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Abstract—The computation of deep belief networks (DBNs) 

requires a large number of arithmetic operations, which can be 

handled only by arithmetic operators. However, the operators 

are utilized only a small fraction of the time (1–5%) when they 

are computed by general-purpose computers. In this paper, a 

special-purpose hardware architecture that computes DBNs 

using a large number of arithmetic operators with a utilization 

rate greater than 60% is proposed. On the basis of neuron 

machine architecture, the computation units in the system are 

controlled according to stage operation table, which specify the 

sequence of the computation stages; thus, the complicated 

procedure of the DBN can be carried out in hardware. Moreover, 

the usage of the memory space is considerably improved by using 

offset addressing. The proposed schemes are implemented on a 

hardware simulator coded in MATLAB and on an FPGA chip. 

The full source code of the hardware simulator is available at a 

website. The readers can execute the code on the fly and 

reproduce the proposed schemes. The FPGA implementation 

achieves a lower computational time by a factor greater than 100 

compared to a PC. 

I. INTRODUCTION 

ECENTLY, deep belief network (DBN) models have 

captured significant interest from the machine-learning 

community and brought the resurgence of neural 

networks. The superior ability of DBNs in learning features 

that capture higher-order correlations in unsorted data has 

allowed DBNs to be applied successfully in many application 

domains such as classification, data mining, recognition, and 

robotics [1]. 

Training a DBN involves training several restricted 

Boltzmann machines (RBMs) and requires a considerable 

amount of time even for modern CPUs. General-purpose 

graphics processing units (GPUs) are gaining popularity 

because they provide a lowering of the computational time by 

a factor of 5–50 compared to x86 CPUs. However, most 

general-purpose computers, including systems with the CPUs 

and GPUs, are highly inefficient in terms of utilization of 

arithmetic operators. 

For example, the experiment in [2] shows that it took 40 

min to train 60000 samples with a 784×800 RBM on an Intel 

dual-core i5-2410M 2.3-GHz CPU. According to the RBM 

algorithms, the computation requires approximately 4 × 1011 

arithmetic operations, as will be discussed later in this paper. 

In this CPU, computations are handled by one Advanced 

Vector Extensions (AVX) block contained in each core (two 

cores in the CPU), and each AVX can sustain four 
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double-precision (DP) FP operations per clock cycle. 

Therefore, the full throughput of the CPU that can compute in 

40 min is 4.4 × 1013 arithmetic operations. This estimation 

shows that the arithmetic operators effectively work for only 

approximately 1% of the full CPU time. Moreover, the 

proportion of arithmetic operators in the CPU hardware 

resources is extremely low. The number of transistors used for 

the CPU is 6.24 × 108 [3], whereas a DP FP multiplier can be 

implemented using only 2 × 105 transistors [4]. 

In the case of GPU, a 720-MHz NVIDIA GeForce 460, for 

example, has 336 cores each computing one DP FP fused 

multiply-add operation per clock cycle. A state-of-art RBM 

implementation on this GPU computed the same RBM 

network 46 times faster than the aforementioned CPU [2], 

which resulted in an operator utilization rate of 3.2%. Similar 

results on other CPU and GPU implementations have been 

reported in [5]. This implies that conventional computers use 

only a small fraction of the time and hardware resources for 

the computation. 

In fact, this inefficiency originates partly from the 

functionality required to maintain the systems to be general- 

purpose: all-purpose stored-program architecture, centralized 

memory, compiled code from high-level programming 

languages, and so forth. However these features may not be 

necessary when a computation device is dedicated for 

computing neural networks or DBNs. If we increase the 

operator utilization rate, the chip size and power consumption 

can be considerably reduced. 

In this paper, a special-purpose hardware architecture that 

computes a DBN with a high arithmetic-operator utilization 

rate is described. The average utilization rate of hundreds of 

floating-point operators is maintained at a value greater than 

60% throughout the computation, and the proportion of 

hardware resources that are used for the operators is greater 

than 80%. 

The proposed architecture is based on neuron machine 

(NM) hardware architecture. Regarding the NM, we proposed 

in [7] a preliminary hardware structure for neural networks in 

which communication between neurons is performed only 

using a set of memory combinations and a number of synaptic 

computations can be carried out in parallel. However, this 

hardware structure can only compute simple perceptron 

models. In [8], the architecture was modified so that neural 

models with complex synaptic and neuronal functions can be 

accommodated, and a spiking neural network with complex 

functions was implemented using the extended architecture, 

even though it supports only feed-forward networks and lacks 

schemes to run back-propagation models. A memory called 

reverse-mapping memory (R memory) was proposed in [9] 
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and can be used for sharing synaptic weights between 

feed-forward and backward networks without moving or 

copying weight data. 

