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Abstract—In this paper, a second 

algorithm based on Conjugate Gradient (
finding Multiple Optimal Learning Facto
multilayer perceptron neural network 
details. The experimental results on seve
show that,  compared with  One Optimal 
algorithm with Optimal Output Weights (1
Levenberg-Marquardt learning algorithm
proposed CG based MOLF method with
weights which is also called MOLFCG-O
has not only significantly faster convergen
of 1OLF and even super to that of LM lea
for some datasets with much less comput
also more generalization capability tha
Thus, MOLFCG-OWO algorithm is s
choice for some practical applications. 
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I. INTRODUCTION
Multilayer Perceptron Neural Netw

has several favorable properties o
approximation and the ability to 
discriminant [1] which make it a popula
regression and classification applicat
finance[2] and weather predication 
controller [4], image and documents  ret
clustering [7,8,9].  

The fundamental theory of MLP NN
following. 

Given a dataset with Nv training pat
where p=1 to Nv, then the typical topo
connected feed-forward MLP consists 
including input layer, hidden layer and o
shown in Fig.1.  

In Fig.1, the numbers of units in inp
layer and output layer are denoted by
respectively. The notation xp =[xp(1), xp 
denotes the input unit vector of pth pa
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of  universal 
mimic Bayes 

ar tool for  many 
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[3], automatic 

trieval [5,6] and 

N is reviewed as 

tterns {(xp, tp)}, 
logy of a fully-
of three layers 

output layer , as 

put layer, hidden 
y N, Nh and M, 

(2)…xp (N+1)]T 
attern, where xp 

(N+1) is an augmented inp
handling the threshold of eac
xp (N+1)=1. The notation 
denotes the desired outpu
corresponding to xp.  

Fig. 1. The architecture of a fully c

For hidden layer, Nh den
units and Wih={wih(i,k)} den
linking from input units to h
1 to N, k is from 1 to Nh.  

For output layer, Who={w
output weights linking from 
with Nh by M dimension. 
forward MLP, there is anoth
linking input units to output u
weight Wio={wio(i,m)}, with N

For each hidden unit, ea
units is denoted by np(k) ,whi

 npሺkሻ= ∑N+1
i=1

Correspondingly, each ou
which is also called activation
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ut unit for convenience of 
ch hidden unit and is set to 
tp=[tp(1), tp (2)…tp (M)]T 

ut vector of pth pattern 

 
connected feedforward MLP 

notes the number of hidden 
notes all the hidden weights 
idden units, where i is from 

who(k,m)} represents all the 
hidden units to output units 
For a full-connected feed-
her kind of weight directly 
units which is called bypass 
N by M dimension.  

ach net function of hidden 
ich is given by 

wihሺi,kሻxpሺiሻ1 . (1) 

utput of hidden units, op(k), 
n function is given by ݂ ቀ݊௣ሺ݇ሻቁ. (2)
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Normally, ( )f ⋅ is taken as a sigmoid function  which 
is shown by 

 ݂ ቀ݊௣ሺ݇ሻቁ ൌ ଵଵା௘ష೙೛ሺೖሻ. (3) 

Based on the above notations, the actual output 
vector of MLP yp is calculated by following expression 

 ࢟௣ ൌ ሺࢃ௜௢ሻT࢞௣ ൅ ሺࢃ௛௢ሻT࢕௣. (4) 

If we choose batch mode training of MLP, then the 
typical error function E is the total mean squared error 
(MSE) of all output units and is given as follows 

ܧ  ൌ ଵேೡ ∑ ∑ ௣ሺ݉ሻݐൣ െ ௣ሺ݉ሻ൧ଶெ௠ୀଵேೡ௣ୀଵݕ . (5) 

For training hidden weights, the most basic 
algorithm is steepest descent back propagation [10]. In 
such case, the hidden weight matrix, Wih, is updated as 

௜௛ࢃ  ՚ ௜௛ࢃ ൅ ݖ ·  ௜௛, (6)ࡳ

where Gih={gih(n,k)} is an (N+1) by Nh negative 
gradient vector of error function with respect to each 
hidden unit , and  is often calculated by the following 
equation 

