
An Efficient Co
Algorithm For M

of Multilaye

 Xun Cai
School of Computer Science

and Technology
 Shandong University

Jinan, P.R.China, 25010
caixunzh@sdu.edu.cn

 Kan
Departm

En
The Univ

A
Arlington,

kanishka.ty

Abstract—In this paper, a second

algorithm based on Conjugate Gradient (
finding Multiple Optimal Learning Facto
multilayer perceptron neural network
details. The experimental results on seve
show that, compared with One Optimal
algorithm with Optimal Output Weights (1
Levenberg-Marquardt learning algorithm
proposed CG based MOLF method with
weights which is also called MOLFCG-O
has not only significantly faster convergen
of 1OLF and even super to that of LM lea
for some datasets with much less comput
also more generalization capability tha
Thus, MOLFCG-OWO algorithm is s
choice for some practical applications.

Keywords—Multilayer Perceptron Ne
conjugate gradient method; multiple learnin

I. INTRODUCTION
Multilayer Perceptron Neural Netw

has several favorable properties o
approximation and the ability to
discriminant [1] which make it a popula
regression and classification applicat
finance[2] and weather predication
controller [4], image and documents ret
clustering [7,8,9].

The fundamental theory of MLP NN
following.

Given a dataset with Nv training pat
where p=1 to Nv, then the typical topo
connected feed-forward MLP consists
including input layer, hidden layer and o
shown in Fig.1.

In Fig.1, the numbers of units in inp
layer and output layer are denoted by
respectively. The notation xp =[xp(1), xp
denotes the input unit vector of pth pa

This work is sponsored by Innovation foundati
University (No. 2010TS001).



njugate Gradient Based
Multiple Optimal Learn
er Perceptron Neural N

nishka Tyagi
ment of Electrical
ngineering,
versity of Texas at
Arlington
, TX, USA, 76010
yagi@mavs.uta.edu

Michael T.Manry
Department of Electrical

Engineering
The University of Texas at

Arlington
Arlington, TX, USA, 76010

manry@uta.edu.

order learning
(CG) method for
ors (MOLFs) of
is proposed in

eral benchmarks
Learning Factor
OLF-OWO) and

m (LM), our
h optimal output
OWO algorithm

nce rate than that
arning algorithm
ational time, but
an 1OLF-OWO.
suggested better

eural Network；
ng factors

N
work (MLP NN)

of universal
mimic Bayes

ar tool for many
tions including
[3], automatic

trieval [5,6] and

N is reviewed as

tterns {(xp, tp)},
logy of a fully-
of three layers

output layer , as

put layer, hidden
y N, Nh and M,

(2)…xp (N+1)]T
attern, where xp

(N+1) is an augmented inp
handling the threshold of eac
xp (N+1)=1. The notation
denotes the desired outpu
corresponding to xp.

Fig. 1. The architecture of a fully c

For hidden layer, Nh den
units and Wih={wih(i,k)} den
linking from input units to h
1 to N, k is from 1 to Nh.

For output layer, Who={w
output weights linking from
with Nh by M dimension.
forward MLP, there is anoth
linking input units to output u
weight Wio={wio(i,m)}, with N

For each hidden unit, ea
units is denoted by np(k) ,whi

 npሺkሻ= ∑N+1
i=1

Correspondingly, each ou
which is also called activation

௣ሺ݇ሻ݋ ൌ
ion of Shandong

d Learning
ning Factors
etwork

Zhi Chen
School of Computer Science

and Technology
 Shandong University

Jinan, Shandong, P.R.China,
25010

chenzhisdu@gmail.com

ut unit for convenience of
ch hidden unit and is set to
tp=[tp(1), tp (2)…tp (M)]T

ut vector of pth pattern

connected feedforward MLP

notes the number of hidden
notes all the hidden weights
idden units, where i is from

who(k,m)} represents all the
hidden units to output units
For a full-connected feed-
her kind of weight directly
units which is called bypass
N by M dimension.

ach net function of hidden
ich is given by

wihሺi,kሻxpሺiሻ1 . (1)

utput of hidden units, op(k),
n function is given by ݂ ቀ݊௣ሺ݇ሻቁ. (2)

2014 International Joint Conference on Neural Networks (IJCNN)
July 6-11, 2014, Beijing, China

978-1-4799-1484-5/14/$31.00 ©2014 IEEE 1093

Normally, ()f ⋅ is taken as a sigmoid function which
is shown by

 ݂ ቀ݊௣ሺ݇ሻቁ ൌ ଵଵା௘ష೙೛ሺೖሻ. (3)

