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Abstract—The ability to learn incrementally from streaming
data – either in an online or batch setting – is of crucial
importance for a prediction algorithm to learn from environments
that generate vast amounts of data, where it is impractical or
simply unfeasible to store all historical data. On the other hand,
learning from streaming data becomes increasingly difficult when
the probability distribution generating the data stream evolves
over time, which renders the classification model generated from
previously seen data suboptimal or potentially useless. Ensemble
systems that employ multiple classifiers may be used to mitigate
this effect, but even in such cases some classifiers (experts) become
less knowledgeable for predicting on different domains than
others as the distribution drifts. Further complication results
when labeled data from a prediction (target) domain is not
immediately available; hence, causing prediction on the target
domain to yield sub-optimal results. In this work, we provide
upper bounds on the loss, which hold with high probability,
of a multiple expert system trained in such a nonstationary
environment with verification latency. Furthermore, we show why
a single model selection strategy can lead to undesirable results
when learning in such nonstationary streaming settings. We
present our analytical results with experiments on simulated as
well as real-world data sets, comparing several different ensemble
approaches to a single model.

I. INTRODUCTION & LEARNING SETTING

Traditional learning algorithms often assume that the train-
ing data are sampled from the same probability distribution
as test data; however, this stationarity assumption is violated
in many practical settings [1], [2]. Concept drift is one such
learning scenario where the training and testing probability
distributions may be different. Concept drift is commonly
found in many prediction scenarios such as spam filtering,
electricity price forecasting, and financial forecasting. The
problem of concept drift in data streams, also referred to as
learning in nonstationary environments, has attracted much
attention from the computational intelligence community due
to increasing number of applications that generate such data,
and multiple expert systems (MES) have been shown to be
quite effective in such nonstationary settings [3]–[6]. MES,
also called ensemble systems, are widely used in concept
drift settings because of their inherent ability the provide a
good balance for the stability-plasticity dilemma [7]: they are
able to learn to forget old or irrelevant knowledge, and learn
new relevant knowledge with the removal and addition of
classifiers, respectively [3].
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Algorithms that address concept drift tend to be either
passive or active1. Passive algorithms (e.g., Learn++.NSE [9],
and Learn++.CDS [10]) simply assume that the environment
is changing and are continuously taking some corrective action
to adjust the prediction strategy. Active algorithms (e.g., Oza
Bagging + ADWIN [11]) only make adjustments when drift
is detected. Therefore, active approaches typically require
a drift detection algorithm such as the Hellinger Distance
Drift Detection Method (HDDDM) [12], or the Intersection of
Confidence Intervals (ICI) rule [13], to be used in conjunction
with a classifier. Some concept drift approaches try to use both
passive and active techniques to aid learning in nonstationary
environments [14].

One of the central issues we are concerned with when
learning from data over time is the expected loss of a classifier
on a target data set. Unfortunately, computing an exact quantity
is typically infeasible, either because there is not enough data,
or the labels are simply not available. Therefore, we must look
at deriving bounds on the loss of a hypothesis that hold with
probability 1−δ [15], where δ ∈ (0, 1). Such bounds can help
us better understand, for example, how weights in a multiple
expert system should be determined for efficient learning in
nonstationary environments. A common weight for a classifier
in an ensemble system is typically of the form:

wk = log
1− εk
εk

(1)

where εk is some appropriate measure of loss for the kth
classifier.

Our learning setting is as follows (summarized in Figure
1, with common mathematical notations described in Table
I): data are sampled at each discrete-time t from a drifting
probability distribution Dt to form a batch, St. Given St, an
expert ht (i.e., classifier) is learned from the data. We do not
assume that the expert ht is updated with future data when it
becomes available. The classifier (i.e., form of the hypothesis)
belongs to a hypothesis class H (e.g., H can be the set of all
linear functions). Each expert has a weight wk,t (for expert k at
time t) that is used to form a composite hypothesis, which is a
convex combination of the individual expert hypotheses. In this
work, we focus on binary prediction problems, although our
results can easily be interpreted past this assumption. Experts
in the ensemble make predictions on unlabeled data collected
from Dt+1, which is the target distribution, with Dt+1 6= Dt.
At a later point in time, when labeled information about
Dt+1 becomes available, the expected loss, Et+1[`(H, ft+1)]
is measured, where ` is a convex loss computed on the

1Not to be confused with active learning. See [8].
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Input Data sets St sampled from Dt

for t = 1, 2, . . .