௜௛ࡳ  ൌ ଵேೡ ∑ ࢞௣൫ࢾ௣൯Tேೡ௣ୀଵ , (7) 

where ࢾ௣ ൌ ሾߜ௣ሺ1ሻ, … , ௣ሺ݇ሻߜ … , ௣ሺߜ ௛ܰሻሿT. ( )p kδ   is the 
delta function corresponding to kth hidden unit and is 
calculated by using back propagation which is shown as 
follows 

௣ሺ݇ሻߜ  ൌ ݂Ԣ ቀ݊௣ሺ݇ሻቁ · ∑ ௢ሺ݉ሻߜ · ,௛௢ሺ݇ݓ ݉ሻM௠ୀଵ ,(8) 

where ߜ௢ሺ݉ሻ denotes one of the element of the delta 
function of output units ࢾ௢, and is normally given by 

௢ࢾ  ൌ 2ሺ࢚௣ െ ࢟௣ሻ. (9) 

If we combine the input vector and the output vector 
to form a new input vector ࢄ௣ ൌ ൣ࢞௣:  ௣൧  with (N+Nh+1)࢕
by 1 dimension, then the autocorrelation matrix of  ࢄ௣ 
which is denoted by ࡾ௢ , and the correlation matrix of ࢄ௣ 
and ࢚௣, which is denoted by ࡯௢ can be given respectively 
by 

 ቐ    ࡯௢ ൌ ଵேೡ ∑ ࢟௣܆୮Tேೡ௣ୀଵࡾ௢ ൌ ଵேೡ ∑ ௣Tேೡ௣ୀଵࢄ௣ࢄ .  (10) 

Hence, the output weights matrix, Wo,can be calculated 
by the following linear equation 

௢ࢃ  ൌ  ௢T. (11)࡯௢ࡾ

In this case, (11) can be solved by using orthogonal 
least square (OLS) [10,11]. 

A. The effects of learning factors 
If steep descent algorithm is applied to minimize the 

error function in (6), the error function in (5) has to be 
zigzag to a minimum on the error surface, so steep 
descent algorithm tends to converge slowly.  

In order to solve this cause, there are some heuristics 
that provide useful guidelines to accelerate the 
convergence of back-propagation learning, which 
includes: each adjustable weight should have its own 
individual learning factor and each learning factor 
should be updated after one iteration. 

In light of above heuristics, the learning factor of  
each hidden weight should be given  and updated 
individually after each iteration. Reference [12, 13] 
proposed a kind of multiple optimal learning factor 
(MOLF) algorithms which used Newton’s method to 
evaluate the optimal learning factors. However, due to 
inversion of Hessian matrix, Newton’s method has the 
computation complexity of O (n2). Along with the total 
of number of multiple learning factors, N*Nh, grows, the 
computation of OLS will increase very fast which  
makes itself impractical for large scale network.  

In order to solve this problem and to keep the 
optimal properties given by the second order 
optimization, CG is regarded as an intermediate between 
the method of steep descent and Newton’s method 
which can accelerate the slow rate of convergence 
experienced with the method of steep descent, while 
avoiding the computational requirements associated with 
the evaluation, storage and inversion of the Hessian 
matrix in Newton’s method [14,15,16]. Due to these 
advantages of CG, in this paper we propose to use 
conjugate gradient (CG) method instead of OLS to 
improve the training rate and convergence of  MOLF.  

The rest of paper is organized as follows: in the 
section II, we will introduce our CG-based MOLF 
algorithm in details. In section III , the procedure of the 
proposed MOLF-CG is given. In section IV, the 
experimental results for  comparing the performance of 
our CG-based MOLF with  a those of 1OLFBP-OWO 
and LM learning algorithms are given. Finally, the 
conclusions and some advance work are discussed  in 
section V. 

II. OUR WORK 
The output weights of our proposed CG-based 

MOLF method are trained by Output Weights 
Optimization (OWO) method and the learning vector zk 
for the kth hidden unit is being updated. Then, the  
predicted mth output is given by 

௣ሺ݉ሻݕ   ൌ∑ ,௢௜ሺ݉ݓ ݅ሻݔ௣ሺ݅ሻேାଵ௜ୀଵ ൅  ∑ ,௢௛ሺ݉ݓ ݇ሻே೓௞ୀଵ ݂ ቀ∑ ൫ݓ௜௛ሺ݇, ݅ሻ ൅ேାଵ௜ୀଵݖ௞݃ሺ݇, ݅ሻ൯  ௣ሺ݅ሻቁ.  (12)ݔ
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For each iteration, all the hidden weights are updated 
respectively by 