Based on the above notations, the actual output
vector of MLP yp is calculated by following expression

 ࢟௣ ൌ ሺࢃ௜௢ሻT࢞௣ ൅ ሺࢃ௛௢ሻT࢕௣. (4)

If we choose batch mode training of MLP, then the
typical error function E is the total mean squared error
(MSE) of all output units and is given as follows

ܧ ൌ ଵேೡ ∑ ∑ ௣ሺ݉ሻݐൣ െ ௣ሺ݉ሻ൧ଶெ௠ୀଵேೡ௣ୀଵݕ . (5)

For training hidden weights, the most basic
algorithm is steepest descent back propagation [10]. In
such case, the hidden weight matrix, Wih, is updated as

௜௛ࢃ ՚ ௜௛ࢃ ൅ ݖ · ௜௛, (6)ࡳ

where Gih={gih(n,k)} is an (N+1) by Nh negative
gradient vector of error function with respect to each
hidden unit , and is often calculated by the following
equation

௜௛ࡳ ൌ ଵேೡ ∑ ࢞௣൫ࢾ௣൯Tேೡ௣ୀଵ , (7)

where ࢾ௣ ൌ ሾߜ௣ሺ1ሻ, … , ௣ሺ݇ሻߜ … , ௣ሺߜ ௛ܰሻሿT. ()p kδ is the
delta function corresponding to kth hidden unit and is
calculated by using back propagation which is shown as
follows

௣ሺ݇ሻߜ ൌ ݂Ԣ ቀ݊௣ሺ݇ሻቁ · ∑ ௢ሺ݉ሻߜ · ,௛௢ሺ݇ݓ ݉ሻM௠ୀଵ ,(8)

where ߜ௢ሺ݉ሻ denotes one of the element of the delta
function of output units ࢾ௢, and is normally given by

௢ࢾ ൌ 2ሺ࢚௣ െ ࢟௣ሻ. (9)

If we combine the input vector and the output vector
to form a new input vector ࢄ௣ ൌ ൣ࢞௣: ௣൧ with (N+Nh+1)࢕
by 1 dimension, then the autocorrelation matrix of ࢄ௣
which is denoted by ࡾ௢ , and the correlation matrix of ࢄ௣
and ࢚௣, which is denoted by ࡯௢ can be given respectively
by

 ቐ ࡯௢ ൌ ଵேೡ ∑ ࢟௣܆୮Tேೡ௣ୀଵࡾ௢ ൌ ଵேೡ ∑ ௣Tேೡ௣ୀଵࢄ௣ࢄ . (10)

Hence, the output weights matrix, Wo,can be calculated
by the following linear equation

௢ࢃ ൌ ௢T. (11)࡯௢ࡾ

In this case, (11) can be solved by using orthogonal
least square (OLS) [10,11].

A. The effects of learning factors
If steep descent algorithm is applied to minimize the

error function in (6), the error function in (5) has to be
zigzag to a minimum on the error surface, so steep
descent algorithm tends to converge slowly.

In order to solve this cause, there are some heuristics
that provide useful guidelines to accelerate the
convergence of back-propagation learning, which
includes: each adjustable weight should have its own
individual learning factor and each learning factor
should be updated after one iteration.

In light of above heuristics, the learning factor of
each hidden weight should be given and updated
individually after each iteration. Reference [12, 13]
proposed a kind of multiple optimal learning factor
(MOLF) algorithms which used Newton’s method to
evaluate the optimal learning factors. However, due to
inversion of Hessian matrix, Newton’s method has the
computation complexity of O (n2). Along with the total
of number of multiple learning factors, N*Nh, grows, the
computation of OLS will increase very fast which
makes itself impractical for large scale network.

In order to solve this problem and to keep the
optimal properties given by the second order
optimization, CG is regarded as an intermediate between
the method of steep descent and Newton’s method
which can accelerate the slow rate of convergence
experienced with the method of steep descent, while
avoiding the computational requirements associated with
the evaluation, storage and inversion of the Hessian
matrix in Newton’s method [14,15,16]. Due to these
advantages of CG, in this paper we propose to use
conjugate gradient (CG) method instead of OLS to
improve the training rate and convergence of MOLF.

