
Ensemble Learning for Keyword Extraction from Event
Descriptions

Pedro Geadas and Ana Alves and Bernardete Ribeiro

Abstract— Automatic keyword extraction (AKE) from textual
sources took a valuable step towards harnessing the problem
of efficient scanning of large document collections. Particularly
in the context of urban mobility, where the most relevant
events in the city are advertised on-line, it becomes difficult
to know exactly what is happening in a place. In this paper
we tackle this problem by extracting a set of keywords from
different kinds of textual sources, focusing on the urban
events context. We propose an ensemble of automatic keyword
extraction systems KEA (Keyphrase Extraction Algorithm) and
KUSCO (Knowledge Unsupervised Search for instantiating
Concepts on lightweight Ontologies) and Conditional Random
Fields (CRF). Unlike KEA and KUSCO which are well-known
tools for automatic keyword extraction, CRF needs further
preprocessing. Therefore, a tool for handling AKE from the
documents using CRF is developed. The architecture for the
AKE ensemble system is designed and efficient integration
of component applications is achieved. Finally, we empirically
show that our AKE ensemble system significantly succeeds on
baseline sources and urban events collections.

I. INTRODUCTION

Nowadays the most relevant events in the city are adver-
tised on-line. However, it often becomes difficult to know
exactly what is happening in a place: information is spread
across too many websites, many times not easily understand-
able. The result of the World Wide Web (WWW) exponential
growth is an huge amount of data chaotically organized,
which turns out tasks like accessing, searching and keeping
information difficult. With so many data drifting in the Web,
most of the times neither labeled nor categorized, finding
the desired information is generally time wasting. Automatic
extraction and summarization methods play an essential role
to tackle this problem. Therefore, the goal of automatic
extraction is to apply the power and speed of computation to
the problems of access and discoverability, adding value to
information organization and retrieval without the significant
costs and drawbacks associated with human indexers.

In this paper we propose an ensemble of different
classifiers for effectively extracting a set of keywords
from small textual sources and show that the proposed
ensemble application achieves better performance than
the individual component systems (up to a certain extent
concerning the differences between the individual classifiers’
reliability), obtaining better results than those reported in

Pedro Geadas is with CISUC-Center of Informatics and Systems
of the University of Coimbra, Ana Alves is with CISUC and IPC-
Polytechnic Institute of Coimbra, Bernardete Ribeiro is with CISUC and
Department of Informatics Engineering, University of Coimbra (email:
pmrg@student.dei.uc.pt, {ana,bribeiro}@dei.uc.pt).This work was sup-
ported by the Crowds project-PTDC/EIA-EIA/115014/2009 and InfoCrowds
project-PTDC/ECM-TRA/1898/2012.

the last Keyphrase Extraction Contest (SemEval 2010,
http://semeval2.fbk.eu/semeval2.php?location=Rankings/
ranking5.html).

The proposed approach comprises two supervised, KEA
and CRF, and one unsupervised, KUSCO, machine learning
keyword extraction methodologies.

The empirical tests were carried out in Hulth’s dataset of
scientific journal paper abstracts, in Krap’s dataset abstracts
from Computer Science domain. Furthermore, for further val-
idating our approach, two collections of documents regarding
music personalities’ descriptions extracted from Wikipedia
and descriptions about events in general, like theatre plays
and music concerts, retrieved from YourSingapore web-pages
(http://www.yoursingapore.com/) were considered.

This paper is organized as follows. In the Section 2, we
present the background on the automatic keyword extraction
regarding related work and specific applications. We describe
the ensemble learning methodologies, in particular we look
at both the keyword extraction component classifiers and the
ways to combine them. The proposed approach is presented
in Section 3. Section 4 deals with the experimental setup
and in Section 5 results are presented and discussed showing
the validity of our approach. Finally, in Section 6 we make
conclusions and point some lines of future work.

II. AKE - AUTOMATIC KEYWORD EXTRACTION

AKE is the problem of automatically identifying the
relevant words lying within a document and has been re-
searched for more than half a century [1]. Such keywords
may constitute useful entries for building an automatic index
for a document collection, can be used to classify a text,
or may serve as a concise summary for a given document
[2]. While some of those methods rely merely on statistical
and linguistic knowledge, recent works are more focused on
Machine Learning techniques.

In this line, a wide range of methods have successfully
been proposed for tasks of AKE [3] achieving better results
than solely use statistics or linguistic knowledge about doc-
uments.

