



Abstract—The computation of deep belief networks (DBNs)

requires a large number of arithmetic operations, which can be

handled only by arithmetic operators. However, the operators

are utilized only a small fraction of the time (1–5%) when they

are computed by general-purpose computers. In this paper, a

special-purpose hardware architecture that computes DBNs

using a large number of arithmetic operators with a utilization

rate greater than 60% is proposed. On the basis of neuron

machine architecture, the computation units in the system are

controlled according to stage operation table, which specify the

sequence of the computation stages; thus, the complicated

procedure of the DBN can be carried out in hardware. Moreover,

the usage of the memory space is considerably improved by using

offset addressing. The proposed schemes are implemented on a

hardware simulator coded in MATLAB and on an FPGA chip.

The full source code of the hardware simulator is available at a

website. The readers can execute the code on the fly and

reproduce the proposed schemes. The FPGA implementation

achieves a lower computational time by a factor greater than 100

compared to a PC.

I. INTRODUCTION

ECENTLY, deep belief network (DBN) models have

captured significant interest from the machine-learning

community and brought the resurgence of neural

networks. The superior ability of DBNs in learning features

that capture higher-order correlations in unsorted data has

allowed DBNs to be applied successfully in many application

domains such as classification, data mining, recognition, and

robotics [1].

Training a DBN involves training several restricted

Boltzmann machines (RBMs) and requires a considerable

amount of time even for modern CPUs. General-purpose

graphics processing units (GPUs) are gaining popularity

because they provide a lowering of the computational time by

a factor of 5–50 compared to x86 CPUs. However, most

general-purpose computers, including systems with the CPUs

and GPUs, are highly inefficient in terms of utilization of

arithmetic operators.

For example, the experiment in [2] shows that it took 40

min to train 60000 samples with a 784×800 RBM on an Intel

dual-core i5-2410M 2.3-GHz CPU. According to the RBM

algorithms, the computation requires approximately 4 × 1011

arithmetic operations, as will be discussed later in this paper.

In this CPU, computations are handled by one Advanced

Vector Extensions (AVX) block contained in each core (two

cores in the CPU), and each AVX can sustain four

Jerry Byungik Ahn was with KT (Korea Telecom), Seoul, Korea. He is

now with Neurocomputings.Com, Seoul, Korea (phone: +82-10-3010-1540;

e-mail: jerry.ahn@neurocomputings.com).

double-precision (DP) FP operations per clock cycle.

Therefore, the full throughput of the CPU that can compute in

40 min is 4.4 × 1013 arithmetic operations. This estimation

shows that the arithmetic operators effectively work for only

approximately 1% of the full CPU time. Moreover, the

proportion of arithmetic operators in the CPU hardware

resources is extremely low. The number of transistors used for

the CPU is 6.24 × 108 [3], whereas a DP FP multiplier can be

implemented using only 2 × 105 transistors [4].

In the case of GPU, a 720-MHz NVIDIA GeForce 460, for

example, has 336 cores each computing one DP FP fused

multiply-add operation per clock cycle. A state-of-art RBM

implementation on this GPU computed the same RBM

network 46 times faster than the aforementioned CPU [2],

which resulted in an operator utilization rate of 3.2%. Similar

results on other CPU and GPU implementations have been

reported in [5]. This implies that conventional computers use

only a small fraction of the time and hardware resources for

the computation.

In fact, this inefficiency originates partly from the

functionality required to maintain the systems to be general-

purpose: all-purpose stored-program architecture, centralized

memory, compiled code from high-level programming

languages, and so forth. However these features may not be

necessary when a computation device is dedicated for

computing neural networks or DBNs. If we increase the

operator utilization rate, the chip size and power consumption

can be considerably reduced.

In this paper, a special-purpose hardware architecture that

computes a DBN with a high arithmetic-operator utilization

rate is described. The average utilization rate of hundreds of

floating-point operators is maintained at a value greater than

60% throughout the computation, and the proportion of

hardware resources that are used for the operators is greater

than 80%.