The rest of paper is organized as follows: in the
section II, we will introduce our CG-based MOLF
algorithm in details. In section III , the procedure of the
proposed MOLF-CG is given. In section IV, the
experimental results for comparing the performance of
our CG-based MOLF with a those of 1OLFBP-OWO
and LM learning algorithms are given. Finally, the
conclusions and some advance work are discussed in
section V.

II. OUR WORK
The output weights of our proposed CG-based

MOLF method are trained by Output Weights
Optimization (OWO) method and the learning vector zk
for the kth hidden unit is being updated. Then, the
predicted mth output is given by

௣ሺ݉ሻݕ ൌ∑ ,௢௜ሺ݉ݓ ݅ሻݔ௣ሺ݅ሻேାଵ௜ୀଵ ൅ ∑ ,௢௛ሺ݉ݓ ݇ሻே೓௞ୀଵ ݂ ቀ∑ ൫ݓ௜௛ሺ݇, ݅ሻ ൅ேାଵ௜ୀଵݖ௞݃ሺ݇, ݅ሻ൯ ௣ሺ݅ሻቁ. (12)ݔ

1094

For each iteration, all the hidden weights are updated
respectively by

,௜௛ሺ݇ݓ ݅ሻ ՚ ,௜௛ሺ݇ݓ ݅ሻ ൅ ௞ݖ · ݃ሺ݇, ݅ሻ. (13)

If the negative derivative vector of error function to
each learning factor ݖ௞ is denoted by Ԣሺݖ௞ሻ , then the
second derivative of the jth output error function with
respect to kth learning factor , ܧ"൫ݖ௠,௞൯ can be rewritten
as ܧԢሺݖ௞ሻ ൌିଶேೡ ∑ ∑ ௣ሺ݉ሻݐൣ െெ௠ୀଵேೡ௣ୀଵݕ௣ሺ݉ሻሿݓ௢௛ሺ݉, ݇ሻ݋௣ሺ݇ሻ∆݊௣ሺ݇ሻ. (14)

௠,௞൯ݖ൫"ܧ ൎ ିଶேೡ ∑ ∑ ,௢௛ሺ݉ݓൣ ݇ሻ݋ᇱ௣ሺ݇ሻ∆݊௣ሺ݇ሻ൧ଶெ௠ୀଵேೡ௣ୀଵ .

 (15)

Also, if we use ࡳ௭ to denote gradient vector of which
each element is given by ܧԢሺݖ௞ሻ and use ࡴ௭ to denote
Hessian matrix of which each element is given by ܧ"൫ݖ௠,௞൯ then for he learning factor vector z of which each
element is ݖ௞ , then by using Newton’s method, z is
calculated by the follow formula

ࢠ ൌ ሺࡴ௭ሻିଵࡳ௭. (16)

Normally, the above linear equation is solved very
efficiently by using Orthogonal Least Square (OLS)
method as [13, 14] shown.

However, computation of Newton ’ s method
depends on the rank deficient of which of ࡴ௭ ten suffers
from the intrinsically ill-conditioned nature of neural
network training problems. Moreover, the computation
complexity of the (16) is O(n3) which will be very
expensive with the increasing size of network. To
overcome some of these difficulties, it is widely known
that the conjugate-gradient method is perhaps the only
method that is applicable to large-scale problems, that is,
problems with hundreds or thousands of adjustable
parameters. In this paper, we derive an efficient
conjugate gradient method for MOLF learning
algorithm.

If the optimal learning factor vector z for itth
iteration is denoted by ࢠሺ௜௧ሻ, then its updating expression
is

ሺ௜௧ሻࢠ ൌ ሺ௜௧ିଵሻࢠ ൅ ሺ௜௧ሻ , (17)ࢠ∆

 where it is the order of iterations which is from 0 to ௜ܰ௧ and ௜ܰ௧ is the total number of iterations. Based on
the second order of Taylor series, the quadratic form of
error function for z is rewritten as