However, previous NM systems have two major problems. 

First, the memory space required to store the neuron outputs 

can be excessive when the synaptic parallelism is tuned to be 

large. Second, the parameters used to operate the system are 

scattered in the control circuits and even fixed in the hardware. 

This may be acceptable for computing simple networks, but it 

makes the system intractable as the neural network grows 

large and complex, as in DBN. 

A new control scheme is proposed in this paper, in which 

the procedure of the computation stages is described in a table 

and a limited form of the stage-level programming can be 

carried out. This scheme simplifies the system control and 

enables optimization of the system. Further, an efficient 

sequence of computational stages for the DBN is also 

proposed, by which the memory space required can be 

considerably reduced. 

The proposed architecture is implemented on a hardware 

simulator and on an FPGA. One of difficulties in presenting 

new ideas for a hardware architecture is that it is very difficult 

for the readers to reproduce the proposed schemes. In this 

paper, a self-contained hardware simulator simulating the 

proposed system is developed in MATLAB, and the full 

source code is available at a website. Even though the source 

code is coded in a sequential language, it is cycle-accurate and 

simulates various hardware components such as shift registers 

and pipelined FP operators. The reader can execute the 

simulator on the fly and verify the operation of the proposed 

system. The simulator code can also be translated into 

hardware description languages such as VHDL without 

difficulty and implemented in hardware. 

This paper does not state improvements in the DBN 

algorithm or better arithmetic operations. The proposed 

schemes focus on how to maximize the utilization of existing 

arithmetic operators to compute DBN algorithms. 

Section II of this paper reviews the DBN and the NM 

hardware architecture, and Section III describes the proposed 

schemes. In Section IV, the implementation details and 

hardware simulator code are described. The experiment 

results and conclusions are presented in Sections V and VI, 

respectively. 

II. BACKGROUND 

A. DBN 

An RBM is composed of a visible layer and hidden layers 

with connections between the layers but not between units 

within the same layer. DBNs are a composition of RBM 

networks where the hidden layer of each RBM serves as the 

visible layer for the next RBM. This leads to a fast 

layer-by-layer unsupervised training procedure, where 

contrastive divergence is applied to each sub-network in turn, 

starting from the lowest pair of layers. 

For a given training sample v, the connection weights of an 

RBM network are updated as 
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where wij is the weight of the bidirectional connection between 

the visible neuron vi and the hidden neuron hj; ɛ is a learning 

rate; vposi is the training sample for vj; hposj is the state of hj 

generated form the training sample; vnegi and hnegj are the 

reconstructed states of vi and hj, respectively; ai and bj are 

biases for vi and hj, respectively, and σ(x) is the sigmoid 
function 1 / (1 + e-x) [10]. Algorithm 1 shows a typical 

computation of DBN with multiple hidden layers. 

 

Algorithm 1: DBN procedure 
1: T ← training sample 

2: for each RBMl from bottom to top 

3:   for each sample s in T 

4:      train RBMl with s 

5:      add h∋hposj in Tnew 

6:   end for 

7:   T ← Tnew; empty Tnew 

8: end for 

 
As the computation is dominated by connection-specific 

arithmetic, training one connection requires approximately 3 

multiplications and three additions for (2)– (4), and two 

multiplications and two additions (including subtraction) for 

(1). Therefore training a 784×800 network with 60000 

samples, for example, requires 1.9 × 1011 multiplications and 

1.9 × 1011 additions. Although there are some variations 

among DBN algorithms, the differences are not significant 

with regard to computational complexity [1]. 

The computation of the DBN presents a few problems when 

it is computed with special-purpose hardware: (1) the 

computation process is too complicated to implement in 

hardware, requiring several stages of different computations 

and (2) if all training samples are trained before training the 

next RBM, as is the case in most software implementations, a 

large memory space is required for hposj in order to use vposi 

in the next RBM. 

B. NM Architecture 

In the NM architecture, the computational model of the 

neural network is: 
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where yj is the state of the jth neuron, fN is a neuronal function, 

pj is the number of synapses (connections) on the jth neuron, fS 
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is a synaptic function, mij is the index number of the neuron 

connected on the ith synapse of the jth neuron, and wij is the 

weight of the ith synapse connected on the jth neuron. 