The proposed architecture is based on neuron machine

(NM) hardware architecture. Regarding the NM, we proposed

in [7] a preliminary hardware structure for neural networks in

which communication between neurons is performed only

using a set of memory combinations and a number of synaptic

computations can be carried out in parallel. However, this

hardware structure can only compute simple perceptron

models. In [8], the architecture was modified so that neural

models with complex synaptic and neuronal functions can be

accommodated, and a spiking neural network with complex

functions was implemented using the extended architecture,

even though it supports only feed-forward networks and lacks

schemes to run back-propagation models. A memory called

reverse-mapping memory (R memory) was proposed in [9]

Computation of Deep Belief Networks

Using Special-Purpose Hardware Architecture

Byungik Ahn

R

2014 International Joint Conference on Neural Networks (IJCNN)
July 6-11, 2014, Beijing, China

978-1-4799-1484-5/14/$31.00 ©2014 IEEE 141

and can be used for sharing synaptic weights between

feed-forward and backward networks without moving or

copying weight data.

However, previous NM systems have two major problems.

First, the memory space required to store the neuron outputs

can be excessive when the synaptic parallelism is tuned to be

large. Second, the parameters used to operate the system are

scattered in the control circuits and even fixed in the hardware.

This may be acceptable for computing simple networks, but it

makes the system intractable as the neural network grows

large and complex, as in DBN.

A new control scheme is proposed in this paper, in which

the procedure of the computation stages is described in a table

and a limited form of the stage-level programming can be

carried out. This scheme simplifies the system control and

enables optimization of the system. Further, an efficient

sequence of computational stages for the DBN is also

proposed, by which the memory space required can be

considerably reduced.

The proposed architecture is implemented on a hardware

simulator and on an FPGA. One of difficulties in presenting

new ideas for a hardware architecture is that it is very difficult

for the readers to reproduce the proposed schemes. In this

paper, a self-contained hardware simulator simulating the

proposed system is developed in MATLAB, and the full

source code is available at a website. Even though the source

code is coded in a sequential language, it is cycle-accurate and

simulates various hardware components such as shift registers

and pipelined FP operators. The reader can execute the

simulator on the fly and verify the operation of the proposed

system. The simulator code can also be translated into

hardware description languages such as VHDL without

difficulty and implemented in hardware.

This paper does not state improvements in the DBN

algorithm or better arithmetic operations. The proposed

schemes focus on how to maximize the utilization of existing

arithmetic operators to compute DBN algorithms.

Section II of this paper reviews the DBN and the NM

hardware architecture, and Section III describes the proposed

schemes. In Section IV, the implementation details and

hardware simulator code are described. The experiment

results and conclusions are presented in Sections V and VI,

respectively.

II. BACKGROUND

A. DBN

An RBM is composed of a visible layer and hidden layers

with connections between the layers but not between units

within the same layer. DBNs are a composition of RBM

networks where the hidden layer of each RBM serves as the

visible layer for the next RBM. This leads to a fast

layer-by-layer unsupervised training procedure, where

contrastive divergence is applied to each sub-network in turn,

starting from the lowest pair of layers.

For a given training sample v, the connection weights of an

RBM network are updated as

  
jijiij hnegvneghposvposw   (1)

     


I

i ijijjj wvposbpposhposp
1

|1 v (2)

     


J

j ijjii whposavnegp
1

|1 h (3)

     


I

i ijijjj wvnegbpneghnegp
1

|1 v (4)

  
 ,jjj

iii

hneghposb
vnegvposa






where wij is the weight of the bidirectional connection between

the visible neuron vi and the hidden neuron hj; ɛ is a learning

rate; vposi is the training sample for vj; hposj is the state of hj

generated form the training sample; vnegi and hnegj are the

reconstructed states of vi and hj, respectively; ai and bj are

biases for vi and hj, respectively, and σ(x) is the sigmoid
function 1 / (1 + e-x) [10]. Algorithm 1 shows a typical

computation of DBN with multiple hidden layers.

Algorithm 1: DBN procedure
1: T ← training sample

2: for each RBMl from bottom to top

3: for each sample s in T

4: train RBMl with s

5: add h∋hposj in Tnew

6: end for

7: T ← Tnew; empty Tnew

8: end for

As the computation is dominated by connection-specific

arithmetic, training one connection requires approximately 3

multiplications and three additions for (2)– (4), and two

multiplications and two additions (including subtraction) for

(1). Therefore training a 784×800 network with 60000

samples, for example, requires 1.9 × 1011 multiplications and

1.9 × 1011 additions. Although there are some variations

among DBN algorithms, the differences are not significant

with regard to computational complexity [1].