ሺ௜௧ሻ൯ࢠ൫ܧ ൎܧ൫ࢠሺ௜௧ିଵሻ൯ଶ ൅ ሺ1/2ሻ൫∆ࢠሺ௜௧ሻ൯Tࡴ௭ሺ௜௧ିଵሻ∆ࢠሺ௜௧ሻ െ ൫ࡳ௭ሺ௜௧ିଵሻ൯T൫∆ࢠሺ௜௧ሻ൯, (18)

where

௭ሺ௜௧ሻࡳ ൌ ሺ௜௧ሻ൯ (19)ࢠԢ൫ܧ

and

௭ሺ௜௧ሻࡴ ൌ ሺ௜௧ሻ൯. (20)ࢠԢԢ൫ܧ

Thus, the gradient of such quadratic form is defined
as

ሺ೔೟ሻ൯ࢠᇱ൫ܧ ൌ ሺ1/2ሻ൫ࢠࡴሺ௜௧ିଵሻ൯T൫∆ࢠሺ௜௧ሻ൯ ൅ ሺ1/2ሻࡴ௭ሺ௜௧ିଵሻ൫∆ࢠሺ௜௧ሻ൯ െ ൫ࢠࡳሺ௜௧ିଵሻ൯T
. (21)

Since ࡴ௭ሺ௜௧ିଵሻ is symmetric, (21) can be simplified to

ሺ௜௧ሻ൯ࢠԢ൫ܧ ൌ ൫ࡴ௭ሺ௜௧ିଵሻ൯T൫∆ࢠሺ௜௧ሻ൯ െ ൫ࡳ௭ሺ௜௧ିଵሻ൯T
.(22)

To minimize the quadratic function, the desired
optimal value of ሺ∆ࢠሻכ will be

 ሺ∆ࢠሻכ ൌ ൫ࡴ௭ሺ௜௧ିଵሻ൯ିଵ൫ࡳ௭ሺ௜௧ିଵሻ൯T
 (23)

and to obtain the optimal learning factor vector ሺ∆ࢠሻכ , the new ∆ࢠ should be chosen along a search
direction ࢊሺ௜௧ሻ , that is

ሺ௜௧ሻࢠ∆ ൌ ሺ௜௧ିଵሻࢠ∆ ൅ ሺ௜௧ିଵሻ. (24)ࢊሺ௜௧ିଵሻࢻ

To find the optimal ሺ௜௧ିଵሻࢻ , we set the value of ∂E ∂હሺ௜௧ିଵሻ⁄ as follows

 ∂E ∂હሺ௜௧ିଵሻ⁄ ൌ 0. (25)

 Then, in light of chain rule, we can get

 ሺ∂E ⁄ሺ௜௧ሻሻܢ∆∂ ሺ∂∆ܢሺ௜௧ሻ ∂હሺ௜௧ିଵሻ⁄ ሻ ൌ 0. (26)

and by (23), we can also get

ሺ௜௧ሻࢠ∆߲ ⁄ሺ௜௧ିଵሻࢻ߲ ൌ ሺ௜௧ିଵሻ, (27)ࢊ

where ∆ࢠሺ௜௧ሻ is expressed as

 ࢘ሺ௜௧ሻ ൌ െࡳ௭ሺ௜௧ିଵሻ ൌ െ ቆ൫ࡴ௭ሺ௜௧ିଵሻ൯൫∆ࢠሺ௜௧ሻ൯ െ൫ࡳ௭ሺ௜௧ିଵሻ൯T൰ (28)

If we define ࢘ሺ௜௧ሻequals to negative gradient of error
function with respect to , we can get

 ൫࢘ሺ௜௧ሻ൯Tࢊሺ௜௧ିଵሻ ൌ 0. (29)

In (29), we can see that each successive gradient will
be linear independent to the previous search direction
during the process. In this way, if we define the
differential vector ࢋሺ௜௧ሻ as the distance of current value of
z from the solution, that is

ሺ௜௧ሻࢋ ൌ ሺ௜௧ሻࢠ∆ െ (30) ,כࢠ∆

1095

then

ሺ௜௧ሻࢋ ൌ ሺ௜௧ିଵሻࢋ ൅ ሺ௜௧ିଵሻ. (31)ࢊሺ௜௧ିଵሻࢻ

By (30), ࢘ሺ௜௧ሻ in (28) can also be rewritten as follows

 ࢘ሺ௜௧ሻ ൌ െࡴ௭ሺ௜௧ିଵሻ൫ࢋሺ௜௧ሻ ൅ ൯כࢠ∆ ൅ ௭ሺ௜௧ିଵሻ (32)ࡳ

 ൌ െࡴ௭ሺ௜௧ିଵሻࢋሺ௜௧ሻ ൅ ൫ࡳ௭ሺ௜௧ିଵሻ െࡴ௭ሺ௜௧ିଵሻ∆כࢠ൯. (33)