1) Learn ht from St

2) Update weights wk,t, where k ∈ [t]
3) Predict on unlabeled data sampled from Dt+1

4) Receive labels for data in step (3) and measure the
expected loss Et+1[`(H, ft+1)]

Fig. 1. MES algorithm for processing data incrementally in batches.

composite hypothesis H over the distribution at time t + 1,
and ft+1 is the optimal labeling function for Dt+1.

At time t the ensemble contains t different experts that
can be used to predict on the target distribution, whose data
labels are unknown at the time of prediction. One of the
core problems with prediction in nonstationary environments
is that t different training distributions could have been used
to produce a classifier, any or all of which can be different
than the target distribution. Therefore, an algorithm designer
needs to determine if it is better to use a single expert, or
a convex combination of all experts’ decisions. One of the
advantages that we can expect to gain from the ensemble is
that the ensemble’s decision can lead to a reduction in the
error variance [16]–[19], while potentially providing a slightly
larger bias than a single (best) model. The analysis of the
bias/variance dilemma has been well studied in the setting of
learning stationary problems (i.e., training/testing distributions
are the same). In this contribution, we show that the selection
of a single best expert can be problematic for classification
of nonstationary data streams as well, which can be partially
attributed to the larger error variance compared to that of an
MES.

In our previous work, we demonstrated that MES, using a
weighted majority vote, tended to provide a lower upper bound
on a convex loss compared to the uniform weighting method
[20]. Furthermore, the follow-the-leader approach, where only
the classifier with the current best performance is used for
prediction, was shown as reliable only when there is a small
bias between the most recent labeled distribution and the target
probability distribution (i.e., when Dt is very close to Dt+1).
This result was demonstrated using a simulation of a generic
loss bound and empirically confirmed on several real-world
data streams. In this work, we develop a more specific loss
bound than the one used in [20] using mathematical tools
similar to those used for domain adaptation.

The rest of this manuscript is organized as follows: Section
II presents related work on domain adaptation as well as MES
for handling concept drift, Section III presents our theoretical
analysis of learning using MES in the presence of concept
drift, Section IV evaluates several MES approaches on real-
world data streams, and Section V draws conclusions and
future work.

TABLE I
MATHEMATICAL NOTATIONS

symbol meaning
t unit of time
k indices for experts through time t, k ∈ {1, . . . , t} := [t]
ht classifier created at time t
ft true labeling function at time t
wk,t weight of the kth expert at time t
H hypothesis class
Dt probability distribution at time t from which data are sampled
St collection of data {(xi, yi)}mi=1 sampled from Dt

m cardinality of the data set St
Ek[·] statistical expectation on Dk

V[·] statistical variance
`(·, ·) loss function that is convex in the first argument

II. RELATED WORK

A. Motivation & Background

There is certainly no shortage of multiple expert system
implementations for learning from data streams experiencing
concept drift (e.g., SEA [21], DWM [14], Learn++.CDS
[10], & Learn++.NSE [9]). Data stream algorithms either
implement an online or incremental learning strategy. In the
online setting, one data instance is provided to the learning
algorithm at a time. Typically, it is assumed that the class
label is revealed to the algorithm only after a prediction has
been made. Incremental learning processes a batch of data at
each time stamp, and it is assumed that data are not retained
after they have been used for learning. This work focuses
on the incremental learning setting. However, recent work
by Brzezinski and Stefanowski have experimented with the
conversion of batch (i.e., incremental) MES approaches to
online MES approaches [22].

Recall from our learning setting (Figure 1) that a sequence
of classifiers (h1, . . . , ht) are learned from potentially different
data distributions. The composite hypothesis, H , is a linear
combination of the individual classifiers, and the classifiers
may be making predictions on out-of-domain data, where the
training and testing distributions may be different, which is
similar to a domain adaptation setting. Therefore, it seems
intuitive to examine how techniques from domain adaption
can help us better understand prediction in such nonstationary
learning settings.