A. Related Work

Examples of statistical methods include word frequency
[1], word co-occurrence [4] and the TF*IDF (Term Fre-
quency - Inverse Document Frequency) term weighting
model [5]. Such methods have proved to be insufficient to
overcome such problems by their own, thus another line
of automatic extraction methods considered the linguistic
features of words. Hulth [6] examines different methods of

2014 International Joint Conference on Neural Networks (IJCNN)
July 6-11, 2014, Beijing, China

978-1-4799-1484-5/14/$31.00 ©2014 IEEE 2669

incorporating this knowledge into AKE and considers syntac-
tic features such as part-of-speech (PoS) tags to the classifier
looking only at noun phrases to be candidate phrases. In
turn, [7] showed that by using lexical resources (EDR -
electronic dictionary and Princeton University’s WordNet) in
such a task results in slightly higher performances than by
just resorting to a purely statistically based method.

Supervised algorithms found in [8] classified words as
positive or negative examples of keywords, first applying the
C4.5 decision tree induction algorithm and later a custom-
developed algorithm, GenEx. The authors conclude that
by incorporating specialized procedural domain knowledge
keyphrases could be better generated. Perhaps one of the
main contributions to the field is KEA that was proposed
in [9], using the TF*IDF score of a phrase as well as fined
tuned features to build a Naive Bayes classifier. An improve-
ment over KEA, called KEA++, has been proposed in [10]
and also take advantage of semantic information on terms
and phrases gleaned from a domain-specific thesaurus. Other
approach based on KEA, but relying on bagged decision trees
instead of Naive Bayes for classification was proposed in [11]
and was called Maui. In [12] and [3] neural networks have
been proposed and their results demonstrate that their method
outperforms KEA. In [13] various classification models are
compared in the task of extracting meaningful keywords from
extremely short texts like those we find today on social
networking services on the Web. They used a set of features
to train those models (TFIDF, linguistic information, relative
position, length of social snippet, document frequency and
capitalization) and the best results reported used Gradient
Boosting Machine (GMB).

CRF, today considered the state-of-the-art sequence la-
beling method, was first proposed by Lafferty et al. [14]
back in 2001 and since then many published works explored
this technique. Peng and McCallum [15] showed that CRF
outperforms other methods at the task of extracting structured
information, such as the information related to the authors
and citations from a collection of research papers. In [16]
CRF was successful proposed for the task of keyword extrac-
tion from Chinese scientific papers. Recently, in [17] AKE
based on a combination of CRFs and a specific document
structure was also presented, while the authors argue the
results improved dramatically over the existing ones.

With respect to the unsupervised approach they usually
consist of ranking each of the candidate keywords using
multiple features and heuristics and selecting the top rated
ones [18],[4]. In [2] TextRank, a graph-based ranking model
based on the co-occurrence relation between words was
presented, although other works graph mining based were
also published [19],[20],[21]. Recently, focusing on key-
word extraction from small textual sources such as event
and product descriptions (often holding between 30 and 60
words), a novel unsupervised keyword extraction approach
was proposed in [22], called Informativeness-based Keyword
Extraction, that uses clustering and three levels of word
evaluation (corpus, cluster and document level) to address

the challenges of short documents.

B. Existing Applications and Tools

We have analysed some of the existing solutions and
test their operation which are briefly described in the next
sections.

1) KEA: Considered one of the main contributions to
the field of keyword extraction, KEA (Keyphrase Extraction
Algorithm) [9] can be basically separated into three phases,
illustrated in Figure 1.

First, because not all phrases in a document are equally
likely to be keyphrases a priori, KEA performs some text
preprocessing tasks in order to identify candidate phrases.
The process starts by splitting the input text according to
phrase boundaries (punctuation marks, dashes, brackets, and
numbers) and unwanted characters are removed. KEA takes
then all the sub-sequences of these initial phrases (up to
length three by default, but it can be changed), as candidate
phrases and eliminates the phrases that begin or end with
a stop-word or phrases that are a proper noun. The stop-
word list used by KEA contains 425 words in nine syntactic
classes (conjunctions, articles, particles, prepositions, pro-
nouns, anomalous verbs, adjectives, and adverbs); finally,
these candidate phrases are then case-folded and stemmed.

Second, two specific attributes are used to discriminate
between keyphrases and not-keyphrases: the TF*IDF score
of a phrase, and the distance into the document of the
phrase’s first appearance (the number of words that precede
the first occurrence of the term, divided by the number of
words in the document). This corresponds to the feature
calculation phase.