Since from (23), it is shown that

௭ሺ௜௧ିଵሻࡳ െ כࢠ∆௭ሺ௜௧ିଵሻࡴ ൌ 0 (34)

and

 ࢘ሺ௜௧ሻ ൌ െࡴ௭ሺ௜௧ିଵሻࢋሺ௜௧ሻ . (35)

By (29), we can get

 ൫ࡴ௭ሺ௜௧ିଵሻࢋሺ௜௧ሻ൯T൫ࢊሺ௜௧ିଵሻ൯ ൌ 0 . (36)

From (36), it is known that ࢊሺ௜௧ିଵሻ is ࢠࡴሺ௜௧ିଵሻ -
conjugate to ࢋሺ௜௧ሻ, that is

 ൫ࢋሺ௜௧ሻ൯T൫ࡴ௭ሺ௜௧ିଵሻ൯Tࢊሺ௜௧ିଵሻ ൌ 0, (37)

which means that if we can find a set of ࡴ௭ሺ௜௧ሻ -
conjugate direction vector , then we can minimize the
error function to get the optimal value of z.

However, to construct a set of ࡴ௭ሺ௜௧ሻ -conjugate
search direction ࢊሺ௜௧ሻ , we need a set of linear
independent vectors. From (29), we can see that if we
choose the successive previous residual to be orthogonal
to the previous residuals, which is described as

 ൫࢘ሺ௜௧ሻ൯T൫࢘ሺ௞ሻ൯ ൌ 0, for all ݇ ൏ ݐ݅ ൅ 1, (38)

then the successive residuals {࢘ሺ଴ሻ, ࢘ሺଵሻ, ڮ , ࢘ሺ௜௧ሻ} can
be used to construct a set of searching direction vector
{ ,ሺ଴ሻࢊ ,ሺଵሻࢊ ڮ , ሺ௜௧ሻࢊ } , which the conjugated gradient
method is named. In this way, the expression of ࢊሺ௜௧ሻ is
given by

ሺ௜௧ሻࢊ ൌ ࢘ሺ௜௧ሻ ൅ ∑ ሺ௞ሻ௜௧ିଵ`௞ୀ଴ࢊሺ௜௧,௞ሻߚ , for ݅ݐ ൌ 1 … ݐ݅ܰ െ 1.
 (39)

By (29) and (33), assuming ࡴ௭ሺ௜௧ሻ ൎ ௭ሺ௜௧ିଵሻ, we canࡴ
get

 ࢘ሺ௜௧ሻ ൎ ࢘ሺ௜௧ିଵሻ െ ሺ௜௧ିଵሻ. (40)ࢊ௭ሺ௜௧ିଵሻࡴሺ௜௧ିଵሻࢻ

By taking inner product ൫ࢊሺ௜௧ିଵሻ൯T
 at both side of (40)

and from (36), ࢻሺ௜௧ିଵሻ can be calculated as

ሺ௜௧ିଵሻࢻ ൌ ൫ࢊሺ೔೟షభሻ൯೅൫࢘ሺ೔೟షభሻ൯൫ࢊሺ೔೟షభሻ൯೅ࡴ೥ሺ೔೟షభሻ൫ࢊሺ೔೟షభሻ൯. (41)

Also, by taking inner product of ࢘ሺ௜௧ሻ at both side of
(40), (41) can be rewritten as

ሺ௜௧ିଵሻࢻ ൌ ି൫࢘ሺ೔೟ሻ൯೅൫࢘ሺ೔೟ሻ൯൫࢘ሺ೔೟ሻ൯೅ࡴ೥ሺ೔೟షభሻ൫ࢊሺ೔೟షభሻ൯. (42)

Also, by taking inner product of ൫࢘ሺ௜௧ሻ൯T
 and from

(37), we can get

 ൫࢘ሺ௜௧ሻ൯Tࢊሺ௜௧ሻ ൌ ൫࢘ሺ௜௧ሻ൯T࢘ሺ௜௧ሻ. (43)

To get ࢊሺ௜௧ሻ in (43), we have to get value ࢼሺ௜௧,௞ሻ in (39).
If we multiply ൫ࡴ௭ሺ௜௧ሻࢊሺ௜௧ሻ൯T

 on the both sides of (35),
then to satisfy the ࡴ௭ሺ௜௧ሻ-conjugate condition, we can get

