or data 
classification. The principle of this method is based on the 
intuitive concept that data distances of the same class should 
be closer in the feature space. As a result, for a given data 
point x of unknown class, the study can simply compute the 
distance between x and all the data points in the training data, 
and assign the class determined by the K nearest points of x. 
Due to its simplicity, KNNC is often used as a base method in 
comparison with other sophisticated approaches in pattern 
recognition.  

Linear Discriminant Classify (LDC) is a classification 
method originally developed in 1936 by R. A. Fisher. It is 
simple, mathematically robust and often produces models 
whose accuracy is as good as more complex methods, and A 
Support Vector Classifier (SVC) performs classification by 
finding the hyper-plane that maximizes the margin between 
the two classes. The vectors (cases) that define the 
hyper-plane are the support vectors. 

PARZENDC is a technique for nonparametric density 
estimation, which can also be used for classification. Using a 
given kernel function, the technique approximates a given 
training set distribution via a linear combination of kernels 
centered on the observed points. In this work, we separately 
approximate densities for each of the two classes, and we 
assign a test point to the class with maximal posterior 
probability [19]. 
 
c. Validation 

This study randomly divided dataset of each subject for 
70% as training data, and 30% as testing data, and repeated it 
100 times to eliminate the difference of sub-dataset. The 
training dataset was used to build a classifying module, which 
was used for testing dataset classification. Every subject got 
their own average accuracy and standard deviation of 100 
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repetitions. Then this study calculated ave
each subject and the result is shown in the n

C. Results 
In the 32-chnnel dataset results, main featu

from MI task dataset to the 6 most importan
which mean the steadiest accuracy was seen
7) and it’s close to the highest accuracy. Fo
hybrid task, the best accuracy was achi
Detection the largest and smallest featur
performed upon the two groups. 

Figure 7 shows the comparison of 
performances, this study compares three ta
hybrid task) accuracy by using KNNC, PA
and SVC. Figure 7-a shows the result of 32
EEG classification of three tasks. The a
performance display that MI task < SSVE
task.   

This study also compares the hybrid t
between 3-channel and 32-channel EEG c
the result is shown as Figure 7-b. The blue c
32-channel classification result (n =11), 
indicates the 3-channel result. Similar to th
best accuracy of the 3-channel can be reach
the KNNC and SVC results, respectively. 

 
 

 
 

Figure 7-(a) Comparison of accuracy in M
hybrid session 

 

Figure 7-(b) The comparison of accuracy of
3-channel in hybrid session

erage accuracy of 
next paragraph. 

ures are extracted 
nt spatial patterns, 
n at m = 3 (in Eq. 
or the SSVEP and 
eved at m = 1. 

re vector can be 

different tasks’ 
asks (MI, SSVEP, 
ARZENDC, LDC 
2-channel channel 
average accuracy 
EP task < hybrid 

task performance 
classification, and 
chart indicates the 
and the red one 

he 32-channel, the 
hed up to 95% in 

 
MI, SSVEP and 

 
f  32-channel and 
n 

 
In this case, the 4 commo

PARZENDC, LDC and SVC) are c
shows that for each of the classifier
up to 90%.  

Figure 7-b shows the accurac
32-channel and 3-channel dataset 
show that using 3-channel EEG sign
keep as good performance as th
32-channel EEG channels. With KN
can perform better accuracies than th
the most results showed in the
classification accuracy can be reac
that the proposed hybrid syste
classification performance than on
techniques to do the BCI system. 
 

D. Discussion 
As a result, MI task performance 

SSVEP task performance. At hybrid
of MI and SSVEP tasks are combine
specific pattern to recognize. 

In the results, SSVEP approach 
than MI for 9 of 11 subjects, but th
reached for everyone with hybrid ta
with previous studies, hybrid 
universality of BCI. 

This study showed that accuracy 
can reach up to 97%, that is just a 
possible accuracy of the full 32-cha
advantages of the 3-channel BCI s
study, is reduced EEG preprocessi
becomes possible to use 3-chann
devices like MINDO for this task. 

Hybrid data showed the best pe
supposedly due to exhibition of mo
SSVEP and MI tasks separately. In
will be extended in order to res
classification, design the real-time
performance. 
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