The computation of the DBN presents a few problems when

it is computed with special-purpose hardware: (1) the

computation process is too complicated to implement in

hardware, requiring several stages of different computations

and (2) if all training samples are trained before training the

next RBM, as is the case in most software implementations, a

large memory space is required for hposj in order to use vposi

in the next RBM.

B. NM Architecture

In the NM architecture, the computational model of the

neural network is:

   





1

0
,...,...,

j

ij

p

i ijmSNj wyffy (5)

where yj is the state of the jth neuron, fN is a neuronal function,

pj is the number of synapses (connections) on the jth neuron, fS

142

is a synaptic function, mij is the index number of the neuron

connected on the ith synapse of the jth neuron, and wij is the

weight of the ith synapse connected on the jth neuron.

An NM is a register-transfer level (RTL) special-purpose

hardware architecture for simulating neural networks. The

NM is characterized by a memory structure that maps the

outputs of the neurons to the inputs of other neurons. A

memory unit called network unit (NU) takes a newly

computed neuron output yj and produces a multiple ymij for a

specific neuron simultaneously at every clock cycle.

The NU is composed of P modules, each with two

individual memories: MM and MX. Figure 1 shows a typical

configuration of an NM system including the internal structure

of the NU. In each memory module, the output of MM is

connected to the address input of MX, and the output of MX

becomes one of P ymij outputs of the NU. MX is a dual-port

memory in which read and write operations can be carried out

simultaneously. The write ports of all MX memories in the

NU are connected together which become the yj input of the

NU. The content of the kth MM and MX are:

 MMk(b) = mij

 MXk(j) = yj,

where

 i = mod(b  P + k, bpn  P)

 j = b / bpn

 bpn = max pj / P.

If i ≥ pj, a special value is stored in MM, indicating that it is a

null connection [7].

With these memories, addressing the sb input sequentially

from 0 to (N × bpn) − 1 will make the NU produce P ymij

outputs at a time starting from the first P connections of first

neuron to the last P connections of the last neuron, where N is

the total number of neurons. The set of P connections that are

produced at the same clock cycle is called a synaptic bunch

(SB).

The NU enables synapse units (SNUs) to compute the

synaptic functions of P connections simultaneously, a dendrite

unit (DU) to sum the results of the SNUs, and a soma unit (SU)

to compute the neuronal functions, one after another. The new

neuron output, yj, computed at the SU is then stored in the MX

memories in the NU via the yj input. There are MW memories

at the SNU for wij; their contents are stored similarly to the

MM case. The connection from the SU to the SNU in Figure 1

is for Hebbian learning [7]. For back-propagation models, a

memory called MR is included in each memory module in the

NU to store the reverse mapping information of the network

topology [9]. In case of a multi-layered network, each

computation stage is computed in sequence, as if they are

separate networks, and neuron outputs computed in the

previous stages are shared by means of MX memories.

By designing the computational units as fully pipelined

circuits, the system can compute P connections per clock

cycle and one neuron output per bpn clock cycles.

The NM architecture has a number of advantages:

communication between the neurons is accomplished just by

accessing memories requiring no communication overheads;

network topology information is stored only in MM (forward

network) and MR (backward) memories with no restriction on

the network topology; weight memories are distributed and

embedded in the computational circuits and the data paths of

the memories are short; a large number of connections can be

computed simultaneously by multiple SNUs; large-scale

pipelining parallelism can be obtained from the computational

units and the pipeline delay results in little impact on the

overall performance [7]; and simple and uniform structure

without necessarily requiring a main computer.

However, there are a few problems with this architecture; it

requires a large memory space for MX to maintain the

duplicated values of yj, and controlling the system becomes

difficult as the number of hidden layers increases.

III. PROPOSED SCHEMES FOR DBN

In previous works, a control unit (CU) was composed of

combinational and sequential logics without structures. In our

design, the CU is more organized to deal with the complex

computation scenarios of the DBN.