ሺ௜௧,௜௧ିଵሻࢼ ൌ െ ൫࢘ሺ೔೟ሻ൯Tࡴ೥ሺ೔೟ሻࢊሺ೔೟షభሻ൫ࢊሺ೔೟షభሻ൯Tࡴ೥ሺ೔೟ሻ൫ࢊሺ೔೟షభሻ൯. (44)

With the initial condition ࢊሺ଴ሻ ൌ ࢘ሺ଴ሻ ൌ ሺ଴ሻࢠࡳ and
orthogonal condition in (29), it is known that

 ࢘ሺ௜௧ାଵሻ൫࢘ሺ௜௧ሻ ൅ ∑ ሺ௞ሻ௜௧ିଵ`௞ୀ଴ࢊሺ௜௧,௞ሻࢼ ൯T
=0 . (45)

Then , by taking inner product of ൫࢘ሺ௜௧ାଵሻ൯T on the
both sides of (39) ,we can get that ࢼሺ௜௧,௞ሻ ൌ 0,for all k< it .

 Hence, (39) can be simplified as

ሺ௜௧ሻࢊ ൌ ࢘ሺ௜௧ሻ ൅ ሺ௜௧,௜௧ିଵሻ can be rewritten based on (40) and (41) asࢼ ሺ௜௧ିଵሻ. (46)ࢊሺ௜௧,௜௧ିଵሻࢼ
follows

ሺ௜௧,௜௧ିଵሻࢼ ൌ ଵࢻሺ೔೟షభሻ ି൫࢘ሺ೔೟ሻ൯T൫࢘ሺ೔೟ሻ൯൫ࢊሺ೔೟షభሻ൯Tࡴ೥ሺ೔೟ሻ൫ࢊሺ೔೟షభሻ൯ (47)

 ൌ ି൫࢘ሺ೔೟ሻ൯T൫࢘ሺ೔೟ሻ൯൫࢘ሺ೔೟షభሻ൯೅൫࢘ሺ೔೟ሻషభ൯. (48)

III. PROCEDURE
In this paper, the procedure for training MOLFCG-

OWO is shown as follows:

Step 1 Initialize input vector to be zero means.

Step 2 By using normal distribution function and net
control, initialize input weight matrix ࢃ௜௛ሺ଴ሻ.

Step2 Use OWO to get the initial optimal output
weight matrix, ࢃ௢ሺ଴ሻ by (11).

Step 3 By (7) and (8), get the initial negative Jacobian
matrix ࡳ௜௛ሺ଴ሻ .

Step 4 By (29) ~ (33) , obtain ࡳ௭ሺ଴ሻand ࡴ௭ሺ଴ሻ.
Step 5 Set ࢊሺ଴ሻ ൌ ࢘ሺ଴ሻ ൌ .௭ሺ଴ሻࡳ
Step 6 Start itth iteration, for 0 ൑ ݐ݅ ൏ .௜௧ࡺ

Step 7 Get ࢻሺ௜௧ሻ, by (41).

Step 8 Update ࢠሺ௜௧ାଵሻ by (24).

1096

Step 9 Get ࡴ௭ሺ௜௧ሻ by (20) and update ࢘ሺ௜௧ାଵሻ by (40).

Step 10 Update ࢼሺ௜௧,௞ሻ by (48).

Step 11 Update ࢊሺ௜௧ିଵሻ by (46).

Step 12 Get ࡳ௜௛ሺ௜௧ାଵሻ by (7) and update ࢃ௜௛ሺ௜௧ାଵሻ by (6).

Step 13 Get optimal ࢃ௢ሺ௜௧ାଵሻ by OWO as (11) shows.

Step 14 Combine new ࢃ௜௛ሺ௜௧ାଵሻ and ࢃ௢ሺ௜௧ାଵሻ to get new
actual output vector ࢟ሺ௜௧ାଵሻ by (4) and the new
training error E, by (5).

Step 15 Update ࢘ሺ௜௧ିଵሻ by (40), and return to step (6).

IV. EXPERIMENTAL RESULTS
In order to compare the performance of our proposed

MOLFCG-OWO with those of 1OLFBP-OWO[11], and
traditional Levenberg-Marquardt (LM) [17] , we
implemented many experiments on several real-life
datasets and bench marks. All these simulations ran on
Intel Core2 Duo P8700. For the convenience of
comparison, the number of training iterations for each
simulation was fixed to 100, that is, Nit=100 and all the
synaptic weights were initialized by the same way to
guarantee that all the training errors start at the same
point.