An NM is a register-transfer level (RTL) special-purpose 

hardware architecture for simulating neural networks. The 

NM is characterized by a memory structure that maps the 

outputs of the neurons to the inputs of other neurons. A 

memory unit called network unit (NU) takes a newly 

computed neuron output yj and produces a multiple ymij for a 

specific neuron simultaneously at every clock cycle. 

The NU is composed of P modules, each with two 

individual memories: MM and MX. Figure 1 shows a typical 

configuration of an NM system including the internal structure 

of the NU. In each memory module, the output of MM is 

connected to the address input of MX, and the output of MX 

becomes one of P ymij outputs of the NU. MX is a dual-port 

memory in which read and write operations can be carried out 

simultaneously. The write ports of all MX memories in the 

NU are connected together which become the yj input of the 

NU. The content of the kth MM and MX are: 

 

 MMk(b) = mij  

 MXk(j) = yj,   

where 

 i = mod(b  P + k, bpn  P)   

 j = b / bpn  

 bpn = max pj / P.  

  

If i ≥ pj, a special value is stored in MM, indicating that it is a 

null connection [7]. 

With these memories, addressing the sb input sequentially 

from 0 to (N × bpn) − 1 will make the NU produce P ymij 

outputs at a time starting from the first P connections of first 

neuron to the last P connections of the last neuron, where N is 

the total number of neurons. The set of P connections that are 

produced at the same clock cycle is called a synaptic bunch 

(SB). 

The NU enables synapse units (SNUs) to compute the 

synaptic functions of P connections simultaneously, a dendrite 

unit (DU) to sum the results of the SNUs, and a soma unit (SU) 

to compute the neuronal functions, one after another. The new 

neuron output, yj, computed at the SU is then stored in the MX 

memories in the NU via the yj input. There are MW memories 

at the SNU for wij; their contents are stored similarly to the 

MM case. The connection from the SU to the SNU in Figure 1 

is for Hebbian learning [7]. For back-propagation models, a 

memory called MR is included in each memory module in the 

NU to store the reverse mapping information of the network 

topology [9]. In case of a multi-layered network, each 

computation stage is computed in sequence, as if they are 

separate networks, and neuron outputs computed in the 

previous stages are shared by means of MX memories. 

By designing the computational units as fully pipelined 

circuits, the system can compute P connections per clock 

cycle and one neuron output per bpn clock cycles. 

The NM architecture has a number of advantages: 

communication between the neurons is accomplished just by 

accessing memories requiring no communication overheads; 

network topology information is stored only in MM (forward 

network) and MR (backward) memories with no restriction on 

the network topology; weight memories are distributed and 

embedded in the computational circuits and the data paths of 

the memories are short; a large number of connections can be 

computed simultaneously by multiple SNUs; large-scale 

pipelining parallelism can be obtained from the computational 

units and the pipeline delay results in little impact on the 

overall performance [7]; and simple and uniform structure 

without necessarily requiring a main computer. 

However, there are a few problems with this architecture; it 

requires a large memory space for MX to maintain the 

duplicated values of yj, and controlling the system becomes 

difficult as the number of hidden layers increases. 

III. PROPOSED SCHEMES FOR DBN 

In previous works, a control unit (CU) was composed of 

combinational and sequential logics without structures. In our 

design, the CU is more organized to deal with the complex 

computation scenarios of the DBN. 

A. Stage Operation Table 

In our scheme, offset logics are placed in front of the 

address inputs of all memories and the memory offset is 

controlled by the CU. For instance, if the offset for the MM 

memories is set to 6000, and the sb input is sequentially 

scanned in the range from 0 to 6499, a range of 6000–12499 

is addressed from all the MM memories. This scheme makes 

memory space re-locatable and reusable, and the number of 

bits needed to represent the memory address to be reduced. 