B. Domain Adaptation & Incremental Learning

Ben-David et al. presented a comprehensive methodology
for analyzing a classifier (hypothesis) learned across multiple
domains [23]. In their work, they derived loss bounds for
a single hypothesis trained on a source domain distribution
(DS), and tested on a target domain distribution (DT ) where
DS 6= DT . In their analysis, they examine a hypothesis that
was developed to minimize the loss across multiple domains as
well as the simpler scenario where a hypothesis is learned on a
single source and tested on a target domain. Their work did not
consider the situation with multiple hypotheses trained across
all domains, but the mathematical framework they developed
easily lends itself to concept draft analysis. However, one such

596



upper bound they provide, as shown by (2), constitutes the
starting point of our analysis described in this manuscript.

In our preliminary work, we examined the effect of different
weighting mechanisms (e.g., uniform, weight majority, etc.)
with a simple loss bound. However, the general bound we
examined in [20] is not very informative if we are interested
in understanding the roles that various types of concept drift
play in forming an upper bound. For example, Žliobaitė
derived a loss function for a simple linear classifier under
sudden concept drift in [24]. However, their work does not
provide bounds with high probability and the error equations
only apply to linear Euclidean classifier under a pre-specified
concept drift scenario. In this work, we do not make any
explicit assumptions about the type of drift that occurs, nor
do we limit the selection of classifier used in the MES.

We now briefly review relevant definitions and theorems
from existing literature (primarily from [23] and [25]) that are
used in our analysis in Section III.

Definition: The H∆H distance, used in several recent
works on domain adaptation and data stream analysis [23],
[25], measures the maximum difference in expected loss
between two hypotheses h, h′ ∈ H, when measured on distri-
butions Dk and DT , where Dk indicates the distribution that
generated the data at time k, and DT is the target distribution.
It is necessary to form a generalization of this distance that can
be used with any loss function `(·, ·). The generalized H∆H
distance is given by

dH∆H(DT ,Dk) = 2 sup
h,h′∈H

|ET [`(h, h′)]− Ek[`(h, h′)]|

≥ 2|ET [`(h, h′)]− Ek[`(h, h′)]|

The quantity dH∆H(DT ,Dk) can be computed with unlabeled
data UT and Uk, of size m sampled from DT and Dk,
respectively, which can be used to establish the upper bound
on dH∆H(DT ,Dk) as

dH∆H(DT ,Dk) ≤ d̂H∆H(UT ,Uk) + 8

√
2ν logm+ log 2

δ

m

which holds with probability 1− δ. Figure 2 shows the effect
that the VC-confidence term, ν, plays in the upper bound for
δ = 0.05 when H is a class of linear functions. From this
figure, we observe that – for the bounds to be meaningful –
there needs to be a significant amount of data to force the
VC-confidence term to be small.

Theorem (Expert Loss Bound) [23]: LetH be a hypothesis
space of VC dimension ν. If US and UT are unlabeled samples
of cardinality m each, drawn from DS and DT respectively,
then for any δ ∈ (0, 1), with probability at least 1− δ, and for
every h ∈ H, the following inequality holds

ET [`(h, fT )] ≤Ek [`(h, f)] + λ+
1

2
d̂H∆H(UT ,US)

+ 4

√
2ν logm+ log 2

δ

m
(2)

where λ is a measure of disagreement between fS and fT –
more precisely, it is ET [`(fk, fT )]. The upper bound on an
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Fig. 2. VC confidence term for three linear classifiers with different VC-
dimensions given by ν.

expert’s loss on the target shows that the three primary terms
are responsible for describing how an expert is expected to
predict on the target distribution. The first term is the loss of
the expert on the distribution it was trained on, which shows
that if the expert had a high loss on the data it was trained
on, we cannot expect it to perform well on a distribution
that is different than the one used for training. The other
two terms account for the differences in the data distributions
(i.e., independent of what the labels of the data are), and the
differences between the true labeling functions.