A. Description of Datasets
In this paper, we take the four datasets as examples,

which are called “Twod”, “Single2”, “Mattrn” and
“Concrete”, respectively. All these datasets used for
simulation are publicly available and the input units of
all these datasets have been normalized to be zero-mean
and unit variance.

The first three are taken from some real-life
application [18] and the last one is a benchmark from
UCI Machine Learning Repository [19, 20]. Among
these four datasets, “Twod” is used for inversion the
surface scattering parameters from an inhomogeneous
layer above a homogeneous half space, “Mattrn” is for
inversion of random two-by-two matrices and “Single2”
is for inversion of surface permittivity of the normalized
surface , rms roughness and the surface correlation
length found in back scattering models from randomly
rough dielectric surfaces. The benchmark of “Concrete”
dataset is used for approximation of the nonlinear
function of age and ingredients of concrete compressive
strength.

The numbers of patterns, input units, output units
and hidden units of the four datasets which are denoted
as Nv, N, M, and Nh, as well as the co-linearity of each
dataset for investigating the effects of co-linearity for
training are listed respectively in TABLE 1.

B. Training error and computational time
Under the above training conditions, each training

MSE and computational time spent per iteration for
MOLF, 1OLFBP-OWO and LM is plotted, respectively,
as Fig.2 shows.

TABLE I. THE STRUCTURES OF NEURATL NETWORKS FOR FOUR
DATASETS

Datasets Nv N M Nh Co linearity
Twod 1768 8 7 10 high
Single2 10000 16 3 8 high
Mattrn 2000 4 4 12 high
Concrete 1030 8 1 15 low

Fig.2(a)~(d) shows the plots of average mean square
errors and computational time spent of 1OLFBP-OWO,
LM and MOLFCG-OWO algorithms during each
iteration. It obviously shows that MOLFCG-OWO has
much faster converging rates than that of 1OLFBP-
OWO , even rivals LM for “twod” and “single2”
datasets as (a) and (c) shown. Moreover, the total
computational training time of MOLF is much less than
those of 1OLFBP-OWO and LM.It can also easily be
seen that for high co-linearty datasets, such as “Twod”,
“Mattrn” and “Single2”, MOLFCG-OWO has the best
training convergence as Fig 2.(a)~(c) shows.

(a) “Twod”

(b)“Mattrn”

(c)“Single2”

(d)“Concrete”

Fig. 2. The training error and computational time spent on the four
datasets

C. K-fold cross-validation
In order to learn the generalization capability of our

proposed MOLFCG-OWO algorithm, we implement 10-
fold cross-validation method on those four datasets
receptively, and both the training errors and validation
errors of them are compared in Fig. 3(a)~(d). From Fig.

0 20 40 60 80 100 120 140
0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

Computation time spent during 100 iterations

M
S

E

Twod (10 hidden untis)

MOLFCG-OWO
LM
1OLFBP-OWO

0 10 20 30 40 50 60
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Computation time spent during 100 iterations

M
S

E

Mattrn (12 hidden units)

MOLFCG-OWO
LM
1OLFBP-OWO

0 100 200 300 400 500 600 700 800
0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

Computation time spent during 100 iterations

M
S

E

Single2(8 hidden units)

MOLFCG-OWO
LM
1OLFBP-OWO

0 10 20 30 40 50 60
15

20

25

30

35

40

45

50

55

60

Computationl Time spent during 100 iterations(seconds)

M
S

E

Concrete (15 hidden units)

MOLFCG-OWO
LM
1OLFBP-OWO

1097

3, we can find that both the training errors and validation
errors of our proposed algorithm are much better than
1OLF-OWO algorithm, but not always better than LM,
only the errors for “twod” is lower and others are
higher. The reason is that LM is a method which can
adapt itself to be prone to the first order learning method
or to the second order learning method based on the
training errors by tuning the parameter λ, which makes
it more possible to get more generalization capability by
getting out of local optimal points of learning progress
for some applications.

 (a) “Twod”

(b) “Single2”

(c) “Mattrn”

(d) “Concrete”

Fig. 3. The 10-fold cross- validation errors of the four datasets

V. CONCLUSION
In this paper, we investigate an efficient conjugate

gradient method for optimizing multiple learning factors
of MLP which is called MOLFCG-OWO algorithm. The
experimental results on some real-life datasets and
benchmarks show that the proposed algorithm not only
greatly improves the convergence of 1OLFBP-OWO,
especially for high co-linearity datasets, but also even
rivals LM with much less computational time. Hence,
MOLFCG-OWO is obviously good choice for practical
applications of MLP training algorithms.