,௜௛ሺ݇ݓ   ݅ሻ ՚ ,௜௛ሺ݇ݓ ݅ሻ ൅ ௞ݖ · ݃ሺ݇, ݅ሻ. (13) 

If the negative derivative vector of error function to 
each learning factor ݖ௞  is denoted by Ԣሺݖ௞ሻ  , then the 
second derivative of the jth output error function with 
respect to kth learning factor ,  ܧ"൫ݖ௠,௞൯ can be rewritten  
as   ܧԢሺݖ௞ሻ ൌିଶேೡ ∑ ∑ ௣ሺ݉ሻݐൣ െெ௠ୀଵேೡ௣ୀଵݕ௣ሺ݉ሻሿݓ௢௛ሺ݉, ݇ሻ݋௣ሺ݇ሻ∆݊௣ሺ݇ሻ. (14) 

௠,௞൯ݖ൫"ܧ   ൎ ିଶேೡ ∑ ∑ ,௢௛ሺ݉ݓൣ ݇ሻ݋ᇱ௣ሺ݇ሻ∆݊௣ሺ݇ሻ൧ଶெ௠ୀଵேೡ௣ୀଵ .

  (15) 

Also, if we use ࡳ௭ to denote gradient vector of which 
each element is given by ܧԢሺݖ௞ሻ and use ࡴ௭  to denote 
Hessian matrix of which each element is given by ܧ"൫ݖ௠,௞൯ then for he learning factor vector z of which each 
element is  ݖ௞   , then by using Newton’s method, z  is 
calculated by the follow formula 

ࢠ   ൌ ሺࡴ௭ሻିଵࡳ௭. (16) 

Normally, the above linear equation is solved very 
efficiently by using Orthogonal Least Square (OLS) 
method as [13, 14] shown.  

However, computation of Newton ’ s method   
depends on the rank deficient of which of ࡴ௭  ten suffers 
from the intrinsically ill-conditioned nature of neural 
network training problems. Moreover, the computation 
complexity of the (16) is O(n3) which will be  very 
expensive with the increasing size of network. To 
overcome some of these difficulties, it is widely known 
that the conjugate-gradient method is perhaps the only 
method that is applicable to large-scale problems, that is, 
problems with hundreds or thousands of adjustable 
parameters. In this paper, we derive an efficient 
conjugate gradient method for MOLF learning 
algorithm. 

If the optimal learning factor vector z for itth 
iteration is denoted by ࢠሺ௜௧ሻ, then its updating expression 
is 

ሺ௜௧ሻࢠ   ൌ ሺ௜௧ିଵሻࢠ ൅  ሺ௜௧ሻ , (17)ࢠ∆

 where   it is the order of iterations which is from 0 to  ௜ܰ௧  and ௜ܰ௧  is the total number of iterations. Based on 
the second order of Taylor series, the quadratic form of 
error function for z is rewritten as 

ሺ௜௧ሻ൯ࢠ൫ܧ  ൎܧ൫ࢠሺ௜௧ିଵሻ൯ଶ ൅ ሺ1/2ሻ൫∆ࢠሺ௜௧ሻ൯Tࡴ௭ሺ௜௧ିଵሻ∆ࢠሺ௜௧ሻ െ                                            ൫ࡳ௭ሺ௜௧ିଵሻ൯T൫∆ࢠሺ௜௧ሻ൯,  (18) 

where 

௭ሺ௜௧ሻࡳ  ൌ  ሺ௜௧ሻ൯ (19)ࢠԢ൫ܧ

and 

௭ሺ௜௧ሻࡴ  ൌ  ሺ௜௧ሻ൯. (20)ࢠԢԢ൫ܧ

Thus, the gradient of such quadratic form is defined 
as 

ሺ೔೟ሻ൯ࢠᇱ൫ܧ  ൌ ሺ1/2ሻ൫ࢠࡴሺ௜௧ିଵሻ൯T൫∆ࢠሺ௜௧ሻ൯ ൅ ሺ1/2ሻࡴ௭ሺ௜௧ିଵሻ൫∆ࢠሺ௜௧ሻ൯ െ                         ൫ࢠࡳሺ௜௧ିଵሻ൯T
. (21) 