A table called a stage operation table (SOT) is used to 

control the computation sequence. It consists of a series of 

records each containing the information required to control 

the respective stage. At the beginning of the stage the CU 

reads the record and sets the control registers. During the 

computation, circuits in the system reference the register to 

select multiplexers or to set the counters, for example. Figure 

2 shows an SOT as an example. The first record denotes an 

input-only stage (type 1), in which a training sample with a 

size of 784 is loaded into the memories. The second record 

indicates that the stage is a positive hidden layer (type 2) with 

500 neurons, with each neuron having 13 SBs and a total of 

MM MX

MW

NU SNU DU SU

*

learning

yj

ymij

MR

sb

 
Fig. 1. Configuration of NM architecture. NM is characterized by a 

memory structure in NU that maps the outputs of the neurons to the 

inputs of other neurons, which enables a large number of connections 

can be computed simultaneously. 
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6500 SBs with zero offset for MM, and so forth. At the end of 

the table, a special record called a “go to” statement is 

specified, and the CU moves the current record pointer, as 

indicated by the second field, i.e., record 2. 

B. Operation Sequence 

In the proposed system, the memory space of each MX is 

divided into three blocks, denoted by MX{1}, MX{2}, and 

MX{3}. Each block is used to store the neuron values 

computed from one layer. Note that all MX memories have the 

same contents as mentioned earlier. The operation sequence 

for a DBN can be described by Algorithm 2, where 

opr(MX{i2}←MX{i1}) indicates that the neuron values in 

the MX{i1} block in this stage are read for computing the 

operation opr, and the results are written to the MX{i2} block. 

 

Algorithm 2: NM DBN procedure 
1: MX{1} ← training sample 1; 

2: for each sample s in T 

3:  source = 1; target = 2; 

4:  for each RBMl from bottom to top 

5:   positive_hidden(MX{target} ← MX{source}); 

6:   negative_visible(MX{3} ← MX{target}); 

7:   { 

8:    negative_hidden(no_save ← MX{3}); 

9:    update_weights; 

10:    if RBMl is top-most layer 

11:     MX{1} ← next sample; 

12:    end if; 

13:   } 

14:   switch source and target; 

15:  end for 

16: end for 

 

There are four stage types in this procedure. The type 1 

stage is carried out only at the beginning of the procedure, in 

which the first training sample is loaded in MX{1} without 

computation (line 1). Then, three types of stages are processed 

to compute each layer. In the type 2 (line 5) and type 3 (line 6) 

stages, the hposj and the vnegi are computed, respectively. In 

the type 4 stage (lines 8–12), the hnegj is computed. In this 

stage, updating the connection weights and reading next 

training data (in the case of last layer) are also carried out 

simultaneously. 

The use of the MX blocks is depicted in Figure 3, when 

there are three RBM stages. Nine stages are computed (1) – 

(9) for one training sample, and then the stages for the next 

sample follow. 

Although a total of L × 3 stages are computed for each 

training sample, the MX space for only three stages are 

required by reusing spaces, where L is the number of layers in 

the DBN. In addition, the MM data used in type 2 stage can be 

reused in the type 3 stage by using the memory offset scheme 

and the SOT. In addition, the MW space for the type 2 stage is 

not stored; therefore approximately one-third of the MM and 

MW space can also be saved. Furthermore extra memory 

space for the values of hposj is not required because all layers 

are computed consecutively before the next training sample is 

processed. 

C. Use of MR memory 

The use of MR memory requires a connection-placement 

algorithm. Although a method was briefly addressed in [9], its 

detail was omitted. The algorithm and the contents of MR 

memories can be described by Algorithm 3. 

 

Algorithm 3: Connection placement 
1: for j = 0 to J - 1 

2: for i = 0 to I - 1 

3:     Store mij, wij at the mod(i + j, bpnf * P)th 

place of neuron j,in MM and MW memories, 

respectively. 

4:    Store the reference to wij in MW that saved 

in the previous step (line 3), at the  

mod(i + j, bpnb * P)th place of neuron i in 

MR memory. 

5:  end for  

6: end for  

 

Here bpnf and bpnb denote the values of bpn in the forward 

and backward networks, respectively. This algorithm ensures 

that connections in both forward and reverse networks are 

located at the same SNU, and MR reference the weight in the 

forward network. The use of MR enables the same weight 

address to be accessed in both networks. 

IV. IMPLEMENTATIONS 

A. System Design 

Figure 4 shows the schematics of a design of the proposed 

system. In our simulator implementation, P = 64. Therefore 

there are 64 memory modules and SNUs although only one of 
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Fig. 3. Use of MX memory space for each training sample. 

1 0 0 0 784 0 0

2 500 13 6500 0 0 0

3 784 8 6272 0 6500 2000

Go To 2

1

2

3

n

stage
type N bpn Nb Ni MM MX_R

memory offsets

4 500 8 6500 0 0 4000

2 500 8 4000 0 12772 2000

4

5

 
Fig. 2. Example of a stage operation table. 