Since LM algorithm still is a good choice for better
generalization capability, in order to low its high
computational time, our future work will focus on
updating Newton’s method into CG method to find all
the optimal weights.

REFERENCES
[1] Dennis W. Ruck et al., “The mulitlayer perceptron as an

approximation to a Bayes optimal discriminant function,” IEEE
Transactions on Neural Networks, vol. 1, No. 4, pp.256-298,
1990.

[2] Meesomsarn, K., Chaisricharoen, R., Chipipop, B. and
Yooyativong, T. “Forecasting the effect of stock repurchase via
an artificial neural network,” ICROS-SICE International Joint
Conference 2009, pp.2573 - 2578, Aug 2009.

[3] Ramón Velo, Paz López, Francisco Maseda. “Wind speed
estimation using multilayer perceptron, ” Energy Conversion
and Management vol. 81, pp.1-9, 2014.

[4] Martin T. Hagan, Howard B. Demuth and Orlando De Jesús,
“An introduction to the use of neural networks in control
systems,” International Journal Of Robust And Nonlinear
Control. vol. 12, n.11,pp:959-985, 2002.

[5] Sangjae Leea, Joon Yeon Choehb, “Predicting the helpfulness of
online reviews using multilayer perceptron neural networks,”
Expert Systems with Applications , vol.41, pp.3041–3046, 2014.

[6] Jyothi B.V., Eswaran K., “Comparative study of neural
networks for image retrieval,” International Conference on
Intelligent Systems, Modelling and Simulation, pp. 199-203, Jan
. 2010.

[7] K.-L, Du. “Clustering: A neural network approach,” Neural
Networks, vol. 23, n. 1, pp. 89-107, 2011.

[8] Melacci, S., Maggini M.and Sarti L., “Semi-supervised
clustering using similarity neural networks,” International Joint
Conference on Neural Networks, (Atlanta, GA, June 14-19,
2009), pp.2065 – 2072, June 2009.

[9] Rumelhart D.E., Hinton G.E.and Williams R.J., “Learning
internal representations by error propagation,” Parallel
distributed processing: explorations in the microstructure of
cognition, Mit Press Computational Models Of Cognition And
Perception Series, Cambridge, MA, USA, vol. 1: foundations.1,
pp. 318 – 362, 1986.

[10] F. J. Maldonado, M. T. Manry and Tae-Hoon Kim,. “Finding
optimal neural network basis function subsets using the Schmidt
procedure” In Proceedings of the International Joint Conference
on Neural Networks,(Portland, Oregon,2003),1, pp.444 – 449,
July , 2003.

[11] H-H Chen, M.T. Manry, and H. Chandrasekaran, “A neural
network training algorithm utilizing multiple sets of linear
equations”, Neurocomputing, vol. 25, pp. 1-3, 55-72, 1999.

[12] Sanjeev S. Malalur and Michael T. Manry, “Multiple optimal
learning factors for feed-forward networks”, The SPIE Defense,
Security and Sensing (DSS) Conference, Orlando, FL, April
2010.

[13] Praveen Jesudhas, Michael T Manry, Sanjeev Malalur,,
“Analysis and improvement of multiple optimal learning factors
for feedforward networks”, International Joint Conference on
Neural Networks,(San, Joes, CA.) , pp. 2593 – 2600, July 31-
Aug. 5, 2011.

1098

[14] R.Fletch. “Practical methods of optimization”. A Wiley-
Interscience Pulication, 2000.

[15] Simon Haykin, “Neural networks: a comprehensive foundation”,
Pretice-Hall, Inc.2008.

[16] Jonathan Richard Shewchuk, “An introduction to the conjugate
gradient method without the agonizing pain”, Technical report.
School of Computer Science, Carnegie Mellon University,
August 1994.

[17] Fun., M,H., and Hagan., M,T., “ Levenberg-Marquardt training
for modular networks,” Proc. Of IEEE International Conference
on Neural Networks’96, Washington DC,pp.468-473, 1996.

[18] http://www-ee.uta.edu/eewb/ip/training_data_files.htm.
[19] http://archive.ics.uci.edu/ml/.
[20] Cheng Yeh., “ Modeling of strength of high performance

concrete using artificial neural networks,” Cement and Concrete
Research,vol. 28,n.12, pp.1797-1808,1998.

1099