The third phase concerns KEA extraction phase. KEA
computes the TF*IDF scores and distance values for all
phrases in the new document, using the procedure described
above, taking the discretization obtained from the training
documents. The naive Bayes model is then applied to each
phrase, computing the estimated probability of it being a
keyphrase. The result is a list of phrases ranked according to
their associated probabilities. Assuming that the user wants to
extract r keyphrases, KEA then outputs the r highest ranked
phrases [9].

2) KUSCO: KUSCO (Knowledge Unsupervised Search
for instantiating Concepts on lightweight Ontologies [23])
is a system that indexes a set of concepts with given Points
of Interest (POIs) and Events, semantically enriching them.
Generally, KUSCO retrieves information on the Web about
POIs and Events and extract the most relevant terms from
theses texts. After extracted, those terms are contextualized
and enriched with semantic information. Since KUSCO
is constituted of different modules, we will focus on the
Meaning Extraction module where term extraction from
textual descriptions is performed. In Figure 2, one can see a
more detailed visualization of KUSCO’s Meaning Extraction
module.

For each text describing a POI or an event, the Meaning
Extraction module on KUSCO executes a sequence of Nat-
ural Language Processing steps to automatically extract the

2670

Fig. 1. KEA training and extraction processes ([9]).

Fig. 2. KUSCO’s Meaning Extraction module ([23]).

relevant related terms. Each text is broken up into paragraphs,
paragraphs into sentences, and sentences into words. Words
in a sentence are then tagged by the Brill’s Part-of-Speech
(POS) tagger [24] which labels each word as a noun, verb,
adjective, etc. A Noun Phrase chunker [25] is then applied
in order to identify every group of words with a head noun
which functions together just as a single term. At the same
time, the original text is also processed by a Named Entity
recognizer [26] to identify proper names in the text. As figure
2 shows, noun phrases (flow I, which applies POS tagging
and NP chunking) are represented by common nouns while
the entities (flow II, which applies NER) are represented
by proper nouns. Each term in both groups is represented
using single or a compound noun, and it is contextualized
in lexical resources (WordNet and Wikipedia) which guide
the extraction process by validating common-sense terms and
which are also used to infer the meaning of each term. These
terms are called concepts only after they are contextualized,
and their relevance is computed through an extended version
of TF*IDF that considers the semantics of each term.

3) CRF - Conditional Random Fields: The linear-chain
CRF has been applied in natural language processing, in-
cluding named-entity recognition (NER), feature induction

for NER, identifying protein names in biology abstracts,
segmenting addresses in Web pages, information integration
word alignment in machine translation, citation extraction
from research papers, word segmentation and many others
[27]. Unlike the majority of methods that do not use most of
the features existing in a document, CRF can utilize most of
those features sufficiently and effectively for efficient key-
word extraction. Experimental results indicate that the CRF
model can enhance keyword extraction and it outperforms
the other machine learning methods [16].

In short, CRF is an undirected graphical model that
encodes a conditional probability distribution with a given
set of features.For the given observation sequential data
X(X1X2, . . . , Xn), and their corresponding status labels
Y (Y1Y2, . . . , Yn), a linear chain structure CRF defines the
conditional probability as follows:

P (Y |X) =
1

Zx
exp

∑
i

∑
j

λjfj(yi−1, yi, X, i) (1)

where Zx is a normalization and it makes the probability
of all state sequences sum equal to 1, fj(yi−1, yi, X, i) is a
feature function and λj is a learned weight associated with
feature fj . The interested reader can find more information
in the literature ([14]).

C. Ensemble Learning Approaches

Four approaches are devised for building classifier ensem-
bles each one focusing a different level of action. Approach
A concerns the different ways of combining the results from
the classifiers. Majority voting in particular its weighted
version are the most widespread choices when the individual
classifiers give label outputs [28]. Many ensemble paradigms
employ the same classification model, for example, a deci-
sion tree or a neural network, but there is no evidence that
this strategy is better than using different models (Approach
B). At feature level (Approach C) different feature subsets

2671

Fig. 3. Approaches to build classifier ensembles ([28]).

can be used for the classifiers, either if they use the same
classification model or not. Finally, the data sets can be
modified so that each classifier in the ensemble is trained
on its own data set (Approach D).