A. Stage Operation Table

In our scheme, offset logics are placed in front of the

address inputs of all memories and the memory offset is

controlled by the CU. For instance, if the offset for the MM

memories is set to 6000, and the sb input is sequentially

scanned in the range from 0 to 6499, a range of 6000–12499

is addressed from all the MM memories. This scheme makes

memory space re-locatable and reusable, and the number of

bits needed to represent the memory address to be reduced.

A table called a stage operation table (SOT) is used to

control the computation sequence. It consists of a series of

records each containing the information required to control

the respective stage. At the beginning of the stage the CU

reads the record and sets the control registers. During the

computation, circuits in the system reference the register to

select multiplexers or to set the counters, for example. Figure

2 shows an SOT as an example. The first record denotes an

input-only stage (type 1), in which a training sample with a

size of 784 is loaded into the memories. The second record

indicates that the stage is a positive hidden layer (type 2) with

500 neurons, with each neuron having 13 SBs and a total of

MM MX

MW

NU SNU DU SU

*

learning

yj

ymij

MR

sb

Fig. 1. Configuration of NM architecture. NM is characterized by a

memory structure in NU that maps the outputs of the neurons to the

inputs of other neurons, which enables a large number of connections

can be computed simultaneously.

143

6500 SBs with zero offset for MM, and so forth. At the end of

the table, a special record called a “go to” statement is

specified, and the CU moves the current record pointer, as

indicated by the second field, i.e., record 2.

B. Operation Sequence

In the proposed system, the memory space of each MX is

divided into three blocks, denoted by MX{1}, MX{2}, and

MX{3}. Each block is used to store the neuron values

computed from one layer. Note that all MX memories have the

same contents as mentioned earlier. The operation sequence

for a DBN can be described by Algorithm 2, where

opr(MX{i2}←MX{i1}) indicates that the neuron values in

the MX{i1} block in this stage are read for computing the

operation opr, and the results are written to the MX{i2} block.

Algorithm 2: NM DBN procedure
1: MX{1} ← training sample 1;

2: for each sample s in T

3: source = 1; target = 2;

4: for each RBMl from bottom to top

5: positive_hidden(MX{target} ← MX{source});

6: negative_visible(MX{3} ← MX{target});

7: {

8: negative_hidden(no_save ← MX{3});

9: update_weights;

10: if RBMl is top-most layer

11: MX{1} ← next sample;

12: end if;

13: }

14: switch source and target;

15: end for

16: end for

There are four stage types in this procedure. The type 1

stage is carried out only at the beginning of the procedure, in

which the first training sample is loaded in MX{1} without

computation (line 1). Then, three types of stages are processed

to compute each layer. In the type 2 (line 5) and type 3 (line 6)

stages, the hposj and the vnegi are computed, respectively. In

the type 4 stage (lines 8–12), the hnegj is computed. In this

stage, updating the connection weights and reading next

training data (in the case of last layer) are also carried out

simultaneously.

The use of the MX blocks is depicted in Figure 3, when

there are three RBM stages. Nine stages are computed (1) –

(9) for one training sample, and then the stages for the next

sample follow.

Although a total of L × 3 stages are computed for each

training sample, the MX space for only three stages are

required by reusing spaces, where L is the number of layers in

the DBN. In addition, the MM data used in type 2 stage can be

reused in the type 3 stage by using the memory offset scheme

and the SOT. In addition, the MW space for the type 2 stage is

not stored; therefore approximately one-third of the MM and

MW space can also be saved. Furthermore extra memory

space for the values of hposj is not required because all layers

are computed consecutively before the next training sample is

processed.

C. Use of MR memory

The use of MR memory requires a connection-placement

algorithm. Although a method was briefly addressed in [9], its

detail was omitted. The algorithm and the contents of MR

memories can be described by Algorithm 3.

Algorithm 3: Connection placement
1: for j = 0 to J - 1

2: for i = 0 to I - 1

3: Store mij, wij at the mod(i + j, bpnf * P)th

place of neuron j,in MM and MW memories,

respectively.

4: Store the reference to wij in MW that saved

in the previous step (line 3), at the

mod(i + j, bpnb * P)th place of neuron i in

MR memory.

5: end for

6: end for

Here bpnf and bpnb denote the values of bpn in the forward

and backward networks, respectively. This algorithm ensures

that connections in both forward and reverse networks are

located at the same SNU, and MR reference the weight in the

forward network. The use of MR enables the same weight

address to be accessed in both networks.