Since ࡴ௭ሺ௜௧ିଵሻ is symmetric, (21) can be simplified to 

ሺ௜௧ሻ൯ࢠԢ൫ܧ  ൌ ൫ࡴ௭ሺ௜௧ିଵሻ൯T൫∆ࢠሺ௜௧ሻ൯ െ ൫ࡳ௭ሺ௜௧ିଵሻ൯T
.(22) 

To minimize the quadratic function, the desired 
optimal value of ሺ∆ࢠሻכ will be 

 ሺ∆ࢠሻכ ൌ ൫ࡴ௭ሺ௜௧ିଵሻ൯ିଵ൫ࡳ௭ሺ௜௧ିଵሻ൯T
  (23) 

and to obtain the optimal learning factor vector ሺ∆ࢠሻכ , the new ∆ࢠ  should be chosen along a search 
direction ࢊሺ௜௧ሻ , that is  

ሺ௜௧ሻࢠ∆   ൌ ሺ௜௧ିଵሻࢠ∆ ൅  ሺ௜௧ିଵሻ. (24)ࢊሺ௜௧ିଵሻࢻ

To find the optimal ሺ௜௧ିଵሻࢻ , we set the value of ∂E ∂હሺ௜௧ିଵሻ⁄  as follows  

  ∂E ∂હሺ௜௧ିଵሻ⁄ ൌ 0. (25) 

 Then, in light of chain rule, we can get 

  ሺ∂E ⁄ሺ௜௧ሻሻܢ∆∂ ሺ∂∆ܢሺ௜௧ሻ ∂હሺ௜௧ିଵሻ⁄ ሻ ൌ 0. (26) 

and by (23),  we can also get  

ሺ௜௧ሻࢠ∆߲   ⁄ሺ௜௧ିଵሻࢻ߲ ൌ  ሺ௜௧ିଵሻ, (27)ࢊ

where ∆ࢠሺ௜௧ሻ is expressed as 

  ࢘ሺ௜௧ሻ ൌ െࡳ௭ሺ௜௧ିଵሻ ൌ െ ቆ൫ࡴ௭ሺ௜௧ିଵሻ൯൫∆ࢠሺ௜௧ሻ൯ െ൫ࡳ௭ሺ௜௧ିଵሻ൯T൰  (28) 

If we define ࢘ሺ௜௧ሻequals to negative gradient of error 
function with respect to  , we can get 

 ൫࢘ሺ௜௧ሻ൯Tࢊሺ௜௧ିଵሻ ൌ 0.  (29) 

In (29), we can see that each successive gradient will 
be linear independent to the previous search direction 
during the process. In this way, if we define the 
differential vector ࢋሺ௜௧ሻ as the distance of current value of 
z from the solution, that is 

ሺ௜௧ሻࢋ  ൌ ሺ௜௧ሻࢠ∆ െ  (30) ,כࢠ∆
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then 

ሺ௜௧ሻࢋ   ൌ ሺ௜௧ିଵሻࢋ ൅  ሺ௜௧ିଵሻ. (31)ࢊሺ௜௧ିଵሻࢻ

By (30), ࢘ሺ௜௧ሻ in (28) can also be rewritten as follows 

  ࢘ሺ௜௧ሻ ൌ െࡴ௭ሺ௜௧ିଵሻ൫ࢋሺ௜௧ሻ ൅ ൯כࢠ∆ ൅  ௭ሺ௜௧ିଵሻ (32)ࡳ

                     ൌ െࡴ௭ሺ௜௧ିଵሻࢋሺ௜௧ሻ ൅ ൫ࡳ௭ሺ௜௧ିଵሻ െࡴ௭ሺ௜௧ିଵሻ∆כࢠ൯.  (33) 

Since from (23), it is shown that  

௭ሺ௜௧ିଵሻࡳ   െ כࢠ∆௭ሺ௜௧ିଵሻࡴ ൌ 0  (34) 

and 

 ࢘ሺ௜௧ሻ ൌ െࡴ௭ሺ௜௧ିଵሻࢋሺ௜௧ሻ . (35) 

By (29), we can get  

  ൫ࡴ௭ሺ௜௧ିଵሻࢋሺ௜௧ሻ൯T൫ࢊሺ௜௧ିଵሻ൯ ൌ 0 . (36) 

From  (36), it is known that ࢊሺ௜௧ିଵሻ is ࢠࡴሺ௜௧ିଵሻ -
conjugate to    ࢋሺ௜௧ሻ, that is  

  ൫ࢋሺ௜௧ሻ൯T൫ࡴ௭ሺ௜௧ିଵሻ൯Tࢊሺ௜௧ିଵሻ ൌ 0, (37) 

which means that if we can find a set of ࡴ௭ሺ௜௧ሻ -
conjugate direction vector , then we can minimize the 
error function to get the optimal value of z. 