C. Concept Drift

One can view incremental learning with concept drift as
a more elaborate, life-long, and time-dependent extension of
domain adaptation. Recall that our objective is to minimize
the loss on a distribution DT , when we are provided experts
learned on D1, . . . ,Dt. Traditionally, MES for concept drift
only use information in t ∈ [1, T − 1] to modify param-
eters and make predictions provided by DT ; however, this
implementation ignores any knowledge on DT . Hence, more
advanced methods are needed to handle this adaptation. In
our previous work, we jointly used techniques from concept
drift and semi-supervised/transductive learning to use DT to
adapt model parameters (such as expert weights) [26], [27].
More recently, Ruvolo and Eaton proposed ELLA, which uses
methods from multi-task learning, to achieve what they refer
to as life-long learning [28], [29].

III. ANALYSIS

In this section, we first overview the prediction setting with
multiple expert systems, and show a general bound on loss
before describing our analysis for obtaining a more informative
bound. In what follows, x ∈ RD is a data vector, fT (x) is
a target labeling function (e.g., fT ∈ {−1,+1} for binary
prediction problems), ET denotes a statistical expectation over
DT , and ht ∈ H is an expert (or hypothesis) learned at time t
from the hypothesis classH. As shown in Figure 1, we assume
a new hypothesis is generated on each data set St.
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A. An Indecisive Bound

Each expert in the ensemble is responsible for providing a
prediction on an unlabeled vector x. As mentioned previously,
the kth expert has a weight at time t denoted by wk,t such that∑
k wk,t = 1. The composite hypothesis H is the ensemble

decision given by:

H(x) =
t∑

k=1

wk,thk(x)

where x is sampled from Dt. For brevity, we use H(x) =
H and hk(x) = hk whenever the meaning is clear from the
context. The loss `(·, ·) is a function that is: (a) a measure
of the quality of the hypothesis, and (b) convex in the first
argument. The loss of the composite hypothesis can be written
as:

`(H, fT ) = `

(
t∑

k=1

wk,thk, fT

)
≤

t∑
k=1

wk,t`(hk, fT )

where the last step is Jensen’s inequality. This inequality shows
that the loss of the MES can be upper bounded by a convex
combination of the loss of each expert with respect to the target
function fT . Continuing the analysis, the statistical expectation
of the inequality yields:

ET [`(H, fT )] ≤ ET

[
t∑

k=1

wk,t`(hk, fT )

]

=
t∑

k=1

wk,tET [`(hk, fT )] (3)

which holds because of the linearity of expectations. This
result should not come as a surprise, and is a well known
starting point for analysis of MES. However, in our situation
the above bound is too vague and uninformative. Specifically,
the latter term, ET [`(hk, fT )], is unfortunate for a couple of
reasons: (i) the statistical expectation is computed over DT ,
which is generally not provided, and (ii) it is a function of fT ,
which is not available. If fT were known, we could use fT
and DT jointly to form a new hypothesis, which would then
make the problem easier to address, but much less interesting.
In Section III-B we discuss how to resolve these concerns.

B. An Interpretable Bound

Our method in this section is an application of the work
presented by Ben-David et al. for domain adaption [23];
however, we make a few generalizations. Recall that our goal
is to decompose ET [`(hk, fT )] into terms that can be estimated
and more easily interpreted. Ben-David’s theory of domain
adaptation allows us to use their upper bound of an expert’s
loss in the concept drift setting.

Theorem (MES Loss Bound): The expected loss of a
MES on the target distribution, DT , is bounded above with

probability 1− δ by,

ET [`(H, fT )] ≤
t∑

k=1

wk,t

(
Ek [`(hk, fk)]

+ λT,k +
1

2
d̂H∆H(UT ,Uk)

+ 4

√
2ν logm+ log 2

δ

m

)
(4)

where λT,k is a measure of disagreement between fk and fT ,
UT (Uk) is an unlabeled data sample from the target (training)
distribution, and d̂H∆H(UT ,Uk) is a measure of divergence
between DT and Dk.

Proof: Using the result of (3), we follow the procedure
described in [23] by applying the triangle inequality of loss,
and adding/subtracting the expected loss of the kth classifier
on Dk.