IV. IMPLEMENTATIONS

A. System Design

Figure 4 shows the schematics of a design of the proposed

system. In our simulator implementation, P = 64. Therefore

there are 64 memory modules and SNUs although only one of

MX
{1}

MX
{2}

MX
{3}

(1),
(10) next sample

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9) (10)

vpos-layer1
(training
sample)

hpos-1
(vpos-2)

vneg-1

hneg-1
(no save)

hpos-2
(vpos-3)

vneg-2

vneg-2
(no save)

hpos-3

vneg-3

hneg-3
(no save)

Fig. 3. Use of MX memory space for each training sample.

1 0 0 0 784 0 0

2 500 13 6500 0 0 0

3 784 8 6272 0 6500 2000

Go To 2

1

2

3

n

stage
type N bpn Nb Ni MM MX_R

memory offsets

4 500 8 6500 0 0 4000

2 500 8 4000 0 12772 2000

4

5

Fig. 2. Example of a stage operation table.

144

them is shown in the figure. The symbol names preceded by

CA and C are for arithmetic operators, RA and R are for shift

registers, and Q is for first-in first-out (FIFO) queues. The

detailed circuits for the DU, and the sigmoid and bias

functions in the SU are not shown for brevity. The number of

arithmetic operators used for the SNU, DU, and SU are 256,

64, and 11, respectively. All arithmetic operators are assumed

to have pipeline latencies of six clocks. A 1-bit-wide memory

called MN is additionally included in each memory module in

the NU in order to store the indication of null connections.

When this bit is set, the input of the connection is set to zero

and the value of the weight remains at zero in the SNU and

therefore does not affect the computation result.

The flow of data in each type of stages is shown in Figure 5.

In the type 1 stage, the values of a training sample are

sequentially read in the SU and stored in MX{1} (vposi) as

shown in Figure 5(a). In the type 2 stage, the values of vposi

are read from the NU, and both the pposj and hposj are

computed by the SU and tied together and stored in the MX

memories. At the same time, the values of vposi from the NU

are queued in Q2 until pposj is computed in the SU, and ɛ 

vposi  pposj (positive product) is computed by C10 and CA2

and then stored in a memory called MD (Figure 5(b)). In the

type 3 stage, the binary states of hidden neurons, the values of

hposj, are read from the NU, and the values of vnegi are

computed by the SU and stored in the MX memories, as

shown in Figure 5(c). In this reverse-network stage, the

contents of MR memories are used to address the connection

weights stored for the forward network. In type 4 stage, the

values of vnegi are read from the NU and the values of hnegj

are computed by the SU. Meanwhile, the values of vnegi and

wij in the SNU are queued in Q2 and Q1, respectively. When

pnegj is computed at the SU, the vnegi is read from the Q2 and

ɛ  vnegi  pnegj (negative product) is computed by C10 and

CA2. In the same clock cycle, the value of the positive product

previously stored in MD is read, and the difference of the

positive and negative products is computed by CA3. The

value of wij previously queued in Q1 is read and added with

the output of CA3 by CA4. The result of CA4 is then saved in

MW, as shown in Figure 5(d).

The data rate at the output of the NU and SNUs are 64

connections per clock cycle, and the number of SBs (groups of

64 connections) processed in each stage are 6500, 6272, and

6500, when the size of RBM is 784×500. A timing gap

between consecutive stages is required to flush out the

pipelines. Even when the pipeline delays become large

(greater than 100 clock cycles), their effect on the overall

performance is small.

B. Hardware Simulator in MATLAB

The hardware simulator code provided at the website in

[11] simulates the circuit in Figure 4 that computes a

784×500×500×2000 DBN that is capable of training 28×28

pixel grayscale images. This code can run on MATLAB

without additional files.

This code is composed of two parts. The first part is the

initialization part, which shows how the contents of the

memories and SOT can be stored. The rest of the code, the

clock loop, is for executing the simulation. The variable ck in

the loop represents the system clock cycle, and each ck loop

simulates a single clock cycle. The arrays RA and R are used

for registers, and CA and C are used for arithmetic operators.