However, to construct a set of ࡴ௭ሺ௜௧ሻ -conjugate 
search direction ࢊሺ௜௧ሻ , we need a set of linear 
independent vectors. From (29), we can see that if we 
choose the successive previous residual to be orthogonal 
to the previous residuals, which is described as  

 ൫࢘ሺ௜௧ሻ൯T൫࢘ሺ௞ሻ൯ ൌ 0, for all  ݇ ൏ ݐ݅ ൅ 1, (38) 

then the successive residuals  {࢘ሺ଴ሻ, ࢘ሺଵሻ, ڮ , ࢘ሺ௜௧ሻ}  can 
be used to construct a set of searching direction vector 
{ ,ሺ଴ሻࢊ ,ሺଵሻࢊ ڮ , ሺ௜௧ሻࢊ } , which the conjugated gradient 
method is named. In this way, the expression of ࢊሺ௜௧ሻ is 
given by 

ሺ௜௧ሻࢊ   ൌ ࢘ሺ௜௧ሻ ൅ ∑ ሺ௞ሻ௜௧ିଵ`௞ୀ଴ࢊሺ௜௧,௞ሻߚ , for ݅ݐ ൌ 1 … ݐ݅ܰ െ 1.
  (39) 

By (29) and (33), assuming ࡴ௭ሺ௜௧ሻ ൎ  ௭ሺ௜௧ିଵሻ, we canࡴ
get 

  ࢘ሺ௜௧ሻ ൎ ࢘ሺ௜௧ିଵሻ െ  ሺ௜௧ିଵሻ. (40)ࢊ௭ሺ௜௧ିଵሻࡴሺ௜௧ିଵሻࢻ

By taking inner product ൫ࢊሺ௜௧ିଵሻ൯T
 at both side of (40) 

and from (36),  ࢻሺ௜௧ିଵሻ can be calculated as 

ሺ௜௧ିଵሻࢻ   ൌ ൫ࢊሺ೔೟షభሻ൯೅൫࢘ሺ೔೟షభሻ൯൫ࢊሺ೔೟షభሻ൯೅ࡴ೥ሺ೔೟షభሻ൫ࢊሺ೔೟షభሻ൯. (41) 

Also, by taking inner product of  ࢘ሺ௜௧ሻ at both side of 
(40), (41) can be rewritten as 

ሺ௜௧ିଵሻࢻ  ൌ ି൫࢘ሺ೔೟ሻ൯೅൫࢘ሺ೔೟ሻ൯൫࢘ሺ೔೟ሻ൯೅ࡴ೥ሺ೔೟షభሻ൫ࢊሺ೔೟షభሻ൯.  (42) 

Also, by taking inner product of   ൫࢘ሺ௜௧ሻ൯T
 and from 

(37), we can get 

  ൫࢘ሺ௜௧ሻ൯Tࢊሺ௜௧ሻ ൌ ൫࢘ሺ௜௧ሻ൯T࢘ሺ௜௧ሻ. (43) 

To get ࢊሺ௜௧ሻ in (43), we have to get value ࢼሺ௜௧,௞ሻ in (39). 
If we multiply ൫ࡴ௭ሺ௜௧ሻࢊሺ௜௧ሻ൯T

 on the both sides of (35), 
then to satisfy the  ࡴ௭ሺ௜௧ሻ-conjugate condition, we can get  

ሺ௜௧,௜௧ିଵሻࢼ   ൌ െ ൫࢘ሺ೔೟ሻ൯Tࡴ೥ሺ೔೟ሻࢊሺ೔೟షభሻ൫ࢊሺ೔೟షభሻ൯Tࡴ೥ሺ೔೟ሻ൫ࢊሺ೔೟షభሻ൯. (44) 