144



 

 

 

them is shown in the figure. The symbol names preceded by 

CA and C are for arithmetic operators, RA and R are for shift 

registers, and Q is for first-in first-out (FIFO) queues. The 

detailed circuits for the DU, and the sigmoid and bias 

functions in the SU are not shown for brevity. The number of 

arithmetic operators used for the SNU, DU, and SU are 256, 

64, and 11, respectively. All arithmetic operators are assumed 

to have pipeline latencies of six clocks. A 1-bit-wide memory 

called MN is additionally included in each memory module in 

the NU in order to store the indication of null connections. 

When this bit is set, the input of the connection is set to zero 

and the value of the weight remains at zero in the SNU and 

therefore does not affect the computation result. 

The flow of data in each type of stages is shown in Figure 5. 

In the type 1 stage, the values of a training sample are 

sequentially read in the SU and stored in MX{1} (vposi) as 

shown in Figure 5(a). In the type 2 stage, the values of vposi 

are read from the NU, and both the pposj and hposj are 

computed by the SU and tied together and stored in the MX 

memories. At the same time, the values of vposi from the NU 

are queued in Q2 until pposj is computed in the SU, and ɛ  

vposi  pposj (positive product) is computed by C10 and CA2 

and then stored in a memory called MD (Figure 5(b)). In the 

type 3 stage, the binary states of hidden neurons, the values of 

hposj, are read from the NU, and the values of vnegi are 

computed by the SU and stored in the MX memories, as 

shown in Figure 5(c). In this reverse-network stage, the 

contents of MR memories are used to address the connection 

weights stored for the forward network. In type 4 stage, the 

values of vnegi are read from the NU and the values of hnegj 

are computed by the SU. Meanwhile, the values of vnegi and 

wij in the SNU are queued in Q2 and Q1, respectively. When 

pnegj is computed at the SU, the vnegi is read from the Q2 and 

ɛ  vnegi  pnegj (negative product) is computed by C10 and 

CA2. In the same clock cycle, the value of the positive product 

previously stored in MD is read, and the difference of the 

positive and negative products is computed by CA3. The 

value of wij previously queued in Q1 is read and added with 

the output of CA3 by CA4. The result of CA4 is then saved in 

MW, as shown in Figure 5(d). 

The data rate at the output of the NU and SNUs are 64 

connections per clock cycle, and the number of SBs (groups of 

64 connections) processed in each stage are 6500, 6272, and 

6500, when the size of RBM is 784×500. A timing gap 

between consecutive stages is required to flush out the 

pipelines. Even when the pipeline delays become large 

(greater than 100 clock cycles), their effect on the overall 

performance is small. 

B. Hardware Simulator in MATLAB 

The hardware simulator code provided at the website in 

[11] simulates the circuit in Figure 4 that computes a 

784×500×500×2000 DBN that is capable of training 28×28 

pixel grayscale images. This code can run on MATLAB 

without additional files. 

This code is composed of two parts. The first part is the 

initialization part, which shows how the contents of the 

memories and SOT can be stored. The rest of the code, the 

clock loop, is for executing the simulation. The variable ck in 

the loop represents the system clock cycle, and each ck loop 

simulates a single clock cycle. The arrays RA and R are used 

for registers, and CA and C are used for arithmetic operators. 

Most if statements function as multiplexers that select from 

one of two values according to the condition. At the end of the 

clock loop, the registers and pipelined operators are shifted 

one step forward. The code has properties similar to hardware 

description languages. For example, statement “C(2,1) = 

MR

MM MX

MW

*

*

MD

-
+

binary

real

∑

*

bias

sigmoid

*

ɛ

RND

≤

adder
tree

training
data

NU
(memory modules)

SNUs DU SU

RA13

MN

RA3

RA1 RA2

RA4

sb

RA5

RA6

Q1

Q2

CA1

CA2

CA3
CA4

RA9

RA10

Csb(2)

R10

R18

R4

C2

C3-6

C11

C7,9,13

C12

C10

R13

0

null conn.