Most if statements function as multiplexers that select from

one of two values according to the condition. At the end of the

clock loop, the registers and pipelined operators are shifted

one step forward. The code has properties similar to hardware

description languages. For example, statement “C(2,1) =

MR

MM MX

MW

*

*

MD

-
+

binary

real

∑

*

bias

sigmoid

*

ɛ

RND

≤

adder
tree

training
data

NU
(memory modules)

SNUs DU SU

RA13

MN

RA3

RA1 RA2

RA4

sb

RA5

RA6

Q1

Q2

CA1

CA2

CA3
CA4

RA9

RA10

Csb(2)

R10

R18

R4

C2

C3-6

C11

C7,9,13

C12

C10

R13

0

null conn.

Fig. 4. Full schematics of implemented system.

MX





MW



MD

MX





MWMR

(a) (b)

(c) (d)

bias
MX

vposi hposj

vnegi

MX




MW


MD-

+

vposi

bias

Fig. 5. Dataflow in each type of stages: (a) type 1, (b) type 2, (c) type 3,

and (d) type 4 stages.

145

R(10,2) + R(4,2);” functions as adder C2, whose two

inputs are connected from the outputs of R10 and R4. The

statement “R(8,1) = C(2,7);” denotes the connection

from the output of C2, whose pipeline delay is six, to the input

of R8. The statements at the same level are exchangeable

without affecting the functionality. This code can be translated

into a hardware description language without difficulty. For

an example, a multiplexer selecting one of two signal sources

can be translated into a VHDL code as follows.

Simulator code VHDL

if hS==3

RA(4,1,k) = RA(3,2,k);

else

RA(4,1,k) = Csb(2);

end

if (hS=”011”) then

RA4_i <= RA3_o;

else

RA4_i <= Csb(2);

end if;

By default, eight digit images are used as training samples,

which are embedded in the MATLAB software. This

simulator can train MNIST handwritten digit database by

setting a switch at the beginning of the code. During the

execution of the simulator, the internal states are displayed, as

shown in Figure 6.

The simulator code was translated into a VHDL code and

synthesized on a mid-range Xilinx Kintex 7 FPGA chip

operating at a frequency of 200 MHz. The number of SNUs, P,

was 32. As the capacity of the on-chip memory is limited (max.

16Mb), the FPGA implementation executed smaller DBNs

(784×200 and 784×100×100×500). A total of 171

single-precision FP operators are used throughout the system.

In particular, a Xilinx® exponent FP operator [12] and a

24-bit linear feedback shift register (LFSR) are used for

computing the sigmoid function and random number

generator in the SU, respectively. A MicroBlaze (MB)

processor is synthesized for loading the MNIST training data

into the main memory.

V. RESULTS AND DISCUSSION

Figure 7 depicts the footprint of the arithmetic operators in

the implemented system. Each colored dot in this figure

denotes an active output of the respective arithmetic operator

at a specific clock cycle. The slits in the figure originate from

the null connections. The operators in the SU operate only

once in a few clock cycles, as shown in the circle, while the

operators in the other units generate outputs continuously. All

operators are fully operating in the type 4 stage, whereas only

one-fourth of them are active in the type 3 stage. A total of 331

operators in the system produced their outputs for 62.3% of

the number of clock cycles on average throughout the

computation, as shown in Table 1.

TABLE I

UTILIZATION RATES OF OPERATORS AND MEMORIES

Stage type Arithmetic

operators

Memories Memory access rate

in FPGA (Gbps)

Type 1 56.0% 73.5% 832

Type 2 37.7% 49.0% 532

Type 3 93.2% 85.7% 1014

Average 62.4% 69.7% 793

ck+

type 2 type 3 type 4

Fig. 8. Footprint of 516 memories in the system (including dual ports).

Data is written on MX at intervals, whereas other memories are

accessed continuously. Average memory access rate: 2.6 Tbps.

ck+ 2 4 6 8
× 104

RBM1 RBM2 RBM3

(b)

(a)

CA1

CA2

CA3

CA4

DU

SU

ck+

(b)

SNUs

Fig. 7. Footprint of 331 arithmetic operators: (a) stages for one training

sample, (b) detailed view. Each colored dot denotes an active output of

the respective arithmetic operator at a specific clock cycle. The slits in

the colored block originate from the null connections. Average

utilization rate of the operators is 62.3%.