With the initial condition ࢊሺ଴ሻ ൌ ࢘ሺ଴ሻ ൌ ሺ଴ሻࢠࡳ  and 
orthogonal condition in (29),  it is known that 

  ࢘ሺ௜௧ାଵሻ൫࢘ሺ௜௧ሻ ൅ ∑ ሺ௞ሻ௜௧ିଵ`௞ୀ଴ࢊሺ௜௧,௞ሻࢼ ൯T
=0 . (45) 

Then , by taking inner product of  ൫࢘ሺ௜௧ାଵሻ൯T  on the 
both sides of (39) ,we can get that ࢼሺ௜௧,௞ሻ ൌ 0,for all k< it . 

 Hence, (39) can be simplified as  

ሺ௜௧ሻࢊ   ൌ ࢘ሺ௜௧ሻ ൅  ሺ௜௧,௜௧ିଵሻ can be rewritten based on (40) and (41) asࢼ ሺ௜௧ିଵሻ. (46)ࢊሺ௜௧,௜௧ିଵሻࢼ
follows 

ሺ௜௧,௜௧ିଵሻࢼ  ൌ ଵࢻሺ೔೟షభሻ ି൫࢘ሺ೔೟ሻ൯T൫࢘ሺ೔೟ሻ൯൫ࢊሺ೔೟షభሻ൯Tࡴ೥ሺ೔೟ሻ൫ࢊሺ೔೟షభሻ൯ (47) 

 ൌ ି൫࢘ሺ೔೟ሻ൯T൫࢘ሺ೔೟ሻ൯൫࢘ሺ೔೟షభሻ൯೅൫࢘ሺ೔೟ሻషభ൯. (48) 

III. PROCEDURE 
In this paper, the procedure for training MOLFCG-

OWO is shown as follows:  

Step 1  Initialize input vector to be zero means. 

Step 2  By using normal distribution function and net 
control, initialize input weight matrix  ࢃ௜௛ሺ଴ሻ. 

Step2 Use OWO to get the initial optimal output 
weight matrix, ࢃ௢ሺ଴ሻ by (11). 

Step 3 By (7) and (8), get the initial negative Jacobian 
matrix ࡳ௜௛ሺ଴ሻ . 

Step 4 By (29) ~ (33) , obtain ࡳ௭ሺ଴ሻand ࡴ௭ሺ଴ሻ. 
Step 5 Set ࢊሺ଴ሻ ൌ ࢘ሺ଴ሻ ൌ  .௭ሺ଴ሻࡳ
Step 6  Start itth iteration, for 0 ൑ ݐ݅ ൏  .௜௧ࡺ

Step 7 Get ࢻሺ௜௧ሻ, by (41). 

Step 8 Update ࢠሺ௜௧ାଵሻ by (24). 
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Step 9  Get ࡴ௭ሺ௜௧ሻ  by (20) and update ࢘ሺ௜௧ାଵሻ  by (40). 

Step 10 Update ࢼሺ௜௧,௞ሻ by (48). 

Step 11 Update ࢊሺ௜௧ିଵሻ by (46). 

Step 12 Get ࡳ௜௛ሺ௜௧ାଵሻ by (7) and update ࢃ௜௛ሺ௜௧ାଵሻ by (6). 

Step 13  Get optimal ࢃ௢ሺ௜௧ାଵሻ by OWO as (11) shows. 

Step 14 Combine new ࢃ௜௛ሺ௜௧ାଵሻ and ࢃ௢ሺ௜௧ାଵሻ to get new 
actual output vector ࢟ሺ௜௧ାଵሻ  by (4) and the new 
training error E, by (5).  

Step 15  Update ࢘ሺ௜௧ିଵሻ by (40), and return to step (6). 

IV. EXPERIMENTAL RESULTS 
In order to compare the performance of our proposed 

MOLFCG-OWO with those of 1OLFBP-OWO[11], and 
traditional Levenberg-Marquardt (LM) [17] , we 
implemented many experiments on several real-life 
datasets and bench marks. All these simulations ran on 
Intel Core2 Duo P8700. For the convenience of 
comparison, the number of training iterations for each 
simulation was fixed to 100, that is, Nit=100 and all the 
synaptic weights were initialized by the same way to 
guarantee that all the training errors start at the same 
point. 