Hulth [29] presented an algorithm for AKE combining
statistical and linguistic methods, showing that the number
of incorrect assigned keywords could be highly reduced, by
combining then the predictions of several classifiers. Using
an ensemble of Neural Networks, Wang et.al [3] depicted
a method where the keyphrase extraction is viewed as a
crisp binary classification task, training the neural network
ensemble to classify whether a phrase is keyphrase or not.
To discriminate between positive and negative examples,
the following features (or attributes) of a phrase in a given
document are adopted: its term frequency, whether they ap-
pear in the title, abstract or headings (subheadings), and its
frequency appearing in the paragraphs of the given document,
i.e., the distribution of a phrase in a given document.

Later, Zhang [30] combined several statistical machine
learning models to extract keywords from Chinese docu-
ments. The method selects keywords through voting, from
the multiples models created, and the experimental results
show that the proposed ensemble learning method outper-
forms other methods also investigated, according to F1

measurement and the extraction model using weighted votes
outperforms the model that does not use weights.

III. PROPOSED APPROACH

The architecture of the proposed system is represented
in Figure 4. It depicts the different components of the
application and reveals the system’s processing flow, since
the moment an input text is passed to the application until
the moment that it produces the desired output, i.e, a set of
keywords for each of the unlabeled files. An explanation of
the main stages identified is given below as well.

A. Preprocessing

Preprocessing tasks are usually a prerequisite to text
classification. The objective of this stage is cleaning the input
text as much as possible by eliminating unnecessary words

and characters (KUSCO, KEA) or, just structuring the text
correctly (CRF), for further classification.

KEA and KUSCO already perform preprocessing tasks
internally, according to their needs. CRF requires ex-
tra/different preprocessing operations than those needed by
the other two applications. In order to identify the most of the
features present in the text, a slight modification in the text
is needed. Two major aspects were then considered, during
this phase:

Structural issues:
1) Separating each phrase of the text, one per line;
2) Keeping punctuations present in each phrase (except

quote marks, which actually produced better results
when removed);

3) Keeping stop-words present in each phrase;
4) Each token of each phrase separated by a space.
Feature and keyword’s automatic tagging:
1) Tagging the true keywords of each document within

brackets (E.g.: [correctly tagged keyword]);
2) Identifying a set of features present in the text, namely

those described in Table I.

B. Keyword Classifiers

After the preprocessing phase, there are two different
phases where within the system: the training phase, where
a set of manually tagged texts is used to create a model
for each classifier; and the extracting phase, where each
classifier is used to test new texts. Ideally, these models
should complement one another, each being specialized in
a part of the domain where the others do not perform so
well (just as human executives seek advisers whose skills
complement each other). To achieve this, we use two already
existing applications, combined with a third system (CRF)
implemented on this purpose. If we look in Figure 3, this cor-
responds to the classifier level (Approach B). Furthermore,
the features taken in consideration by each system used were
different, so we are also introducing some diversity at the
feature level (Approach C).

The CRF implementation used in this work was developed
under MALLET1 framework, acronym for MAchine Learn-
ing for LanguagE Toolkit. Table I portrays the list of features
used to train the CRF model.

From the applications used here, only KEA allowed to
define the specific number of keywords to be extracted. In
the other hand, KUSCO and CRF extract as much keywords
as they can. So, instead of defining a specific number, the
approach taken was to set a limit of keywords that can
be extracted. Best results were achieved when setting a
maximum of thirty keywords per application.

While KEA and KUSCO have been presented earlier, a
more detailed view of the CRF operation is also depicted in
Figure 4.

1MALLET (http://mallet.cs.umass.edu/) is a Java-based package for statis-
tical natural language processing, document classification, clustering, topic
modeling, information extraction, and other machine learning applications
to text.

2672

Documents
and KW

loaded into
memory

Pre-
Processing KUSCO

CRF

KEA

Output
combination

output
inputs

Feature
Extraction

(Using
train/test

documents)

learning
Training

Extracting

(true keywords + features)

model

Predicted
KW(features + inferred knowledge)

IDF

Global corpus

Fig. 4. Proposed system’s architecture.

C. Combining results

The ensemble level exploits ways of combining individual
classifiers outputs, so here we analyse two versions of the
widely used method of majority voting: simple and weighted
majority voting.

1) Simple Majority Voting: To better understand how the
voting procedure takes place, assume that the label outputs
of the classifiers are given as c-dimensional binary vectors,
[di,1, . . . , di,c]

T ∈ {0, 1}c, i = 1, . . . , L, where di,1 = 1 if
Di labels x in ωj , and 0 otherwise. The plurality vote will
result in an ensemble decision for class ωk if

L∑
i=1

di,k =
c

max
j=1

L∑
i=1

di,j (2)

The plurality vote of Equation 2, is called in a wide sense
the majority vote, and is the most often used rule from
the majority vote group. Various studies are devoted to the
majority vote for classifier combination [28].