Fig. 6. Display of simulator code, showing current training sample,

confabulation image, and hidden layers.

146

The unevenness of computations among the stages are the

major source of the idle clock cycles for the arithmetic

operators. The proportions of idle cycles resulted from the

null connections and pipeline delay are only 3.1% and 1.4%,

respectively.

Figure 8 shows the footprint of the memories. A total of 321

memories (516 including dual ports) demonstrated a memory

access rate of 2.6 Tbps throughout the computation when a

200-MHz clock is assumed. An average memory access rate

of 793 Gbps is achieved for the FPGA implementation with P

= 32 and single-precision data.

The results from the hardware simulator were identical to

the sequential program when the initial weights and the output

sequence of the random function were the same. The mean

square errors (MSEs) of our implementations are compared

with the results of software counterparts in Figure 9. Our

systems exhibited earlier convergence than the sequential

batch code that is provided in [13]. This is because batch

computations require more epochs to converge [6], although

they are favored for dense matrix computation in the software

implementations.

TABLE II

COMPOSITION OF THE RESOURCES IN THE FPGA IMPLEMENTATION

 LUT FF LUT Rate

Arithmetic operators 73713 71884 86.9%

 SNU 58034 58504 68.4%

 DU 10901 9822 12.8%

 SU 4778 3559 5.6%

MB processor 10371 10239 12.2%

CU 786 2748 0.9%

Total used 84870 84871 100%

Total available on chip 203800 407600

In Table 2, the resources used to implement the FP

operators compared with the total resources synthesized for

the system in the FPGA implementation. The non-operator

portion includes an MB processor with a DDR memory

controller, the CU, and glue logics in the system. Only a small

portion of FPGA resources is used to implement the system.

Note that the proportion of arithmetic operators will decrease

by a factor of approximately five if fixed-point arithmetic

operators are used instead of FP operators [14]. Even with the

fixed-point arithmetic operators, the operating cost

(non-operator portion) of our system is much less than the

CPU case. Xilinx’s Vivado FPGA tool estimated a power

consumption of 5.1 watts for our design.

A simulated time of 9.4 s was taken for the MATLAB

simulator to train a 784×800 RBM network with 60000

MNIST samples when 200-MHz system clock was assumed.

The FPGA implementation trained a 784×200 RBM network

with the same samples in 4.7 s, which corresponds to

approximately half of the speed of the MATLAB simulator,

even though the size of the network is limited by small on-chip

memory space.

Figure 10 shows the changes in the computational speed

and memory requirements of the NM systems when P is

increased and the size of the DBN is 784×500×500×2000.

Total memory space can be substantially reduced, and the

computational speed increases linearly along P. In fact, the

proposed system is a synchronous architecture and the

computational speed is predictable. Using the method

introduced in [5], the computational speed, in connection

update per second (CUPS), can be calculated as:

     ckL

l pllll

L

l ll
f

dPP
speed 









3/2/ vhhv

hv ,

where L is the number of RBM layers, vl and hl are v and h in

layer l, respectively, dp is the pipeline delay, and fck is the

system clock frequency.

Table 3 compares the speed of our implementations with

other known systems.

TABLE III. PERFORMANCE COMPARISON

Ref. Type Internal Clock

(Hz)

Speed

(CPS)

Speedup

over PC

This Simulator MATLAB RTL simulator 200 M 4.0 G 255

This FPGA Xilinx Kintex 7 200 M 1.9 G 121

[15] GPU 1000  GPUs (16000 cores) N/A 38 G 2420

[2] GPU NVIDIA GeForce 460 (336) 720 M 721 M 46

[5] GPU NVIDIA GTX 280 (240) 1.3 G 672 M 43

[2] CPU Intel i5-2410M (2) 2.3 G 15.7 M 1

[5] CPU Intel Core2 Quad core 2.83 G 10.2 M 0.7

6432

Fig. 10. Speed and memory requirements varying with P

Fig. 9. Comparison of MSE with software implementations.

147

Our systems outperform most other systems, except the one

with 1000 GPUs.