A. Description of Datasets 
In this paper, we take the four datasets as examples, 

which are called “Twod”, “Single2”, “Mattrn” and 
“Concrete”, respectively. All these datasets used for 
simulation are publicly available and the input units of 
all these datasets have been normalized to be zero-mean 
and unit variance. 

The first three are taken from some real-life 
application [18] and the last one is a benchmark from 
UCI Machine Learning Repository [19, 20]. Among 
these four datasets, “Twod” is used for inversion the 
surface scattering parameters from an inhomogeneous 
layer above a homogeneous half space, “Mattrn” is for 
inversion of random two-by-two matrices  and “Single2” 
is for inversion of surface permittivity of the normalized 
surface , rms roughness and the surface correlation 
length found in back scattering models from randomly 
rough dielectric surfaces. The benchmark of “Concrete” 
dataset is used for approximation of the nonlinear 
function of age and ingredients of concrete compressive 
strength.  

The numbers of patterns, input units, output units 
and hidden units of the four datasets which are denoted 
as Nv, N, M, and Nh, as well as the co-linearity of each 
dataset for investigating the effects of co-linearity for 
training are listed respectively in TABLE 1. 

B. Training error and computational time 
Under the above training conditions, each training 

MSE and computational time spent per iteration for 
MOLF, 1OLFBP-OWO and LM is plotted, respectively, 
as Fig.2 shows. 

 

TABLE I.  THE STRUCTURES OF NEURATL NETWORKS FOR FOUR 
DATASETS 

Datasets Nv N M Nh Co linearity 
Twod 1768 8 7 10 high 
Single2 10000 16 3 8 high 
Mattrn 2000 4 4 12 high 
Concrete 1030 8 1 15 low 

Fig.2(a)~(d) shows the plots of average mean square 
errors and computational time spent of 1OLFBP-OWO, 
LM and MOLFCG-OWO algorithms during  each 
iteration. It obviously shows that MOLFCG-OWO has 
much faster converging rates than that of 1OLFBP-
OWO , even rivals LM for “twod” and “single2” 
datasets as (a) and (c) shown. Moreover, the total 
computational training time of MOLF is much less than 
those of 1OLFBP-OWO and LM.It can also easily be 
seen that for high co-linearty datasets, such as “Twod”, 
“Mattrn” and “Single2”, MOLFCG-OWO has the best 
training convergence as Fig 2.(a)~(c) shows. 

 

(a) “Twod” 

 

(b)“Mattrn” 

 
(c)“Single2” 

 
(d)“Concrete” 

Fig. 2. The training error and computational time spent on the four 
datasets 

C. K-fold cross-validation  
In order to learn the generalization capability of our 

proposed MOLFCG-OWO algorithm, we implement 10-
fold cross-validation method on those four datasets 
receptively, and both the training errors and validation 
errors of them are compared in Fig. 3(a)~(d). From Fig. 
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3, we can find that both the training errors and validation 
errors of our proposed algorithm are much better than 
1OLF-OWO algorithm, but not always better than LM, 
only the errors for  “twod” is lower and others are 
higher. The reason is that LM is a method which can 
adapt itself to be prone to the first order learning method 
or to the second order learning method based on the 
training errors by tuning the parameter λ, which makes 
it more possible to get more generalization capability by 
getting out of local optimal points of learning progress 
for some applications.  

  

 (a) “Twod” 

  
(b) “Single2” 

  
(c) “Mattrn” 

  
(d)  “Concrete” 

Fig. 3.  The 10-fold cross- validation errors of the four datasets 

V. CONCLUSION 
In this paper, we investigate an efficient conjugate 

gradient method for optimizing multiple learning factors 
of MLP which is called MOLFCG-OWO algorithm. The 
experimental results on some real-life datasets and 
benchmarks show that the proposed algorithm not only 
greatly improves the convergence of 1OLFBP-OWO, 
especially for high co-linearity datasets, but also even 
rivals LM with much less computational time.  Hence, 
MOLFCG-OWO is obviously good choice for practical 
applications of MLP training algorithms.  

Since LM algorithm still is a good choice for better 
generalization capability, in order to low its high 
computational time, our future work will focus on 
updating Newton’s method into CG method to find all 
the optimal weights.  
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