ET [`(hk, fT )] ≤ ET [`(hk, fk)] + ET [`(fT , fk)]

= ET [`(hk, fk)] + ET [`(fT , fk)]

+ Ek[`(hk, fk)]− Ek[`(hk, fk)]

≤ Ek[`(hk, fk)] + ET [`(fT , fk)]

+ |ET [`(hk, fk)]− Ek[`(hk, fk)]|

≤ Ek[`(hk, fk)] + λT,k +
1

2
dH∆H(DT ,Dk)

where λT,k = ET [`(fT , fk)]. Combining the above inequality
with (3) gives (4).

From this theorem, we see that the upper bound on the loss
is comprised of three primary components. That is, the upper
bound on the loss on expert k, namely ET [`(hk, fT )], at time
t = T can be expressed as

ET [`(hk, fT )] ≤ training loss + disagreement of fk and fT
+ divergence of Dk and DT (5)

This shows that the bounded loss of the MES is comprised
of expert k’s loss on its training data, the disagreement of
the labeling functions fT and fk, and the divergence of
the probability distributions DT and Dk. Writing the upper
bound on loss as in (5) allows us to accommodate for all
different types of drift that can occur. That is, the drift can
be characterized by changes in DT or Dk (virtual drift), or
characterized by changes in fT and fk (real drift).

Theorem (Tightest Upper Bound on Expected Loss) The
tightest bound for a MES is the one that sets wtk = 1 for the
kth predictor that has the smallest

ε̂k = Ek[`(hk, fk)] + λT,k +
1

2
dH∆H(DT ,Dk)

and all other weights set to zero adhering to a convex combi-
nation.

Proof: Let [ε̂min, ε̂max] ⊂ R+ form a convex set. To show
this set is convex, let ε̂1, ε̂2 ∈ [ε̂min, ε̂max] be two points in
the interval over the convex set with extreme points ε̂min and

598



0 5 10
0

2

4

6

8

10

0 5 10
0

2

4

6

8

10

Fig. 3. Visualization of the SEA decision boundary for the first two shifts in
the hyperplane. The term d̂H∆H(U1,U2) would be unaffected by the shift;
however, λT,k would experience a dramatic change due the change in the
labeling functions.

ε̂max, where ε̂1 < ε̂2. Then for any w ∈ [0, 1],

ε̂min ≤ ε̂1 = (1− w)ε̂1 + wε̂1

< (1− w)ε̂1 + wε̂2 < (1− w)ε̂2 + wε̂2

≤ ε̂max

thus the minimum is attained thus when w = 0, and all other
wk,t = 0 for k ∈ {[t]\1}.

While the latter theorem reveals a powerful insight about
how the weights should be selected such that the tightest
upper bound is obtained, it requires information that is not
available at the time of prediction. Namely, the λT,k term
cannot be determined without some level of access to fT ,
which, of course, is an unrealistic expectation. However,
setting the weights of the follow–the–leader at time t does not
guarantee that the non-zero weight corresponds to the smallest
ε̂k, because λT,k and dH∆H(DT ,Dk) are not available at the
time the weights are calculated.

SEA Problem: The SEA data stream is one of the most
widely used synthetic benchmarks for concept drift algorithms.
In this section, we discuss how the terms in the upper bound in
(4) apply to this classical data stream problem. The SEA data
set is characterized by long periods without change followed
by abrupt changes in the decision boundary at three different
distinct time stamps [21]. The data set also includes 10% class
noise added into the labels (i.e., the class labels are randomly
flipped to the other class for 10% of the data instances). In
the SEA problem, the decision boundary undergoes an abrupt
change between two consecutive time stamps as shown in
Figure 3. The two features are uniform random variables in
the [0, 10] interval. The green and red regions – that change
over time – indicate the regions in feature space that represent
the two classes. The examination of the SEA data set with this
bound is interesting because only two of the three terms in (4)
that (approximately) contribute to the bound. The divergence
of Dt and Dt+1 does not apply since the distribution of p(x)
does not change over time. This is because the feature vectors
are distributed as uniform random variables through all time
stamps. The remaining terms, Ek[`(hk, fk)] and λT,k, both
play a role in the upper bound. The classifier’s loss at time
k, denoted by Ek[`(hk, fk)], is expected to be nonzero due to
the class noise added into the SEA data stream. The labeling
function divergence term λT,k is the area of disagreement

between the two decision boundaries between the left and right
graphics in Figure 3.