High-end FPGA chips such as Xilinx Virtex 7 contain

hardware resources required to build the same system as the

one simulated by the MATLAB hardware simulator. However,

it would not be possible to build larger systems as the total

on-chip memory space in the FPGA is limited. In order to

build a system for large-scale DBNs, an application-specific

integrated circuit (ASIC) or a board-level design may be

required.

In the systems where the computation of DBN is carried out

by computing matrices, a substantial effort is required to

transpose the weight matrix in order to compute vnegi. In our

architecture, weights in the forward and reverse networks are

shared by using MR memories without moving or copying

data. Further, as there is no limitation on the network topology,

large sparse DBNs can be computed without decreasing the

computation time, as contrasted with most matrix-based

systems [6].

VI. CONCLUSION

An efficient special purpose hardware architecture for a

DBN was proposed and implemented. By maximizing the

utilization of arithmetic operators and minimizing the

overheads in the usage of hardware resources, a high

efficiency for the chip area and power consumption could be

achieved while providing good performance. The proposed

architecture can be used for high-performance real-time DBN

systems.

ACKNOWLEDGMENT

The author gratefully acknowledges Geonho Han, Terry

Ahn, and Jaehwa Lee for encouragements and valuable

comments.

REFERENCES

[1] G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality of

data with neural networks,” Science, vol. 313, pp. 504-507, 2006.

[2] N. Lopes, B. Ribeiro, and J. Gonçalves, “Restricted boltzmann

machines and deep belief networks on multi-core processors,” in

Neural Networks (IJCNN), The 2012 International Joint Conference on,

2012, pp. 1-7.

[3] E. Rotem, A. Naveh, D. Rajwan, A. Ananthakrishnan, and E.

Weissmann, “Power-management architecture of the Intel

microarchitecture code-named Sandy Bridge,” Micro, IEEE, vol. 32,

pp. 20-27, 2012.

[4] H. Makino, H. Suzuki, H. Morinaka, Y. Nakase, K. Mashiko, and T.

Sumi, “A 286 MHz 64-b floating point multiplier with enhanced CG

operation,” Solid-State Circuits, IEEE Journal of, vol. 31, pp. 504-513,

1996.

[5] D. L. Ly, V. Paprotski, and D. Yen, “Neural networks on gpus:

Restricted boltzmann machines,” see http://www. eecg. toronto. edu/~

moshovos/CUDA08/doku. php, 2008.

[6] S. K. Kim, P. L. McMahon, and K. Olukotun, “A large-scale

architecture for restricted boltzmann machines,” in

Field-Programmable Custom Computing Machines (FCCM), 2010

18th IEEE Annual International Symposium on, 2010, pp. 201-208.

[7] J. B. Ahn, “Neuron machine: Parallel and pipelined digital

neurocomputing architecture,” in Computational Intelligence and

Cybernetics (CyberneticsCom), 2012 IEEE International Conference

on, 2012, pp. 143-147.

[8] J. B. Ahn, “Extension of neuron machine neurocomputing architecture

for spiking neural networks,” International Joint Conference on Neural

Networks (IJCNN2013), 2013.

[9] J. B. Ahn, “Computation of Backpropagation Learning Algorithm

Using Neuron Machine Architecture,” in Computational Intelligence,

Modelling and Simulation (CIMSim), 2013 Fifth International

Conference on, 2013, pp. 23-28.

[10] G. E. Hinton, S. Osindero, and Y.-W. Teh, “A fast learning algorithm

for deep belief nets,” Neural computation, vol. 18, pp. 1527-1554,

2006.

[11] Anonymous. (2014). MATLAB hardware simulator for DBN.

Available: http://neurocomputings.com/jerryahn/papers/dbn

[12] Xilinx, “LogiCORE IP Floating-Point Operator v6.2,” 2011.

[13] G. E. Hinton. Training a deep autoencoder or a classifier on MNIST

digits. Available:

http://www.cs.toronto.edu/~hinton/MatlabForSciencePaper.html

[14] Altera, “Taking advantage of advances in FPGA floating-point IP cores

WF-0116.1.0,” 2009.

[15] Q. V. Le, “Building high-level features using large scale unsupervised

learning,” in Acoustics, Speech and Signal Processing (ICASSP), 2013

IEEE International Conference on, 2013, pp. 8595-8598.

148