2) Weighted Majority Voting: If classifiers in the ensemble
are not of identical accuracy, then it is reasonable to attempt
to give to the more competent classifiers more strength in
making the final decision. The label outputs can be repre-
sented as degrees of support for the classes in the following
way:

di,j =

{
1, if Di labels x in ωj ,
0, otherwise. (3)

The discriminant function for class ωj obtained through
weighted voting is

gj(x) =
L∑

i=1

bidi,j , (4)

where bi is a coefficient for classifier Di, which corre-
sponds to the weight of that classifier. Thus the value of the
discriminant Function 4 will be the sum of the coefficients
for these members of the ensemble whose output for x is ωj

[28].

IV. EXPERIMENTAL SETUP

A. Datasets

In order to test the system performance, four different
datasets of English texts were used and are described in the
next paragraphs.

The first dataset from now on addressed as Hulth’s
dataset, consists of 2000 scientific journal paper ab-
stracts with their corresponding title, from the Inspec
(www.iee.org/publish/inspec/) database. Hulth’s documents
were obtained from Computers and Control and Information
Technology and have been widely used in previous related
works (e.g. [2], [6]).

The second one, from now on designated by Krap’s
dataset, consists of 2304 full papers from Computer Sci-
ence domain. Each document has clearly indicated its title,
abstract, body and references [31]. Nevertheless, only the
abstracts were used here.

Finally, for validating the results obtained from the pre-
vious scientific datasets, other two collections of docu-
ments were used: the first one composed by 420 de-
scriptions about events in general, like theatre plays and
music concerts, retrieved from YourSingapore web-pages
(www.yoursingapore.com/); the other comprising 112 music
personalities’ descriptions extracted from Wikipedia, labeled
by twenty volunteers. Unfortunately, we only had one vol-
unteer to do the manual labeling of the event descriptions
dataset.

2673

Features Explanation Range
1 Word current token -
2 PoS Part-of-Speech of a token {DT, VB,

NN, (. . .)}
3 First

Position
if a token is the first token in a
sentence

{0, 1}

4 CAPITAL-
IZED

if a token is capitalized {0, 1}

5 Initial CAP if a token begins with a capital {0, 1}
6 Mixed

CAPS
if a token contains both lower and
upper cases

{0, 1}

7 Contains
Digits

if a token contains digits {0, 1}

8 All Digits if a token is a number {0, 1}
9 Hyphenated if a token contains hyphens {0, 1}
10 Dollar Sign if a token contains the $ sign {0, 1}
11 Ends In Dot if a token ends with a dot {0, 1}
12 Lonely

Initial
if the token is an initial (e.g.: P.) {0, 1}

13 Single Char if the token is a single char (letter,
number, symbol

{0, 1}

14 End
Punctuation

if the token is sentence end punc-
tuation

{0, 1}

15 Apostrophe if the token contains an apostrophe
(’)

{0, 1}

16 Line
Number

the line number of the current
sentence

{1, 2 . . . N}

17 TF Term Frequency of the term in the
document

[0, 1]

18 IDF Inverse Document Frequency of
the term in Wikipedia global cor-
pus

R

19 TF*IDF the Term-Frequency * Inverse
Document Frequency of a term in
the document

R

20 Windowed
Features

the PoS and Word features of the
first, first and second and first,
second and third tokens before
and after the current token

-

TABLE I
LIST OF FEATURES USED TO TRAIN CRF MODEL IN THIS WORK.

B. Tests Performed

From the set of tests here described, some aspects are
worth noting. Tests ranging from 1 to 5 were applied over
abstracts from Hulth’s dataset and only Test 5 was replicated
on abstracts from Krap’s dataset. For Krap’s dataset, tests 1 to
3 and 4 were not performed because as we extracted the title
and abstract from the full documents, all the possible miss-
indentations, miss-structuring and missing keywords were
immediately corrected and the labeling method already used
the stems rather than the full keywords. Tests 6 and 7 tried to
verify if the type and number of the gold standard keywords
may influence the learning of the classifiers, filtering some
of the documents out of the dataset.