C. Empirical Analysis of the Variance in the Upper Bound on
Expected Loss

In the main body of the work, we were able to apply math-
ematical methods from domain adaptation, and convex sets to
determine an upper bound on the expected loss (i.e., error)
of an MES that has experts trained on different probability
distributions. Furthermore, we also presented a theorem that
demonstrates the ability of the follow–the–leader model to
provide the tightest upper bound on the expected loss – so long
as the leader is “informed” about fT and fk, which is generally
not the case. However, if we are using n instances to compute
the upper bound, we know that there will be an expected value
of the bound as well as a variance to the bound’s calculation.
This point was demonstrated by the simulation of bound given
by (3) [20]. The interpretation of the results in [20] goes along
with our intuition about the bias/variance dilemma in machine
learning, and we can further interpret them in this section.

Let us consider that Ek[`(hk, fk)] is computed from a data
set of n instances and that dH∆H is computed using a finite
sample as well. Then, the quantity ε̂k has an affiliated mean
(i.e., the bias) and variance. The error variance of the upper
bound becomes

V

[
t∑

k=1

wk,tε̂k

]
=

t∑
k=1

w2
k,tV[ε̂k] (6)

where
∑
wk,t = 1, wk,t ≥ 0, and V[X] denotes the variance

of a random variable X . For the follow–the–leader, only one
wk,t is non-zero (for a fixed t), which begs the question:
how likely is it that

∑t
k=1 w

2
k,tV[ε̂k] < V[ε̂k∗ ] for k∗ being

the leader and wk,t are formed by a weighted majority vote,
i.e., the error variance of the ensemble is less than that of
the classifier with the lowest error. Note that we are not
claiming

∑t
k=1 w

2
k,tV[ε̂k] < V[ε̂k∗ ] – this inequality does not

hold uniformly. However, a legitimate question to ask is how
probable is it that the inequality would hold. To address this
question, we use a simulation. The simulation described below,
suggests that the variance is indeed lower – on average – for
the weighted majority algorithm over the follow–the–leader
in a nonstationary setting, where the best expert cannot be
precisely identified for the target distribution.

Let the error variance of the upper bound for each expert,
V[ε̂k], be a uniform random variable in the interval [0,0.05],
and the weights, for weighted majority vote, are sampled from
a probability distribution on the [0, 1] interval. The weights
are then normalized to assure they form a valid probability
distribution. As is typically the case, indices in the weight
vector with a large value represent experts with a small loss.
Then V[ε̂k∗ ] and

∑t
k=1 w

2
k,tV[ε̂k] are calculated. We use two

methods to determine the “leader” for time t + 1 in this
simulation: (i) uniformly choose an expert at random as the
leader, or (ii) sample an index from the distribution of expert
weights. The former case assumes that all experts are equally
likely to be identified as being the best performing expert at
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Fig. 4. Histogram of the error variance for the MES upper bound on loss for the follow-the-leader (FTL), and the weighted majority vote (WM). The number
of experts (i.e., time stamps) is varied from 2 to 25. The variance of the weight majority vote produces a lower variance on the estimate of the target loss.

time t + 1, which implies that there is no prior knowledge
being used to identify the best expert. The latter case selects
the experts with a larger weight with higher probability than
experts with a smaller weight; hence, some prior knowledge is
used because experts with larger weights reflect those that have
a smaller loss. We refer to these two variants as FTL-1 and
FTL-2, respectively. This process of simulating error variances
and weights of the individual experts, and computing V[ε̂k∗ ]
and

∑t
k=1 w

2
k,tV[ε̂k] is performed over 10,000 trials.

The histograms of the error variance for the upper bound
over the 10,000 trials are presented in Figure 4. The results
for t = {2, 5, 15, 25} (i.e., the number of experts in the
ensemble) are shown. Of particular interest is the observation
that the error variance for the bound decreases as classifiers
are added to the ensemble that is combined using weighted
majority voting. Recall that the benefit of ensemble of experts
(classifiers) is that the ensemble can result in lower error
variance as the ensemble size increases. On the other hand
using a model selection method, such as FTL that chooses
only one best expert, cannot provide consistently lower error
variances than a weighted majority vote. In fact, for t = 25, the
weighted majority vote ensemble had a smaller error variance
than the FTL model in 9,739 out of 10,000 trials performed.