 
 

Fig. 4. Full schematics of implemented system. 
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Fig. 5. Dataflow in each type of stages: (a) type 1, (b) type 2, (c) type 3, 

and (d) type 4 stages.  
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R(10,2) + R(4,2);” functions as adder C2, whose two 

inputs are connected from the outputs of R10 and R4. The 

statement “R(8,1) = C(2,7);” denotes the connection 

from the output of C2, whose pipeline delay is six, to the input 

of R8. The statements at the same level are exchangeable 

without affecting the functionality. This code can be translated 

into a hardware description language without difficulty. For 

an example, a multiplexer selecting one of two signal sources 

can be translated into a VHDL code as follows. 

 
Simulator code VHDL 

if hS==3  

RA(4,1,k) = RA(3,2,k); 

else  

RA(4,1,k) = Csb(2); 

end  

if (hS=”011”) then 

RA4_i <= RA3_o; 

else 

RA4_i <= Csb(2); 

end if; 

 

By default, eight digit images are used as training samples, 

which are embedded in the MATLAB software. This 

simulator can train MNIST handwritten digit database by 

setting a switch at the beginning of the code. During the 

execution of the simulator, the internal states are displayed, as 

shown in Figure 6. 

The simulator code was translated into a VHDL code and 

synthesized on a mid-range Xilinx Kintex 7 FPGA chip 

operating at a frequency of 200 MHz. The number of SNUs, P, 

was 32. As the capacity of the on-chip memory is limited (max. 

16Mb), the FPGA implementation executed smaller DBNs 

(784×200 and 784×100×100×500). A total of 171 

single-precision FP operators are used throughout the system. 

In particular, a Xilinx®  exponent FP operator [12] and a 

24-bit linear feedback shift register (LFSR) are used for 

computing the sigmoid function and random number 

generator in the SU, respectively. A MicroBlaze (MB) 

processor is synthesized for loading the MNIST training data 

into the main memory. 

V. RESULTS AND DISCUSSION 

Figure 7 depicts the footprint of the arithmetic operators in 

the implemented system. Each colored dot in this figure 

denotes an active output of the respective arithmetic operator 

at a specific clock cycle. The slits in the figure originate from 

the null connections. The operators in the SU operate only 

once in a few clock cycles, as shown in the circle, while the 

operators in the other units generate outputs continuously. All 

operators are fully operating in the type 4 stage, whereas only 

one-fourth of them are active in the type 3 stage. A total of 331 

operators in the system produced their outputs for 62.3% of 

the number of clock cycles on average throughout the 

computation, as shown in Table 1. 

 
TABLE I 

UTILIZATION RATES OF OPERATORS AND MEMORIES 

Stage type Arithmetic 

operators 

Memories Memory access rate 

in FPGA (Gbps) 

Type 1 56.0% 73.5% 832 

Type 2 37.7% 49.0% 532 

Type 3 93.2% 85.7% 1014 

Average 62.4% 69.7% 793 

ck+

type 2 type 3 type 4
 

Fig. 8. Footprint of 516 memories in the system (including dual ports). 

Data is written on MX at intervals, whereas other memories are 

accessed continuously. Average memory access rate: 2.6 Tbps. 
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× 104

RBM1 RBM2 RBM3

(b)
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CA1

CA2

CA3

CA4

DU

SU

ck+

(b)

SNUs

 
Fig. 7. Footprint of 331 arithmetic operators: (a) stages for one training 

sample, (b) detailed view. Each colored dot denotes an active output of 

the respective arithmetic operator at a specific clock cycle. The slits in 

the colored block originate from the null connections. Average 

utilization rate of the operators is 62.3%. 

 
 

Fig. 6. Display of simulator code, showing current training sample, 

confabulation image, and hidden layers.  
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The unevenness of computations among the stages are the 

major source of the idle clock cycles for the arithmetic 

operators. The proportions of idle cycles resulted from the 

null connections and pipeline delay are only 3.1% and 1.4%, 

respectively. 

Figure 8 shows the footprint of the memories. A total of 321 

memories (516 including dual ports) demonstrated a memory 

access rate of 2.6 Tbps throughout the computation when a 

200-MHz clock is assumed. An average memory access rate 

of 793 Gbps is achieved for the FPGA implementation with P 

= 32 and single-precision data. 

The results from the hardware simulator were identical to 

the sequential program when the initial weights and the output 

sequence of the random function were the same. The mean 

square errors (MSEs) of our implementations are compared 

with the results of software counterparts in Figure 9. Our 

systems exhibited earlier convergence than the sequential 

batch code that is provided in [13]. This is because batch 

computations require more epochs to converge [6], although 

they are favored for dense matrix computation in the software 

implementations. 