1) Original Dataset: This test can be seen as the baseline
test. It was performed knowing in advance that only about
76% of the keywords were in fact present in the abstracts on
the Hulth’s dataset. This is explained by the author due to the
fact that volunteers had access to full articles and not only to
abstract in order to manually identify correct keywords [29].
Beyond that, this first test was also conducted without any
kind of extra preprocessing being applied to the text files, i.e,
documents are delivered to each of the applications without

suffering any modifications.
2) Removing unseen Keywords: The second test differs

from the first in one aspect: keywords that did not exist
in abstracts were removed from the respective file’s true
keywords, so at this point, it is guaranteed that 100% of
the keywords can be in fact found in the document they
pertain to. We did this using the keywords stems to find
occurrences of each keyword. This test was made in order to
really perceive the true extraction power of each classifier,
without that starting external limitation.

3) Document structuring using OpenNLP Sentence Split-
ter: Some features that we use to train our CRF model II,
like PoS tagging or Windowed Features, are most likely to
suffer from badly structured sentences in documents (e.g.
line breaks in the middle of sentences).In order to attest that,
we used the OpenNLP (http://opennlp.apache.org/) Sentence
Splitter to pre-process documents, structuring them so that
each of them contained only one sentence per line (that
are to be tagged later). Despite no further enhancement
being expected in KEA and KUSCO, once they do not
have sentence structure in account, we expect improvements
coming from the CRF, since it uses many of the features
from the text.

4) Stem-based keyword labeling method: Until here, we
automatically tagged true keywords exactly as they appeared
in their respective .key files. This test verifies if the method
of labeling the true keywords (exact-keyword or stemmed-
keyword) has impact in the learning of the classifiers.

5) The new Porter Stemmer: A closer look to the
stemmer used (the English Porter Stemmer) showed that
it was not performing as expected for some appar-
ently basic cases. We found out that a new version of
the stemmer, but with some bugs corrected, was avail-
able in the community and replaced the old one with
this (http://snowball.tartarus.org/algorithms/english/stemmer.
html).

6) Document filtering - digits in true keywords: In this
test we removed the documents whose keywords contained
digits. We decided to do so because they were a minority
(about 10 % of the total for Hulth’s dataset, less than 10%
for the others) and we wanted to understand if this type of
keywords has impact in the classifiers’ performance.

7) Document filtering - number of true keywords: Here,
additionally to the constraint added in the last test, only
documents having between five and ten keywords were used.
We chose to do this because while some documents had
only one assigned keyword others had more than fifteen,
i.e., the difference between minimum and maximum number
of keywords was to big and some training groups had
considerably different average of keywords per file among
them, making it harder to interpret the respective results.

V. EXPERIMENTAL RESULTS

For evaluating our system we used ten fold cross valida-
tion. The results of the tests made are shown in Figures 5, 6
and 7, where the micro-averaged scores of each application

2674

Fig. 5. Hulth’s dataset results.

Fig. 6. Krap’s dataset results.

are depicted for each dataset. Figure 7 compares the best
results obtained with each dataset.

The weight of each classifier in the final ensemble can
be learned from their individual performance. Considering
the number of keywords found by a classifier compared to
the number of true keywords present in each text in a given
labeled dataset, we used several Regression algorithms in
Weka framework2, having the best result with Pace Regres-
sion algorithm, with a precision of 0.65± 0.13. Empirically
we found that CRF when has great performance it does
not depend on the contribution of other classifiers. In the
opposite side, when CRF is not so well, the ensemble achieve
better results. In Table II we present two different weight
configurations that led to the best results, when Weighted

2Weka is a collection of machine learning algorithms for data mining
tasks, available at http://www.cs.waikato.ac.nz/ml/weka/.

Fig. 7. Results validation.

Weighted version CRF
weight

KUSCO
weight

KEA
weight

WMV 1 54% 36% 10%
(when CRF F1 < 0.48)
WMV 2 62% 30% 8%
(when CRF F1 > 0.48)

TABLE II
MODEL WEIGHTS PRODUCING BEST RESULTS.

Majority Voting was used, depending on how well CRF
performed.

Nevertheless, attentive reader will notice that despite KEA
is achieving better F1 scores than KUSCO in almost all
tests shown, it is always given less vote weight. This can
be explained due to the type of the extracted keywords:
KUSCO guarantees that each term it extracts is unique while
KEA does not guarantee that. In fact, many of the terms ex-
tracted by KEA contain each other (e.g.: [extracted example
keyword], [extracted keyword], [example keyword]), which
gives an undesired emphasis to the same keyword when the
voting phase occurs. To avoid this, the vote weight of KEA
had to be lower than that of KUSCO.

During the experimentation we noticed that CRF achieved
higher Precision (the keywords actually found) rather than
Recall (the number of keywords found). This means that
keywords extracted by CRF are usually correct but are
generally not many, so the improvement that we see in the
final results (for the ensemble) come from compensating this
lack of keywords that CRF can extract for some documents
with the other applications.