IV. EVALUATION ON REAL-WORLD DATA STREAMS

To demonstrate the effectiveness of the ensemble ap-
proaches – and hence the difficulty of using the follow–the–
leader (FTL) algorithm with concept drift – we present average
classification error of FTL, simple majority vote (SMV),
weighted majority vote (WMV), and Learn++.NSE [9] on
several synthetic and real-world data streams. All MES use
CART as their base classifier and the ensemble size is limited
to 25 CART models before age-based pruning is applied [30].
Pruning is applied to limit the computational resources for
the larger data streams. The error is reported as the average
of the individual time stamp errors. We used the chess [31],
electricity pricing [32], NOAA weather [9], and Spam data
sets [33] to carry out our experiments. The batch size (m) and
number of time stamps (t) for each data set is indicated in
Table II, and the data streams are evaluated using the test-then-
train scheme. In the test-then-train setting, the MES begins by
testing on a data set whose labels are not available to the
algorithm. Then, the labels become available, and the data set

TABLE II
AVERAGE CLASSIFICATION ERROR OF FOUR MES APPROACHES ON DATA

STREAMS WITH CONCEPT DRIFT. THE NUMBER OF TIME STAMPS IS
INDICATED BY t AND BATCH SIZE BY m.

t m FTL SMV WMV Learn++.NSE
sea 200 250 20.35 13.37 13.17 13.22
chess 15 35 38.43 33.74 36.6 37.48
elec2 220 125 25.49 23.79 23.52 22.14
noaa 151 120 35.77 24.21 26.14 23.16
spam 46 100 17.57 8.85 9.52 10.04

is used for training at the next time stamp. The code used
to implement the algorithms presented in this section can be
found at http://github.com/gditzler/IncrementalLearning.

Table II presents the average classification error of the four
ensemble classifiers. From this table, we observe that the
FTL method is outperformed by the other MES on nearly all
data streams evaluated. We attribute the superiority of MES
approaches over FTL to the variance of the estimated loss
and unpredictability of λT,k. Furthermore, without a proper
method of extracting λT,k, we should not expect FTL to
perform well given (4), the variance simulation in section
III-C, and the loss bound simulations we have in [20]. The
accuracy for the different MES approaches on the SEA data
stream – monitored over the duration of the experiment – is
shown in Figure 5. From this figure, we observe that the
FTL approach to learning in nonstationary environment is
not able to adapt to the changing environments, while the
MES approaches have no difficulty in tracking the drifting
distribution.

V. CONCLUSION

One of the primary issues with using a multiple expert
system (MES) in a nonstationary environment is the selection
of an appropriate set of weights for each of the experts.
The selection of expert weights are chosen such that the
error of the MES is expected to be arbitrarily small on a
target data set. Thus it is important to understand the various
terms that are involved in computing the upper bound on
the MES loss. In this contribution we presented a formal
loss bound for a MES learning from a stream of data drawn
from a nonstationary environment, also known as learning
in the presence concept drift. The analysis has shown that
the components controlling the bound can be related to dif-
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Fig. 5. Classification error of four ensemble methods on the classical SEA
data stream.

ferent types of concept drift, such as real and virtual drift.
Furthermore, through a simulation we have demonstrated that
using a single classifier method, such as follow-the-leader, can
lead to high variance in the estimate of the upper bound. The
variance can be reduced by adding experts to the ensemble of
classifiers and giving each expert nonzero weights. We tested
four MES implementations on synthetic and real-world data
streams, where we showed that the weighted MES approach
to classification in nonstationary environments provides lower
classification error rates than relying on a single model.

Our future work includes developing a framework for
prediction in nonstationary environments that use the three
terms in the MES loss bound to improve the classification
error of the ensemble. The improvements to the state-of-the-
art requires estimating the divergence of the distributions and
labeling functions. Our prior work on semi-supervised learning
provides a promising start to the implementation of such a
MES approach for nonstationary environments [26], [27].
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