 
TABLE II 

COMPOSITION OF THE RESOURCES IN THE FPGA IMPLEMENTATION 

 LUT FF LUT Rate 

Arithmetic operators 73713 71884 86.9% 

 SNU 58034 58504 68.4% 

 DU 10901 9822 12.8% 

 SU 4778 3559 5.6% 

MB processor 10371 10239 12.2% 

CU 786 2748 0.9% 

Total used 84870 84871 100% 

Total available on chip 203800 407600  

 

In Table 2, the resources used to implement the FP 

operators compared with the total resources synthesized for 

the system in the FPGA implementation. The non-operator 

portion includes an MB processor with a DDR memory 

controller, the CU, and glue logics in the system. Only a small 

portion of FPGA resources is used to implement the system. 

Note that the proportion of arithmetic operators will decrease 

by a factor of approximately five if fixed-point arithmetic 

operators are used instead of FP operators [14]. Even with the 

fixed-point arithmetic operators, the operating cost 

(non-operator portion) of our system is much less than the 

CPU case. Xilinx’s Vivado FPGA tool estimated a power 

consumption of 5.1 watts for our design. 

A simulated time of 9.4 s was taken for the MATLAB 

simulator to train a 784×800 RBM network with 60000 

MNIST samples when 200-MHz system clock was assumed. 

The FPGA implementation trained a 784×200 RBM network 

with the same samples in 4.7 s, which corresponds to 

approximately half of the speed of the MATLAB simulator, 

even though the size of the network is limited by small on-chip 

memory space. 

Figure 10 shows the changes in the computational speed 

and memory requirements of the NM systems when P is 

increased and the size of the DBN is 784×500×500×2000. 

Total memory space can be substantially reduced, and the 

computational speed increases linearly along P. In fact, the 

proposed system is a synchronous architecture and the 

computational speed is predictable. Using the method 

introduced in [5], the computational speed, in connection 

update per second (CUPS), can be calculated as: 

 

     ckL

l pllll

L

l ll
f

dPP
speed 









3/2/ vhhv

hv , 

  

where L is the number of RBM layers, vl and hl are v and h in 

layer l, respectively, dp is the pipeline delay, and fck is the 

system clock frequency. 

Table 3 compares the speed of our implementations with 

other known systems. 

 

TABLE III. PERFORMANCE COMPARISON 

Ref. Type Internal Clock 

(Hz) 

Speed 

(CPS) 

Speedup 

over PC 

This Simulator MATLAB RTL simulator 200 M 4.0 G 255 

This FPGA Xilinx Kintex 7 200 M 1.9 G 121 

[15] GPU 1000  GPUs (16000 cores) N/A 38 G 2420 

[2] GPU NVIDIA GeForce 460 (336) 720 M 721 M 46 

[5] GPU NVIDIA GTX 280 (240) 1.3 G 672 M 43 

[2] CPU Intel i5-2410M (2) 2.3 G 15.7 M 1 

[5] CPU Intel Core2 Quad core 2.83 G 10.2 M 0.7 

 

6432

 
Fig. 10. Speed and memory requirements varying with P 

 
Fig. 9. Comparison of MSE with software implementations. 
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Our systems outperform most other systems, except the one 

with 1000 GPUs. 

High-end FPGA chips such as Xilinx Virtex 7 contain 

hardware resources required to build the same system as the 

one simulated by the MATLAB hardware simulator. However, 

it would not be possible to build larger systems as the total 

on-chip memory space in the FPGA is limited. In order to 

build a system for large-scale DBNs, an application-specific 

integrated circuit (ASIC) or a board-level design may be 

required. 

In the systems where the computation of DBN is carried out 

by computing matrices, a substantial effort is required to 

transpose the weight matrix in order to compute vnegi. In our 

architecture, weights in the forward and reverse networks are 

shared by using MR memories without moving or copying 

data. Further, as there is no limitation on the network topology, 

large sparse DBNs can be computed without decreasing the 

computation time, as contrasted with most matrix-based 

systems [6]. 

VI. CONCLUSION 

An efficient special purpose hardware architecture for a 

DBN was proposed and implemented. By maximizing the 

utilization of arithmetic operators and minimizing the 

overheads in the usage of hardware resources, a high 

efficiency for the chip area and power consumption could be 

achieved while providing good performance. The proposed 

architecture can be used for high-performance real-time DBN 

systems. 
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