Document structure was another factor influencing the
results obtained. As one can see, after applying the OpenNLP
Sentence Splitter to split the sentences of each document
correctly, great improvement was observed. This happened
because features as PoS and Windowed Features used to train
CRF became more effective, since they depend a lot about
the structure of the sentence analysed.

Yet concerning structural issues, the number of true key-
words present in the files seems to affect the performance
of the applications, as well as the type (precisely in this
case, if they contained digits) of keywords given as gold
standard. Thus, removing unseen keywords and those that
contain numbers resulted in better performances observed.

It can also be stated from the results obtained, since Test
2, that the Simple Majority Voting no longer improves the
results of the best individual application (CRF). This can
be explained due to the huge differences in the classifiers’
reliability, which differs much from one application to other.
Nevertheless, CRF takes advantage of the other classifiers
in the ensemble like KUSCO when the latter can cover a
great diversity of simple and compound keywords since it
uses WordNet and Wikipedia for keyword verification. This
is done without the need of training neither labeled examples.

Another objective for this work was validating the results
obtained with scientific datasets, with the non-scientific ones.
From the results concerning those of the Event descriptions,

2675

a performance improvement is still visible, similarly to what
happened with the scientific datasets. Nevertheless, for the
second non-scientific dataset here tested, that consisting in
Personalities descriptions, the results using the ensemble
did not improved those obtained by the CRF itself, despite
the different configuration used for the Weighted Majority
Vote. This can be explained because the superb performance
that CRF system achieved with this dataset (depicted in
figure 7) and indicates that above a certain limit, no further
gains can be achieved: the difference between the classifiers’
performances is to large, causing any keyword coming from
the lower classifiers (KUSCO and KEA) being not good
enough to improve the performance of the higher one (CRF).

The results presented here also seem to indicate something
that had already been stated before: CRF is highly dependent
on the document structure and type. A closer look to each
of these datasets, show that all the documents pertaining to
the Personalities dataset are very similar among each other,
which seems to be the reason why CRF achieves even better
performance in this case.

VI. CONCLUSIONS AND FUTURE WORK

The work presented in this paper exploits AKE from
textual sources in general, since it was successfully applied
to scientific and non-scientific domains.

The proposed approach builds a consensus-based machine
learning methodology (both supervised and unsupervised).
Moreover, using an ensemble of several applications to
improve the performance revealed to be very effective over
single classifiers results. For combining the outputs of the
individual models, two methods of majority voting are used:
simple majority and weighted majority. While the former
gives equal weight to all predictive models, the latter gives
more weight to those who present better predictive perfor-
mance. However, one factor that can limit the enhancement
seems to be the difference in each application’s performance:
the more one of the applications outperforms the others, the
smaller are the gains.

This work has shown that by combining models of differ-
ent existing applications, instead of using a more traditional
method to generate different models, is also a viable method
to create an ensemble application and the empirical results
here obtained, which improved those of each the individual
systems, attest that.

In future work it will be worth improving the CRF itself,
by adding new features that were not present yet but might
be considered important.

VII. ACKNOWLEDGMENTS

This project involved collaboration with the Massachusetts
Institute of Technology (MIT) and was funded by the
Portuguese Science Technology Foundation (FCT). Special
thanks to Filipe Rodrigues for providing the original CRF
implementation, to Anette Hulth for pointing us toward valu-
able scientific datasets and to Su Nam Kim for maintaining
the public on-line repository which holds these.

REFERENCES

[1] H. P. Luhn. The automatic creation of literature abstracts. IBM J. Res.
Dev., 2(2):159–165, Apr. 1958.

[2] R. Mihalcea and P. Tarau. Textrank: Bringing order into text. In
EMNLP, pages 404–411, 2004.

[3] J. Wang, H. Peng, J.-s. Hu, and J. Zhang. Ensemble learning for
keyphrases extraction from scientific document. In ISNN’06, pgs
1267–1272, Berlin. Springer-Verlag.

[4] Y. Matsuo and M. Ishizuka. Keyword extraction from a single docu-
ment using word co-occurrence statistical information. International
Journal on Artificial Intelligence Tools, 13(1):157–169, 2004.

[5] S. Robertson. Understanding inverse document frequency: On theo-
retical arguments for idf. Journal of Documentation, 60:2004, 2004.

[6] A. Hulth. Improved automatic keyword extraction given more linguis-
tic knowledge. Empirical Methods in NLP, pgs 216–223, 2003.

[7] L. van der Plas, V. Pallotta, M. Rajman, and H. Ghorbel. Automatic
keyword extraction from spoken text. a comparison of two lexical
resources: the edr and wordnet. CoRR, cs.CL/0410062, 2004.

[8] P. D. Turney. Learning algorithms for keyphrase extraction. INFOR-
MATION RETRIEVAL, 2:303–336, 1999.

[9] I. H. Witten, G. W. Paynter, E. Frank, C. Gutwin, and C. G. Nevill-
Manning. KEA: practical automatic keyphrase extraction. In DL ’99,
pgs 254–255, ACM.

[10] O. Medelyan and I. H. Witten. Thesaurus based automatic keyphrase
indexing. In JCDL ’06, pages 296–297, New York, NY, USA, 2006.

[11] O. Medelyan, E. Frank, and I. H. Witten. Human-competitive tagging
using automatic keyphrase extraction. EMNLP, pgs 1318–1327, 2009.

[12] K. Sarkar, M. Nasipuri, and S. Ghose. A new approach to keyphrase
extraction using neural networks. CoRR, abs/1004.3274, 2010.

[13] Z. Li, D. Zhou, Y.-F. Juan, and J. Han. Keyword extraction for social
snippets. In WWW’10, pgs 1143–1144, 2010.

[14] J. D. Lafferty, A. McCallum, and F. C. N. Pereira. Conditional random
fields: Probabilistic models for segmenting and labeling sequence data.
In ICML ’01, pages 282–289, San Francisco, CA, USA, 2001.

[15] F. Peng and A. McCallum. Information extraction from research papers
using crfs. Inf. Proc. Manag., 42(4)963–979, 2006.

[16] C. Zhang. Automatic keyword extraction from documents using
conditional random fields, 2008.

[17] H.-W. X. Feng Yu and D.-Q. Zheng. Key-phrase extraction based on a
combination of crf model with document structure. 8th Int. Conference
on Computational Intelligence and Security, 0:406–410, 2012.

[18] J. Wan and J. Xiao. Single document keyphrase extraction using
neighborhood knowledge. In AAAI’08, pgs 855–860. AAAI Press.

[19] M. P. Grineva, M. N. Grinev, and D. Lizorkin. Extracting key terms
from noisy and multitheme documents. In WWW, pgs 661–670, 2009.

[20] R. Ortiz, D. Pinto, M. Tovar, and H. Jiménez-Salazar. Buap: An un-
supervised approach to automatic keyphrase extraction from scientific
articles. In, SemEval ’10, pgs 174–177, USA, 2010. ACL.

[21] N. C. Stuart Rose, Dave Engel and W. Cowley. Automatic keyword
extraction from individual documents. John Wiley & Sons, Ltd, 2010.

[22] M. Timonen, T. Toivanen, Y. Teng, C. Chen, and L. He.
Informativeness-based keyword extraction from short documents. In
KDIR, pgs 411–421, 2012.

[23] A. Alves, B. Antunes, F. C. Pereira, and C. Bento. Semantic
enrichment of places: Ontology learning from web. Int. J. Know.-
Based Intell. Eng. Syst., 13(1):19–30, 2009.

[24] E. Brill. Some advances in transformation-based part of speech
tagging. In Nat. Conf. on Artificial Intelligence, pages 722–727, 1994.

[25] L. Ramshaw and M. Marcus. Text Chunking using Transformation-
Based Learning. In Proc. of WVLC-1995, Cambridge, USA, 1995.

[26] J. R. Finkel, T. Grenager, and C. Manning. Incorporating non-local
information into information extraction systems by Gibbs sampling.
In ACL ’05, pages 363–370, 2005.

[27] C. Sutton and A. McCallum. An introduction to crfs, 2010.
[28] L. I. Kuncheva. Combining Pattern Classifiers: Methods and Algo-

rithms. Wiley-Interscience, 2004.
[29] A. Hulth. Combining Machine Learning and Natural Language

Processing for Automatic Keyword Extraction. Report series, 2004.
[30] C. Zhang. Combining statistical machine learning models to extract

keywords from chinese documents. In Advanced Data Mining and
Applications, 5678, pgs 745–754, 2009.

[31] M. Krapivin, A. Autayeu, and M. Marchese. Large dataset for
keyphrases extraction. Tech. Report DISI-09-055, Trento, Italy, 2008.

[32] I. Oelze. Automatic keyword extraction for database search, 2009.

2676

